1. Parallel Quantum Rapidly-Exploring Random Trees
- Author
-
Paul Lathrop, Beth Boardman, and Sonia Martinez
- Subjects
Sampling-based motion planning ,quantum computing ,parallel computing ,Electrical engineering. Electronics. Nuclear engineering ,TK1-9971 - Abstract
In this paper, we present the Parallel Quantum Rapidly-Exploring Random Tree (Pq-RRT) algorithm, a parallel version of the Quantum Rapidly-Exploring Random Trees (q-RRT) algorithm. Parallel Quantum RRT is a parallel quantum algorithm formulation of a sampling-based motion planner that uses Quantum Amplitude Amplification to search databases of reachable states for addition to a tree. In this work we investigate how parallel quantum devices can more efficiently search a database, as the quantum measurement process involves the collapse of the superposition to a base state, erasing probability information and therefore the ability to efficiently find multiple solutions. Pq-RRT uses a manager/parallel-quantum-workers formulation, inspired by traditional parallel motion planning, to perform simultaneous quantum searches of a feasible state database. We present symbolic runtime comparisons between parallel architectures, then results regarding likelihoods of multiple parallel units finding any and all solutions contained with a shared database, with and without reachability errors, allowing efficiency predictions to be made. We offer simulations in dense obstacle environments showing efficiency, density/heatmap, and speed comparisons for Pq-RRT against q-RRT, classical RRT, and classical parallel RRT. We then present Quantum Database Annealing, a database construction strategy that uses a temperature construct to define database creation over time for balancing exploration and exploitation.
- Published
- 2024
- Full Text
- View/download PDF