1. Aqueous Alteration in the Kuiper Belt: Evidence from Hydrated Interplanetary Dust Particles
- Author
-
Keller, L. P and Snead, C. J
- Subjects
Space Sciences (General) - Abstract
Edgeworth-Kuiper belt objects (EKBOs) formed in the outer reaches of the protoplanetary disk and thus avoided much of the high tempera-ture processing experienced by bodies in the inner solar system. For this reason, they contain a wealth of information on the nature of nebular solids and the chemical conditions in the earliest solar system. Astronomical observations of EKBOs have been limited largely to the surface chemistry of the ices covering these small and difficult to observe bodies. The mineralogy of EKBO objects are poorly known, but clues regarding their mineralogical makeup come from studies of samples from short period comets (e.g. Wild2), and interplanetary dust particles (IDPs) produced by collisions in the Kuiper belt. Interplanetary dust particles from objects in the solar system (mainly comets and asteroids) spiral in to-wards the Sun under the influence of Poynting-Robertson (PR) drag forces and accumulate solar flare energetic particle tracks. Recent work has shown that the observed solar flare track densities (~1010-1011/sq.cm) in these IDPs are ~two orders of magnitude higher than expected if they were derived from main belt asteroids or Jupiter family comets and thus require an origin from outer solar system source bodies such as EKBOs. The track-rich IDPs include representatives from the two major groups of IDPs: the chondritic-porous, anhydrous IDPs and the chondritic-smooth, hydrated IDPs, although rare IDPs with mineralogies intermediate between these two groups are known. Here, we report on the mineralogy, composition, organic matter content, and isotopic characteristics of track-rich hydrated IDPs, and implications for aqueous alteration in outer solar system bodies.
- Published
- 2020