1. A Food Intake Estimation System Using an Artificial Intelligence–Based Model for Estimating Leftover Hospital Liquid Food in Clinical Environments: Development and Validation Study
- Author
-
Masato Tagi, Yasuhiro Hamada, Xiao Shan, Kazumi Ozaki, Masanori Kubota, Sosuke Amano, Hiroshi Sakaue, Yoshiko Suzuki, Takeshi Konishi, and Jun Hirose
- Subjects
Medicine - Abstract
BackgroundMedical staff often conduct assessments, such as food intake and nutrient sufficiency ratios, to accurately evaluate patients’ food consumption. However, visual estimations to measure food intake are difficult to perform with numerous patients. Hence, the clinical environment requires a simple and accurate method to measure dietary intake. ObjectiveThis study aims to develop a food intake estimation system through an artificial intelligence (AI) model to estimate leftover food. The accuracy of the AI’s estimation was compared with that of visual estimation for liquid foods served to hospitalized patients. MethodsThe estimations were evaluated by a dietitian who looked at the food photo (image visual estimation) and visual measurement evaluation was carried out by a nurse who looked directly at the food (direct visual estimation) based on actual measurements. In total, 300 dishes of liquid food (100 dishes of thin rice gruel, 100 of vegetable soup, 31 of fermented milk, and 18, 12, 13, and 26 of peach, grape, orange, and mixed juices, respectively) were used. The root-mean-square error (RMSE) and coefficient of determination (R2) were used as metrics to determine the accuracy of the evaluation process. Corresponding t tests and Spearman rank correlation coefficients were used to verify the accuracy of the measurements by each estimation method with the weighing method. ResultsThe RMSE obtained by the AI estimation approach was 8.12 for energy. This tended to be smaller and larger than that obtained by the image visual estimation approach (8.49) and direct visual estimation approach (4.34), respectively. In addition, the R2 value for the AI estimation tended to be larger and smaller than the image and direct visual estimations, respectively. There was no difference between the AI estimation (mean 71.7, SD 23.9 kcal, P=.82) and actual values with the weighing method. However, the mean nutrient intake from the image visual estimation (mean 75.5, SD 23.2 kcal, P
- Published
- 2024
- Full Text
- View/download PDF