Fabrice Wilhelm, Yanhua Lan, Høgni Weihe, Alain Tressaud, Andrei Rogalev, Serghei Ostrovsky, Wolfgang Wernsdorfer, Kasper S. Pedersen, Zaher Salman, Stergios Piligkos, Sophia I. Klokishner, Jesper Bendix, Corine Mathonière, Daniel N. Woodruff, Katharina Ollefs, Etienne Durand, Rodolphe Clérac, Thorbjørn J. Morsing, Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université de Bordeaux (UB), Centre de Recherche Paul Pascal (CRPP), Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Department of Chemistry [Copenhagen], Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (KU)-University of Copenhagen = Københavns Universitet (KU), Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute (PSI), Department of Biochemistry, University of Oxford, University of Oxford [Oxford], Circuits électroniques quantiques Alpes (QuantECA ), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institute of Applied Physics, Academy of Sciences of Moldova, Academy of Sciences of Moldova (ASM), European Synchrotron Radiation Facility (ESRF), ANR-13-BS10-0001,MolQuSpin,Spintronique moléculaire quantique(2013), European Project: GdR MCM-2, Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH), University of Oxford, and Circuits électroniques quantiques Alpes (NEEL - QuantECA)
New exotic phenomena have recently been discovered in oxides of paramagnetic Ir4+ ions, widely known as ‘iridates'. Their remarkable properties originate from concerted effects of the crystal field, magnetic interactions and strong spin-orbit coupling, characteristic of 5d metal ions. Despite numerous experimental reports, the electronic structure of these materials is still challenging to elucidate, and not attainable in the isolated, but chemically inaccessible, [IrO6]8– species (the simplest molecular analogue of the elementary {IrO6}8− fragment present in all iridates). Here, we introduce an alternative approach to circumvent this problem by substituting the oxide ions in [IrO6]8− by isoelectronic fluorides to form the fluorido-iridate: [IrF6]2−. This molecular species has the same electronic ground state as the {IrO6}8− fragment, and thus emerges as an ideal model for iridates. These results may open perspectives for using fluorido-iridates as building-blocks for electronic and magnetic quantum materials synthesized by soft chemistry routes., Iridates are known to exhibit a range of exotic electronic and magnetic behaviours but it is difficult to prepare isolated [IrO6]8− species via soft chemical routes. Here, the authors isolate the isoelectronic [IrF6]2− complex, and assess it as a model and for iridate analogues.