6 results on '"Sorçaburu Ciglieri, S."'
Search Results
2. Systematic study on the analytical parameters relevant to achieve reliable STR profiles, as assessed in a multicentre data set
- Author
-
C. Melzi di Cusano, Paola Pitacco, Carlo Previderè, Lara Consoloni, Pierangela Grignani, Solange Sorçaburu-Ciglieri, Giorgio Marrubini, Paolo Fattorini, Marrubini, G., Previderè, C., Sorçaburu Ciglieri, S., Grignani, P., Pitacco, P., Consoloni, L., di Cusano, C. Melzi, and Fattorini, Paolo
- Subjects
Identifiler plus ,business.industry ,Experimental design ,STR ,STRvalidator ,Genetics ,2734 ,Pattern recognition ,Assay sensitivity ,Biology ,Bioinformatics ,Pathology and Forensic Medicine ,Identifiler plu ,Genetic ,Artificial intelligence ,business - Abstract
A set of 16 amplifications following a D-optimal experimental design was planned using the most commonly selected kit and sequencer utilized in a collaborative exercise of the ISFG Italian Working Group GeFI on the molecular characterization of a depurinated DNA sample. The data were evaluated using STRvalidator in order to describe the occurrence of PCR artifacts such as peak imbalance and allele/locus drop outs. The aim of the study was to describe the role of the template amount, number of amplification cycles, volume of the PCR reaction in determining the assay sensitivity and the profiling accuracy as measured by peak heights and areas. The results showed that only by selecting an appropriate ratio of template to PCR reaction solution total volume together with an increase in the number of cycles it could be possible to obtain balanced peaks as well as minimal occurrence of other artifacts. These data are useful to model and understand the PCR artifacts occurrence described in the collaborative exercise.
- Published
- 2015
3. Evaluation of a New DNA Extraction Method on Challenging Bone Samples Recovered from a WWII Mass Grave.
- Author
-
Di Stefano B, Zupanič Pajnič I, Concato M, Bertoglio B, Calvano MG, Sorçaburu Ciglieri S, Bosetti A, Grignani P, Addoum Y, Vetrini R, Introna F, Bonin S, Previderè C, and Fattorini P
- Subjects
- Humans, World War II, DNA Fingerprinting methods, Forensic Genetics methods, Microsatellite Repeats genetics, DNA genetics, DNA isolation & purification, DNA, Ancient analysis, Bone and Bones chemistry
- Abstract
Bones and teeth represent a common finding in ancient DNA studies and in forensic casework, even after a long burial. Genetic typing is the gold standard for the personal identification of skeletal remains, but there are two main factors involved in the successful DNA typing of such samples: (1) the set-up of an efficient DNA extraction method; (2) the identification of the most suitable skeletal element for the downstream genetic analyses. In this paper, a protocol based on the processing of 0.5 g of bone powder decalcified using Na
2 EDTA proved to be suitable for a semi-automated DNA extraction workflow using the Maxwell® FSC DNA IQ™ Casework Kit (Promega, Madison, WI, USA). The performance of this method in terms of DNA recovery and quality was compared with a full demineralisation extraction protocol based on Qiagen technology and kits. No statistically significant differences were scored according to the DNA recovery and DNA degradation index ( p -values ≥ 0.176; r ≥ 0.907). This new DNA extraction protocol was applied to 88 bone samples (41 femurs, 19 petrous bones, 12 metacarpals and 16 molars) allegedly belonging to 27 World War II Italian soldiers found in a mass grave on the isle of Cres (Croatia). The results of the qPCR performed by the Quantifiler Human DNA Quantification kit showed values above the lowest Limit of Quantification (lLOQ; 23 pg/µL) for all petrous bones, whereas other bone types showed, in most cases, lower amounts of DNA. Replicate STR-CE analyses showed successful typing (that is, >12 markers) in all tests on the petrous bones, followed by the metacarpals (83.3%), femurs (52.2%) and teeth (20.0%). Full profiles (22/22 autosomal markers) were achieved mainly in the petrous bones (84.2%), followed by the metacarpals (41.7%). Stochastic amplification artefacts such as drop-outs or drop-ins occurred with a frequency of 1.9% in the petrous bones, whereas they were higher when the DNA recovered from other bone elements was amplified (up to 13.9% in the femurs). Overall, the results of this study confirm that petrous bone outperforms other bone elements in terms of the quantity and quality of the recovered DNA; for this reason, if available, it should always be preferred for genetic testing. In addition, our results highlight the need for accurate planning of the DVI operation, which should be carried out by a multi-disciplinary team, and the tricky issue of identifying other suitable skeletal elements for genetic testing. Overall, the results presented in this paper support the need to adopt preanalytical strategies positively related to the successful genetic testing of aged skeletal remains in order to reduce costs and the time of analysis.- Published
- 2024
- Full Text
- View/download PDF
4. The Baron Pasquale Revoltella's Will in the Forensic Genetics Era.
- Author
-
Fattorini P, Previderè C, Bonin S, Sorçaburu Ciglieri S, Grignani P, Pitacco P, Concato M, Bertoglio B, and Zupanič Pajnič I
- Subjects
- Pregnancy, Humans, Female, Aged, DNA, Mitochondrial genetics, Polymerase Chain Reaction, Body Remains, Forensic Genetics methods, DNA Fingerprinting methods
- Abstract
In this article, we describe multiple analytical strategies that were first developed for forensic purposes, on a set of three bone samples collected in 2011. We analyzed a single bone sample (patella) collected from the artificially mummified body of the Baron Pasquale Revoltella (1795-1869), as well two femurs which allegedly belonged to the Baron's mother (Domenica Privato Revoltella, 1775-1830). Likely due to the artificial mummification procedures, the inner part of the Baron's patella allowed the extraction of high-quality DNA yields, which were successfully used for PCR-CE and PCR-MPS typing of autosomal, Y-specific, and mitochondrial markers. The samples extracted from the trabecular inner part of the two femurs yielded no typing results by using the SNP identity panel, whereas the samples extracted from the compact cortical part of the same bone samples allowed genetic typing, even by the employment of PCR-CE technology. Altogether, 10/15 STR markers, 80/90 identity SNP markers, and HVR1, HVR2, and HVR3 regions of the mtDNA were successfully typed from the Baron's mother's remains by the combined use of PCR-CE and PCR-MPS technologies. The kinship analysis showed a likelihood ratio of at least 9.1 × 10
6 (corresponding to a probability of maternity of 99.9999999%), and thus confirmed the identity of the skeletal remains as those of the Baron's mother. This casework represented a challenging trial for testing forensic protocols on aged bones samples. It highlighted the importance of accurately sampling from the long bones, and that DNA degradation is not blocked by freezing at -80 °C.- Published
- 2023
- Full Text
- View/download PDF
5. Assessment of the Precision ID Identity Panel kit on challenging forensic samples.
- Author
-
Turchi C, Previderè C, Bini C, Carnevali E, Grignani P, Manfredi A, Melchionda F, Onofri V, Pelotti S, Robino C, Sorçaburu-Ciglieri S, Tagliabracci A, and Fattorini P
- Subjects
- DNA analysis, DNA, Bacterial genetics, Gene Frequency, Genotype, Humans, Polymerase Chain Reaction, Polymorphism, Single Nucleotide, Sequence Analysis, DNA, DNA Degradation, Necrotic, DNA Fingerprinting methods, High-Throughput Nucleotide Sequencing
- Abstract
The performance of the Precision ID Identity Panel (Thermo Fisher Scientific) was assessed on a set of 87 forensic samples with different levels of degradation for which a reference sample from the "same donor" or from a "first degree relative" was available. PCR-MPS analysis was performed with DNA input ranging from 1 ng to 12 pg and through 21-26 PCR cycles, in replicate tests, and a total number of 255 libraries were sequenced on the Ion Personal Genome Machine™ (PGM™) System. The evaluation of the molecular data allowed to set a fix threshold for locus call at 50 x which suitably worked even when low amounts of degraded DNA (12 pg) were investigated. In these analytical conditions, in fact, 25 PCR cycles allowed the genotyping of about 50 % and 35 % of the autosomal and the Y-specific markers on average, respectively, for each single amplification with a negligible frequency of drop ins (0.01 %). On the other hand, drop out artefacts reached 18-23 % when low copy number and degraded DNA samples were studied, with surviving alleles showing more than 600 reads in 2.9 % of the cases. Our data pointed out that the Precision ID Identity Panel allowed accurate typing of almost any amount of good quality/moderately degraded DNA samples, in duplicate tests. The analysis of low copy number DNAs evidenced that the same allele of a heterozygous genotype could be lost twice, thus suggesting that a third amplification could be useful for a correct genotype assignment in these peculiar cases. Using the consensus approach, a limited number of genotyping errors were computed and about 37 % of the autosomal markers was finally typed with a corresponding combined random match probability of at least 1.6 × 10
-13 , which can be considered an excellent result for this kind of challenging samples. In the end, the results presented in this study emphasize the crucial role of the expert opinion in the correct evaluation of artefacts arising from PCR-MPS technology that could potentially lead to genetic mistyping., (Copyright © 2020 Elsevier B.V. All rights reserved.)- Published
- 2020
- Full Text
- View/download PDF
6. Highly degraded RNA can still provide molecular information: An in vitro approach.
- Author
-
Fattorini P, Bonin S, Marrubini G, Bertoglio B, Grignani P, Recchia E, Pitacco P, Zupanič Pajnič I, Sorçaburu-Ciglieri S, and Previderè C
- Subjects
- DNA, Complementary analysis, DNA, Complementary chemistry, DNA, Complementary genetics, Humans, RNA Stability, Sensitivity and Specificity, Forensic Genetics, Polymerase Chain Reaction, RNA analysis, RNA chemistry, RNA genetics
- Abstract
The long-term survival of RNA in postmortem tissues is a tricky topic. Many aged/forensic specimens show, in fact, high rates of null/inconclusive PCR-based results, while reliable outcomes were sometimes achieved from archaeological samples. On the other hand, several data show that the RNA is a molecule that survives even to several physical-chemical stresses. In the present study, a simple protocol, which was already developed for the prolonged hydrolysis of DNA, was applied to a RNA sample extracted from blood. This protocol is based on the heat-mediated (70°C) hydrolysis for up to 36 h using ultrapure water and di-ethyl-pyro-carbonate-water as hydrolysis medium. Measurable levels of depurination were not found even if microfluidic devices showed a progressive pattern of degradation. The reverse transcription/quantitative PCR analysis of two (60 bp long) housekeeping targets (glyceraldehyde-3-phosphate dehydrogenase and porphobilinogen deaminase) showed that the percentage of amplifiable target (%AT) decreased in relation to the duration of the damaging treatment (r
2 > 0.973). The comparison of the %AT in the degraded RNA and in the DNA samples that underwent the same damaging treatment showed that the %AT is always higher in RNA, reaching up to three orders of magnitude. Lastly, even the end-point PCR of blood-specific markers gave reliable results, which is in agreement with the body fluid origin of the sample. In conclusion, all the PCR-based results show that RNA maintains the ability to be retro-transcribed in short cDNA fragments even after 36 h of incubation at 70°C in mildly acidic buffers. It is therefore likely that the long-term survival of RNA samples depends mainly on the protection against RNAase attacks rather than on environmental factors (such as humidity and acidity) that are instead of great importance for the stability of DNA. As a final remark, our results suggest that the RNA analysis can be successfully performed even when DNA profiling failed., (© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.