Andrew E. Prendergast, Kin Ki Jim, Hugo Marnas, Laura Desban, Feng B. Quan, Lydia Djenoune, Valerio Laghi, Agnès Hocquemiller, Elias T. Lunsford, Julian Roussel, Ludovic Keiser, Francois-Xavier Lejeune, Mahalakshmi Dhanasekar, Pierre-Luc Bardet, Jean-Pierre Levraud, Diederik van de Beek, Christina M.J.E. Vandenbroucke-Grauls, Claire Wyart, Institut du Cerveau = Paris Brain Institute (ICM), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), University of Amsterdam [Amsterdam] (UvA), Vrije Universiteit Amsterdam [Amsterdam] (VU), Amsterdam institute for Infection and Immunity [Amsterdam, The Netherlands] (A3I), Macrophages et Développement de l’Immunité, Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Ecole Polytechnique Fédérale de Lausanne (EPFL), Institut des Neurosciences Paris-Saclay (NeuroPSI), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), This work was supported by the Fondation Schlumberger pour l’Education et la Recherche (FSER/2017), the Fondation pour la Recherche Médicale (FRM no. Equation 202003010612), the ERC Starting Grant 'Optoloco' no. 311673, ERC PoC 'ZebraZoom' no. 825273, and ERC Consolidator Grant 'Exploratome' no. 101002870 (to C.W.). We acknowledge support from 'MeninGene' no. 281156 and the HFSP Program grant nos. RGP0063/2014 and RGP0063/2017 and grants from the Agence Nationale de la Recherche (ANR) ASCENTS no. ANR-21-CE13-0008, MOTOMYO no. ANR-21-CE14-0042, and ANR LOCOCONNECT no. ANR-22-CE37-0023 et la Fondation Bettencourt-Schueller don 0031. D.v.d.B. was supported by a ZonMw VICI grant no. 391819627. A.E.P. was supported by an EMBO long-term fellowship (ALTF-549-2013) and a Research in Paris grant from the Marie de Paris. L. Desban was supported by the French Ministry of Higher Education and Research doctoral fellowship. M.D. was supported by a PhD fellowship from the Sorbonne Université Ecole Doctorale ED3C., ANR-21-CE13-0008,ASCENTS,Étude d'une asymétrie structurelle nouvellement identifiée du centriole des vertébrés et de son impact sur le développement et la santé(2021), ANR-21-CE14-0042,MOTOMYO,Appariement entre sous types de motoneurones et sous types de myofibres: du développement à la pathologie(2021), ANR-22-CE37-0023,LOCONNECT,Transmission d'information causale lors de la locomotion(2022), European Project: 311673,EC:FP7:ERC,ERC-2012-StG_20111109,OPTOLOCO(2013), Medical Microbiology and Infection Prevention, AII - Infectious diseases, AII - Inflammatory diseases, Amsterdam Gastroenterology Endocrinology Metabolism, Graduate School, ANS - Neuroinfection & -inflammation, and Neurology
International audience; The pathogenic bacterium Streptococcus pneumoniae (S. pneumoniae) can invade the cerebrospinal fluid (CSF) and cause meningitis with devastating consequences. Whether and how sensory cells in the central nervous system (CNS) become activated during bacterial infection, as recently reported for the peripheral nervous system, is not known. We find that CSF infection by S. pneumoniae in larval zebrafish leads to changes in posture and behavior that are reminiscent of pneumococcal meningitis, including dorsal arching and epileptic-like seizures. We show that during infection, invasion of the CSF by S. pneumoniae massively activates in vivo sensory neurons contacting the CSF, referred to as “CSF-cNs” and previously shown to detect spinal curvature and to control posture, locomotion, and spine morphogenesis. We find that CSF-cNs express orphan bitter taste receptors and respond in vitro to bacterial supernatant and metabolites via massive calcium transients, similar to the ones observed in vivo during infection. Upon infection, CSF-cNs also upregulate the expression of numerous cytokines and complement components involved in innate immunity. Accordingly, we demonstrate, using cell-specific ablation and blockade of neurotransmission, that CSF-cN neurosecretion enhances survival of the host during S. pneumoniae infection. Finally, we show that CSF-cNs respond to various pathogenic bacteria causing meningitis in humans, as well as to the supernatant of cells infected by a neurotropic virus. Altogether, our work uncovers that central sensory neurons in the spinal cord, previously involved in postural control and morphogenesis, contribute as well to host survival by responding to the invasion of the CSF by pathogenic bacteria during meningitis.