1. SoccerNet 2024 Challenges Results
- Author
-
Cioppa, Anthony, Giancola, Silvio, Somers, Vladimir, Joos, Victor, Magera, Floriane, Held, Jan, Ghasemzadeh, Seyed Abolfazl, Zhou, Xin, Seweryn, Karolina, Kowalczyk, Mateusz, Mróz, Zuzanna, Łukasik, Szymon, Hałoń, Michał, Mkhallati, Hassan, Deliège, Adrien, Hinojosa, Carlos, Sanchez, Karen, Mansourian, Amir M., Miralles, Pierre, Barnich, Olivier, De Vleeschouwer, Christophe, Alahi, Alexandre, Ghanem, Bernard, Van Droogenbroeck, Marc, Gorski, Adam, Clapés, Albert, Boiarov, Andrei, Afanasiev, Anton, Xarles, Artur, Scott, Atom, Lim, ByoungKwon, Yeung, Calvin, Gonzalez, Cristian, Rüfenacht, Dominic, Pacilio, Enzo, Deuser, Fabian, Altawijri, Faisal Sami, Cachón, Francisco, Kim, HanKyul, Wang, Haobo, Choe, Hyeonmin, Kim, Hyunwoo J, Kim, Il-Min, Kang, Jae-Mo, Tursunboev, Jamshid, Yang, Jian, Hong, Jihwan, Lee, Jimin, Zhang, Jing, Lee, Junseok, Zhang, Kexin, Habel, Konrad, Jiao, Licheng, Li, Linyi, Gutiérrez-Pérez, Marc, Ortega, Marcelo, Li, Menglong, Lopatto, Milosz, Kasatkin, Nikita, Nemtsev, Nikolay, Oswald, Norbert, Udin, Oleg, Kononov, Pavel, Geng, Pei, Alotaibi, Saad Ghazai, Kim, Sehyung, Ulasen, Sergei, Escalera, Sergio, Zhang, Shanshan, Yang, Shuyuan, Moon, Sunghwan, Moeslund, Thomas B., Shandyba, Vasyl, Golovkin, Vladimir, Dai, Wei, Chung, WonTaek, Liu, Xinyu, Zhu, Yongqiang, Kim, Youngseo, Li, Yuan, Yang, Yuting, Xiao, Yuxuan, Cheng, Zehua, and Li, Zhihao
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
The SoccerNet 2024 challenges represent the fourth annual video understanding challenges organized by the SoccerNet team. These challenges aim to advance research across multiple themes in football, including broadcast video understanding, field understanding, and player understanding. This year, the challenges encompass four vision-based tasks. (1) Ball Action Spotting, focusing on precisely localizing when and which soccer actions related to the ball occur, (2) Dense Video Captioning, focusing on describing the broadcast with natural language and anchored timestamps, (3) Multi-View Foul Recognition, a novel task focusing on analyzing multiple viewpoints of a potential foul incident to classify whether a foul occurred and assess its severity, (4) Game State Reconstruction, another novel task focusing on reconstructing the game state from broadcast videos onto a 2D top-view map of the field. Detailed information about the tasks, challenges, and leaderboards can be found at https://www.soccer-net.org, with baselines and development kits available at https://github.com/SoccerNet., Comment: 7 pages, 1 figure
- Published
- 2024