1. Real-space analysis of Hatsugai-Kohmoto interaction
- Author
-
Skolimowski, Jan
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
The Hatsugai-Kohmoto interaction model has gained a lot of attention in recent years, due to the fact it is exactly solvable in momentum space in any dimension while capturing some key features of the Mott phase. Here a one-dimensional lattice model with this interaction is approached from the real-space perspective, to explore how breaking the translation invariance of a lattice affects the intuition built by studying the exact solution in $k$-space. The ground state properties of chains with periodic and open boundary conditions are calculated and compared with both the exact solution in momentum space, as well as with analogous solutions of the Hubbard model. The results show that introducing hard edges enhances the ferromagnetic correlations and the system undergoes a magnetic transition before reaching the strong coupling limit. Understanding the impact of hard edges is a crucial step toward answering the looming question of the existence of edge states and other topological phenomena in systems with this type of interaction., Comment: 11 pages, 10 figures
- Published
- 2024
- Full Text
- View/download PDF