164 results on '"Skjelvan, I."'
Search Results
2. Global Carbon Budget 2022
- Author
-
Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J., Le Quéré, C., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Alkama, R., Arneth, A., Arora, V. K., Bates, N. R., Becker, M., Bellouin, N., Bittig, H. C., Bopp, L., Chevallier, F., Chini, L. P., Cronin, M., Evans, W., Falk, S., Feely, R. A., Gasser, T., Gehlen, M., Gkritzalis, T., Gloege, L., Grassi, G., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Jain, A. K., Jersild, A., Kadono, K., Kato, E., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Landschützer, P., Lefèvre, N., Lindsay, K., Liu, J., Liu, Z., Marland, G., Mayot, N., McGrath, M. J., Metzl, N., Monacci, N. M., Munro, D. R., Nakaoka, S.-I., Niwa, Y., O'Brien, K., Ono, T., Palmer, P. I., Pan, N., Pierrot, D., Pocock, K., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Rodriguez, C., Rosan, T. M., Schwinger, J., Séférian, R., Shutler, J. D., Skjelvan, I., Steinhoff, T., Sun, Q., Sutton, A. J., Sweeney, C., Takao, S., Tanhua, T., Tans, P. P., Tian, X., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G. R., Walker, A. P., Wanninkhof, R., Whitehead, C., Willstrand Wranne, A., Wright, R., Yuan, W., Yue, C., Yue, X., Zaehle, S., Zeng, J., Zheng, B., Integr. Assessm. Global Environm. Change, Environmental Sciences, Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, College of Life and Environmental Sciences [Exeter], University of Exeter, Rice University [Houston], Center for International Climate and Environmental Research [Oslo] (CICERO), University of Oslo (UiO), Institute of Biogeochemistry and Pollutant Dynamics [ETH Zürich] (IBP), Department of Environmental Systems Science [ETH Zürich] (D-USYS), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)- Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), Tyndall Centre for Climate Change Research, University of East Anglia [Norwich] (UEA), Meteorology and Air Quality Group, Wageningen University and Research [Wageningen] (WUR), Geophysical Institute [Bergen] (GFI / BiU), University of Bergen (UiB), Bjerknes Centre for Climate Research (BCCR), Department of Biological Sciences [Bergen] (BIO / UiB), University of Bergen (UiB)-University of Bergen (UiB), Meteorology and Air Quality Department [Wageningen] (MAQ), Ludwig-Maximilians-Universität München (LMU), Max Planck Institute for Meteorology (MPI-M), Max-Planck-Gesellschaft, Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Stanford Woods Institute for the Environment, Stanford University, European Commission - Joint Research Centre [Ispra] (JRC), Karlsruhe Institute of Technology (KIT), Canadian Centre for Climate Modelling and Analysis (CCCma), Environment and Climate Change Canada, Austral, Boréal et Carbone (ABC), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Cycles biogéochimiques marins : processus et perturbations (CYBIOM), Earth Sciences, Amsterdam Sustainability Institute, and Isotope Research
- Subjects
WIMEK ,[SDE.MCG]Environmental Sciences/Global Changes ,SDG 13 - Climate Action ,Life Science ,General Earth and Planetary Sciences ,Luchtkwaliteit ,Air Quality - Abstract
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodologies to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) is estimated with global ocean biogeochemistry models and observation-based data products. The terrestrial CO2 sink (SLAND) is estimated with dynamic global vegetation models. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the year 2021, EFOS increased by 5.1 % relative to 2020, with fossil emissions at 10.1 ± 0.5 GtC yr−1 (9.9 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 1.1 ± 0.7 GtC yr−1, for a total anthropogenic CO2 emission (including the cement carbonation sink) of 10.9 ± 0.8 GtC yr−1 (40.0 ± 2.9 GtCO2). Also, for 2021, GATM was 5.2 ± 0.2 GtC yr−1 (2.5 ± 0.1 ppm yr−1), SOCEAN was 2.9 ± 0.4 GtC yr−1, and SLAND was 3.5 ± 0.9 GtC yr−1, with a BIM of −0.6 GtC yr−1 (i.e. the total estimated sources were too low or sinks were too high). The global atmospheric CO2 concentration averaged over 2021 reached 414.71 ± 0.1 ppm. Preliminary data for 2022 suggest an increase in EFOS relative to 2021 of +1.0 % (0.1 % to 1.9 %) globally and atmospheric CO2 concentration reaching 417.2 ppm, more than 50 % above pre-industrial levels (around 278 ppm). Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2021, but discrepancies of up to 1 GtC yr−1 persist for the representation of annual to semi-decadal variability in CO2 fluxes. Comparison of estimates from multiple approaches and observations shows (1) a persistent large uncertainty in the estimate of land-use change emissions, (2) a low agreement between the different methods on the magnitude of the land CO2 flux in the northern extratropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set. The data presented in this work are available at https://doi.org/10.18160/GCP-2022 (Friedlingstein et al., 2022b).
- Published
- 2022
3. Global Carbon Budget 2022
- Author
-
Integr. Assessm. Global Environm. Change, Environmental Sciences, Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J., Le Quéré, C., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Alkama, R., Arneth, A., Arora, V. K., Bates, N. R., Becker, M., Bellouin, N., Bittig, H. C., Bopp, L., Chevallier, F., Chini, L. P., Cronin, M., Evans, W., Falk, S., Feely, R. A., Gasser, T., Gehlen, M., Gkritzalis, T., Gloege, L., Grassi, G., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Jain, A. K., Jersild, A., Kadono, K., Kato, E., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Landschützer, P., Lefèvre, N., Lindsay, K., Liu, J., Liu, Z., Marland, G., Mayot, N., McGrath, M. J., Metzl, N., Monacci, N. M., Munro, D. R., Nakaoka, S.-I., Niwa, Y., O'Brien, K., Ono, T., Palmer, P. I., Pan, N., Pierrot, D., Pocock, K., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Rodriguez, C., Rosan, T. M., Schwinger, J., Séférian, R., Shutler, J. D., Skjelvan, I., Steinhoff, T., Sun, Q., Sutton, A. J., Sweeney, C., Takao, S., Tanhua, T., Tans, P. P., Tian, X., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G. R., Walker, A. P., Wanninkhof, R., Whitehead, C., Willstrand Wranne, A., Wright, R., Yuan, W., Yue, C., Yue, X., Zaehle, S., Zeng, J., Zheng, B., Integr. Assessm. Global Environm. Change, Environmental Sciences, Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J., Le Quéré, C., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Alkama, R., Arneth, A., Arora, V. K., Bates, N. R., Becker, M., Bellouin, N., Bittig, H. C., Bopp, L., Chevallier, F., Chini, L. P., Cronin, M., Evans, W., Falk, S., Feely, R. A., Gasser, T., Gehlen, M., Gkritzalis, T., Gloege, L., Grassi, G., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Jain, A. K., Jersild, A., Kadono, K., Kato, E., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Landschützer, P., Lefèvre, N., Lindsay, K., Liu, J., Liu, Z., Marland, G., Mayot, N., McGrath, M. J., Metzl, N., Monacci, N. M., Munro, D. R., Nakaoka, S.-I., Niwa, Y., O'Brien, K., Ono, T., Palmer, P. I., Pan, N., Pierrot, D., Pocock, K., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Rodriguez, C., Rosan, T. M., Schwinger, J., Séférian, R., Shutler, J. D., Skjelvan, I., Steinhoff, T., Sun, Q., Sutton, A. J., Sweeney, C., Takao, S., Tanhua, T., Tans, P. P., Tian, X., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G. R., Walker, A. P., Wanninkhof, R., Whitehead, C., Willstrand Wranne, A., Wright, R., Yuan, W., Yue, C., Yue, X., Zaehle, S., Zeng, J., and Zheng, B.
- Published
- 2022
4. Norwegian Sea net community production estimated from O2 and prototype CO2 optode measurements on a Seaglider
- Author
-
Possenti, L., Skjelvan, I., Atamanchuk, D., Tengberg, A., Humphreys, M.P., Loucaides, S., Fernand, L., and Kaiser, J.
- Abstract
We report on a pilot study using a CO2 optode deployed on a Seaglider in the Norwegian Sea from March to October 2014. The optode measurements required drift and lag correction and in situ calibration using discrete water samples collected in the vicinity. We found that theoptode signal correlated better with the concentration of CO2,c(CO2), than with its partial pressure, p(CO 2). Using the calibrated c(CO2) and a regional parameterisation of total alkalinity (AT) as a function of temperature and salinity, we calculated total dissolved inorganic carbon content, c(DIC), which had a standard deviation of 11 µmol kg−1 compared with in situ measurements. The glider was also equipped with an oxygen (O2) optode. The O2 optode was drift corrected and calibrated using a c(O2) climatology for deep samples. The calibrated data enabled the calculation of DIC- and O2-based net community production, N(DIC) and N(O2). To derive N, DIC and O2 inventory changes over time were combined with estimates of air–sea gas exchange, diapycnal mixing and entrainment of deeper waters. Glider-based observations captured two periods of increased Chl a inventory in late spring (May) and a second one in summer (June). For the May period, wefound N(DIC) = (21±5) mmol m−2 d−1, N(O2) = (94±16) mmol m−2 d−1 andan (uncalibrated) Chl a peak concentration of c raw(Chl a) = 3 mg m−3. During the June period, craw(Chl a) increased to a summer maximum of 4 mg m−3, associated with N(DIC) = (85±5) mmol m−2 d−1 and N(O 2) = (126±25) mmol m−2 d−1. Thehigh-resolution dataset allowed for quantification of the changes in N before, during and after the periods of increased Chl a inventory. After the May period, the remineralisation of the materialproduced during the period of increased Chl a inventory decreased N(DIC) to (−3±5) mmol m−2 d−1 and N (O2) to (0±2) mmol m−2 d−1. The survey area was a source of O2 and a sink of CO2 for most of the summer. The deployment captured two different surface waters influenced by the Norwegian Atlantic Current (NwAC) and the Norwegian Coastal Current(NCC). The NCC was characterised by lower c(O2) and c(DIC) than the NwAC, as well as lower N(O2) and craw(Chl a) but higher N(DIC). Our results show the potential of glider data to simultaneously capture time- and depth-resolved variability in DIC and O2 concentrations.
- Published
- 2021
5. Opportunities for an African greenhouse gas observation system
- Author
-
Merbold, L., Scholes, R. J., Acosta, M., Beck, J., Bombelli, A., Fiedler, B., Grieco, E., Helmschrot, J., Hugo, W., Kasurinen, V., Kim, D. G., Körtzinger, A., Leitner, S., López-Ballesteros, A., Ndisi, M., Nickless, A., Salmon, E., Saunders, M., Skjelvan, I., Vermeulen, A. T., Kutsch, W. L., Merbold, L., Scholes, R. J., Acosta, M., Beck, J., Bombelli, A., Fiedler, B., Grieco, E., Helmschrot, J., Hugo, W., Kasurinen, V., Kim, D. G., Körtzinger, A., Leitner, S., López-Ballesteros, A., Ndisi, M., Nickless, A., Salmon, E., Saunders, M., Skjelvan, I., Vermeulen, A. T., and Kutsch, W. L.
- Abstract
Global population projections foresee the biggest increase to occur in Africa with most of the available uncultivated land to ensure food security remaining on the continent. Simultaneously, greenhouse gas emissions are expected to rise due to ongoing land use change, industrialisation, and transport amongst other reasons with Africa becoming a major emitter of greenhouse gases globally. However, distinct knowledge on greenhouse gas emissions sources and sinks as well as their variability remains largely unknown caused by its vast size and diversity and an according lack of observations across the continent. Thus, an environmental research infrastructureâ as being setup in other regionsâ is more needed than ever. Here, we present the results of a design study that developed a blueprint for establishing such an environmental research infrastructure in Africa. The blueprint comprises an inventory of already existing observations, the spatial disaggregation of locations that will enable to reduce the uncertainty in climate forcingâ s in Africa and globally as well as an overall estimated cost for such an endeavour of about 550 Mâ ¬ over the next 30 years. We further highlight the importance of the development of an e-infrastructure, the necessity for capacity development and the inclusion of all stakeholders to ensure African ownership. © 2021, The Author(s).
- Published
- 2021
6. Global Carbon Budget 2020
- Author
-
Friedlingstein, P, O'Sullivan, M, Jones, MW, Andrew, RM, Hauck, J, Olsen, A, Peters, GP, Peters, W, Pongratz, J, Sitch, S, Le Quéré, C, Canadell, JG, Ciais, P, Jackson, RB, Alin, S, Aragão, LEOC, Arneth, A, Arora, V, Bates, NR, Becker, M, Benoit-Cattin, A, Bittig, HC, Bopp, L, Bultan, S, Chandra, N, Chevallier, F, Chini, LP, Evans, W, Florentie, L, Forster, PM, Gasser, T, Gehlen, M, Gilfillan, D, Gkritzalis, T, Gregor, L, Gruber, N, Harris, I, Hartung, K, Haverd, V, Houghton, RA, Ilyina, T, Jain, AK, Joetzjer, E, Kadono, K, Kato, E, Kitidis, V, Korsbakken, JI, Landschützer, P, Lefèvre, N, Lenton, A, Lienert, S, Liu, Z, Lombardozzi, D, Marland, G, Metzl, N, Munro, DR, Nabel, JEMS, Nakaoka, S-I, Niwa, Y, O'Brien, K, Ono, T, Palmer, PI, Pierrot, D, Poulter, B, Resplandy, L, Robertson, E, Rödenbeck, C, Schwinger, J, Séférian, R, Skjelvan, I, Smith, AJP, Sutton, AJ, Tanhua, T, Tans, PP, Tian, H, Tilbrook, B, van der Werf, G, Vuichard, N, Walker, AP, Wanninkhof, R, Watson, AJ, Willis, D, Wiltshire, AJ, Yuan, W, Yue, X, and Zaehle, S
- Abstract
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2010–2019), EFOS was 9.6 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.4 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 1.6 ± 0.7 GtC yr−1. For the same decade, GATM was 5.1 ± 0.02 GtC yr−1 (2.4 ± 0.01 ppm yr−1), SOCEAN 2.5 ± 0.6 GtC yr−1, and SLAND 3.4 ± 0.9 GtC yr−1, with a budget imbalance BIM of −0.1 GtC yr−1 indicating a near balance between estimated sources and sinks over the last decade. For the year 2019 alone, the growth in EFOS was only about 0.1 % with fossil emissions increasing to 9.9 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.7 ± 0.5 GtC yr−1 when cement carbonation sink is included), and ELUC was 1.8 ± 0.7 GtC yr−1, for total anthropogenic CO2 emissions of 11.5 ± 0.9 GtC yr−1 (42.2 ± 3.3 GtCO2). Also for 2019, GATM was 5.4 ± 0.2 GtC yr−1 (2.5 ± 0.1 ppm yr−1), SOCEAN was 2.6 ± 0.6 GtC yr−1, and SLAND was 3.1 ± 1.2 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 409.85 ± 0.1 ppm averaged over 2019. Preliminary data for 2020, accounting for the COVID-19-induced changes in emissions, suggest a decrease in EFOS relative to 2019 of about −7 % (median estimate) based on individual estimates from four studies of −6 %, −7 %, −7 % (−3 % to −11 %), and −13 %. Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2019, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. Comparison of estimates from diverse approaches and observations shows (1) no consensus in the mean and trend in land-use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent discrepancy between the different methods for the ocean sink outside the tropics, particularly in the Southern Ocean. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Friedlingstein et al., 2019; Le Quéré et al., 2018b, a, 2016, 2015b, a, 2014, 2013). The data presented in this work are available at https://doi.org/10.18160/gcp-2020 (Friedlingstein et al., 2020).
- Published
- 2020
7. Products from a surface ocean CO2 reference network, SOCONET
- Author
-
Wanninkhof, R., Bakker, D. C. E., Pfeil, B., Smith, K., Hankin, S., Alin, S. R., Cosca, C., Harasawa, S., Kozyr, A., Nojiri, Y., O'Brien, K., Telszewski, M., Tilbrook, B., Wada, C., Akl, J., Barbero, L., Bates, N. R., Boutin, J., Bozec, Y., Cai, W. J., Castle, R. D., Chavez, F. P., Chen, L., Chierici, M., Currie, K., De Baar, H. J. W., Evans, W., Feely, R. A., Fransson, A., Gao, Z., Hales, B., Hardman-Mountford, N. J., Hoppema, Mario, Huang, W.J., Hunt, C. W., Huss, B., Ichikawa, T., Johannessen, T., Jones, E. M., Jones, S. D., Jutterström, S., Kitidis, V., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefevre, N., Manke, A., Mathis, J. T., Merlivat, L., Metzl, N., Murata, A., Monteiro, P., Newberger, T., Omar, A. M., Ono, T., Park, G. H., Paterson, K., Pierrot, D., Rios, A. F., Sabine, C. L., Saito, S., Salisbury, J., Sarma, V. V. S. S., Schlitzer, Reiner, Sieger, Rainer, Skjelvan, I., Steinhoff, T., Sullivan, K. F., Sun, H., Sutton, A.J., Suzuki, T., Sweeney, C., Takahashi, T., Tjiputra, J., Tsurushima, N., Van Heuven, S. M. A. C., Vandemark, D., Vlahos, P., Wallace, D. W. R., Watson, A., Pickers, P. A., Olsen, A., Stephens, B.B., Munro, D., Rehder, G., Santana-Casiano, J. M., Müller, J. D., Trianes, J., Tedesco, K., Ishii, M., González-Dávila, M., Suntharalingam, P., Nakaoka, S.-i., Schuster, U., Wanninkhof, R., Bakker, D. C. E., Pfeil, B., Smith, K., Hankin, S., Alin, S. R., Cosca, C., Harasawa, S., Kozyr, A., Nojiri, Y., O'Brien, K., Telszewski, M., Tilbrook, B., Wada, C., Akl, J., Barbero, L., Bates, N. R., Boutin, J., Bozec, Y., Cai, W. J., Castle, R. D., Chavez, F. P., Chen, L., Chierici, M., Currie, K., De Baar, H. J. W., Evans, W., Feely, R. A., Fransson, A., Gao, Z., Hales, B., Hardman-Mountford, N. J., Hoppema, Mario, Huang, W.J., Hunt, C. W., Huss, B., Ichikawa, T., Johannessen, T., Jones, E. M., Jones, S. D., Jutterström, S., Kitidis, V., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefevre, N., Manke, A., Mathis, J. T., Merlivat, L., Metzl, N., Murata, A., Monteiro, P., Newberger, T., Omar, A. M., Ono, T., Park, G. H., Paterson, K., Pierrot, D., Rios, A. F., Sabine, C. L., Saito, S., Salisbury, J., Sarma, V. V. S. S., Schlitzer, Reiner, Sieger, Rainer, Skjelvan, I., Steinhoff, T., Sullivan, K. F., Sun, H., Sutton, A.J., Suzuki, T., Sweeney, C., Takahashi, T., Tjiputra, J., Tsurushima, N., Van Heuven, S. M. A. C., Vandemark, D., Vlahos, P., Wallace, D. W. R., Watson, A., Pickers, P. A., Olsen, A., Stephens, B.B., Munro, D., Rehder, G., Santana-Casiano, J. M., Müller, J. D., Trianes, J., Tedesco, K., Ishii, M., González-Dávila, M., Suntharalingam, P., Nakaoka, S.-i., and Schuster, U.
- Published
- 2020
8. A Carbon-budget for the north-west European shelf - limitations and uncertainties
- Author
-
Kitidis, V., Shutler, J. D., Ashton, I., Warren, M., Brown, I., Findlay, H., Hartman, S.E., Sander, R., Humphreys, M., Kivimäe, C., Greenwood, N., Hull, T., Pearce, D., McGrath, T., Stewart, B.M., Walsham, P., McGovern, E., Bozec, Y., Gac, J.-P., Marrec, P., van Heuven, S. M. A. C., Hoppema, Mario, Schuster, U., Johannessen, T., Omar, A., Lauvset, S., Skjelvan, I., Olsen, A., Steinhoff, T., Körtzinger, A., Becker, M., Lefevre, N., Diverrès, D., Gkritzalis, T., Catrijsse, A., Petersen, W., Voynova, Y. G., Chapron, B., Grouazel, A., Land, P.E., Sharples, J., Nightingale, P. D., Kitidis, V., Shutler, J. D., Ashton, I., Warren, M., Brown, I., Findlay, H., Hartman, S.E., Sander, R., Humphreys, M., Kivimäe, C., Greenwood, N., Hull, T., Pearce, D., McGrath, T., Stewart, B.M., Walsham, P., McGovern, E., Bozec, Y., Gac, J.-P., Marrec, P., van Heuven, S. M. A. C., Hoppema, Mario, Schuster, U., Johannessen, T., Omar, A., Lauvset, S., Skjelvan, I., Olsen, A., Steinhoff, T., Körtzinger, A., Becker, M., Lefevre, N., Diverrès, D., Gkritzalis, T., Catrijsse, A., Petersen, W., Voynova, Y. G., Chapron, B., Grouazel, A., Land, P.E., Sharples, J., and Nightingale, P. D.
- Published
- 2020
9. Constraining the oceanic uptake and fluxes of greenhouse gases by building an ocean network of certified stations: the ocean component of the Integrated Carbon Observation System, ICOS-Oceans
- Author
-
Steinhoff, T., Gkritzalis, T., Lauvset, S.K., Jones, S., Schuster, U., Olsen, A., Becker, M., Bozzano, R., Brunetti, F., Cantoni, C., Cardin, V., Diverrès, D., Fiedler, B., Fransson, A., Giani, M., Hartman, S., Hoppema, Mario, Jeansson, E., Johannessen, T., Kitidis, V., Körtzinger, A., Landa, C., Lefèvre, N., Luchetta, A., Naudts, L., Nightingale, P.D., Omar, A., Pensieri, S., Pfeil, B., Castaño-Primo, R., Rehder, G., Rutgersson, A., Sanders, R., Schewe, Ingo, Siena, G., Skjelvan, I., Soltwedel, Thomas, van Heuven, S., Watson, A., Steinhoff, T., Gkritzalis, T., Lauvset, S.K., Jones, S., Schuster, U., Olsen, A., Becker, M., Bozzano, R., Brunetti, F., Cantoni, C., Cardin, V., Diverrès, D., Fiedler, B., Fransson, A., Giani, M., Hartman, S., Hoppema, Mario, Jeansson, E., Johannessen, T., Kitidis, V., Körtzinger, A., Landa, C., Lefèvre, N., Luchetta, A., Naudts, L., Nightingale, P.D., Omar, A., Pensieri, S., Pfeil, B., Castaño-Primo, R., Rehder, G., Rutgersson, A., Sanders, R., Schewe, Ingo, Siena, G., Skjelvan, I., Soltwedel, Thomas, van Heuven, S., and Watson, A.
- Published
- 2019
10. Winter weather controls net influx of atmospheric CO2 on the north-west European shelf
- Author
-
Kitidis, V., Shutler, J. D., Ashton, I., Warren, M., Brown, I., Findlay, H., Hartman, S.E., Sanders, R., Humphreys, M., Kivimäe, C., Greenwood, N., Hull, T., Pearce, D., McGrath, T., Stewart, B.M., Walsham, P., McGovern, E., Bozec, Y., Gac, J.-P., van Heuven, S., Hoppema, Mario, Schuster, U., Johannessen, T., Omar, A., Lauvset, S.K., Skjelvan, I., Olsen, A., Steinhoff, T., Körtzinger, A., Becker, M., Lefrèvre, N., Diverrès, D., Gkritzalis, T., Catrijsse, A., Petersen, W., Voynova, Y., Chapron, B., Grouazel, A., Land, P.E., Sharples, J., Nightingale, P. D., Kitidis, V., Shutler, J. D., Ashton, I., Warren, M., Brown, I., Findlay, H., Hartman, S.E., Sanders, R., Humphreys, M., Kivimäe, C., Greenwood, N., Hull, T., Pearce, D., McGrath, T., Stewart, B.M., Walsham, P., McGovern, E., Bozec, Y., Gac, J.-P., van Heuven, S., Hoppema, Mario, Schuster, U., Johannessen, T., Omar, A., Lauvset, S.K., Skjelvan, I., Olsen, A., Steinhoff, T., Körtzinger, A., Becker, M., Lefrèvre, N., Diverrès, D., Gkritzalis, T., Catrijsse, A., Petersen, W., Voynova, Y., Chapron, B., Grouazel, A., Land, P.E., Sharples, J., and Nightingale, P. D.
- Published
- 2019
11. Global carbon budget 2018 [Data Paper]
- Author
-
Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Hauck, J., Pongratz, J., Pickers, P. A., Korsbakken, J. I., Peters, G. P., Canadell, J. G., Arneth, A., Arora, V. K., Barbero, L., Bastos, A., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Doney, S. C., Gkritzalis, T., Goll, D. S., Harris, I., Haverd, V., Hoffman, F. M., Hoppema, M., Houghton, R. A., Hurtt, G., Ilyina, T., Jain, A. K., Johannessen, T., Jones, C. D., Kato, E., Keeling, R. F., Goldewijk, K. K., Landschutzer, P., Lefèvre, Nathalie, Lienert, S., Liu, Z., Lombardozzi, D., Metzl, N., Munro, D. R., Nabel, Jems, Nakaoka, S., Neill, C., Olsen, A., Ono, T., Patra, P., Peregon, A., Peters, W., Peylin, P., Pfeil, B., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rocher, M., Rodenbeck, C., Schuster, U., Schwinger, J., Seferian, R., Skjelvan, I., Steinhoff, T., Sutton, A., Tans, P. P., Tian, H. Q., Tilbrook, B., Tubiello, F. N., van der Laan-Luijkx, I. T., van der Werf, G. R., Viovy, N., Walker, A. P., Wiltshire, A. J., Wright, R., Zaehle, S., and Zheng, B.
- Abstract
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere - the "global carbon budget" - is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (E-FF) are based on energy statistics and cement production data, while emissions from land use and land-use change (E-LUC), mainly deforestation, are based on land use and land -use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (G(ATM)) is computed from the annual changes in concentration. The ocean CO2 sink (S-OCEAN) and terrestrial CO2 sink (S-LAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (B-IM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as +/- 1 sigma. For the last decade available (2008-2017), E-FF was 9.4 +/- 0.5 GtC yr(-1), E-LUC 1.5 +/- 0.7 GtC yr(-1), G(ATM) 4.7 +/- 0.02 GtC yr(-1), S-OCEAN 2.4 +/- 0.5 GtC yr(-1), and S-LAND 3.2 +/- 0.8 GtC yr(-1), with a budget imbalance B-IM of 0.5 GtC yr(-1) indicating overestimated emissions and/or underestimated sinks. For the year 2017 alone, the growth in E-FF was about 1.6 % and emissions increased to 9.9 +/- 0.5 GtC yr(-1). Also for 2017, E-LUC was 1.4 +/- 0.7 GtC yr(-1), G(ATM) was 4.6 +/- 0.2 GtC yr(-1), S-OCEAN was 2.5 +/- 0.5 GtC yr(-1), and S-LAND was 3.8 +/- 0.8 GtC yr(-1), with a B-IM of 0.3 GtC. The global atmospheric CO2 concentration reached 405.0 +/- 0.1 ppm averaged over 2017. For 2018, preliminary data for the first 6-9 months indicate a renewed growth in E-FF of +2.7 % (range of 1.8 % to 3.7 %) based on national emission projections for China, the US, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. The analysis presented here shows that the mean and trend in the five components of the global carbon budget are consistently estimated over the period of 1959-2017, but discrepancies of up to 1 GtC yr(-1) persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations show (1) no consensus in the mean and trend in land -use change emissions, (2) a persistent low agreement among the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models, originating outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding the global carbon cycle compared with previous publications of this data set (Le Quere et al., 2018, 2016, 2015a, b, 2014, 2013). All results presented here can be downloaded from
- Published
- 2018
12. Trends of Ocean Acidification and pCO2 in the Northern North Sea, 2003–2015
- Author
-
Omar, A. M., primary, Thomas, H., additional, Olsen, A., additional, Becker, M., additional, Skjelvan, I., additional, and Reverdin, G., additional
- Published
- 2019
- Full Text
- View/download PDF
13. Global carbon budget 2016
- Author
-
Le Quéré, C., Andrew, R.M., Canadell, J.G., Sitch, S., Korsbakken, J.I., Peters, G.P., Manning, A.C., Boden, T.A., Tans, P.P., Houghton, R.A., Keeling, R.F., Alin, S., Andrews, O.D., Anthoni, P., Barbero, L., Bopp, L., Chevallier, F., Chini, L.P., Ciais, P., Currie, K., Delire, C., Doney, S.C., Friedlingstein, P., Gkritzalis, T., Harris, I., Hauck, J., Haverd, V., Hoppema, M., Goldewijk, K.K., Jain, A.K., Kato, E., Körtzinger, A., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Melton, J.R., Metzl, N., Millero, F., Monteiro, P.M.S., Munro, D.R., Nabel, J.E.M.S., Nakaoka, S., O'Brien, K., Olsen, A., Omar, A.M., Ono, T., Pierrot, D., Poulter, B., Rödenbeck, C., Salisbury, J., Schuster, U., Schwinger, J., Séférian, R., Skjelvan, I., Stocker, B.D., Sutton, A.J., Takahashi, T., Tian, H., Tilbrook, B., van der Laan-Luijkx, I.T., van der Werf, G.R., Viovy, N., Walker, A.P., Wiltshire, A.J., and Zaehle, S.
- Abstract
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates and consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models. We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2006–2015), EFF was 9.3 ± 0.5 GtC yr−1, ELUC 1.0 ± 0.5 GtC yr−1, GATM 4.5 ± 0.1 GtC yr−1, SOCEAN 2.6 ± 0.5 GtC yr−1, and SLAND 3.1 ± 0.9 GtC yr−1. For year 2015 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr−1, showing a slowdown in growth of these emissions compared to the average growth of 1.8 % yr−1 that took place during 2006–2015. Also, for 2015, ELUC was 1.3 ± 0.5 GtC yr−1, GATM was 6.3 ± 0.2 GtC yr−1, SOCEAN was 3.0 ± 0.5 GtC yr−1, and SLAND was 1.9 ± 0.9 GtC yr−1. GATM was higher in 2015 compared to the past decade (2006–2015), reflecting a smaller SLAND for that year. The global atmospheric CO2 concentration reached 399.4 ± 0.1 ppm averaged over 2015. For 2016, preliminary data indicate the continuation of low growth in EFF with +0.2 % (range of −1.0 to +1.8 %) based on national emissions projections for China and USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. In spite of the low growth of EFF in 2016, the growth rate in atmospheric CO2 concentration is expected to be relatively high because of the persistence of the smaller residual terrestrial sink (SLAND) in response to El Niño conditions of 2015–2016. From this projection of EFF and assumed constant ELUC for 2016, cumulative emissions of CO2 will reach 565 ± 55 GtC (2075 ± 205 GtCO2) for 1870–2016, about 75 % from EFF and 25 % from ELUC. This living data update documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set (Le Quéré et al., 2015b, a, 2014, 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2016).
- Published
- 2016
14. Trends of Ocean Acidification and pCO2 in the Northern North Sea, 2003–2015.
- Author
-
Omar, A. M., Thomas, H., Olsen, A., Becker, M., Skjelvan, I., and Reverdin, G.
- Subjects
ATMOSPHERIC carbon dioxide ,OCEAN acidification ,PARTIAL pressure ,SEAWATER ,ACIDIFICATION - Abstract
For continental shelf regions, the long‐term trend in sea surface carbon dioxide (CO2) partial pressure (pCO2) and rates of ocean acidification are not accurately known. Here, we investigate the decadal trend of observed wintertime pCO2 as well as computed wintertime pH and aragonite saturation state (Ωar) in the northern North Sea, using the first decade long monthly underway data from a voluntary observing ship covering the period 2004–2015. We also evaluate how seawater CO2 chemistry, in response to physical and biological processes, drives variations in the above parameters on seasonal and interannual timescales. In the northern North Sea, pCO2, pH, and Ωar are subject to strong seasonal variations with mean wintertime values of 375 ± 11 μatm, 8.17 ± 0.01, and 1.96 ± 0.05. Dissolved inorganic carbon is found to be the primary driver of both seasonal and interannual changes while total alkalinity and sea surface temperature have secondary effects that reduce the changes produced by dissolved inorganic carbon. Average interannual variations during winter are around 3%, 0.1%, and 2% for pCO2, pH, and Ωar, respectively and slightly larger in the eastern part of the study area (Skagerrak region) than in the western part (North Atlantic Water region). Statistically significant long‐term trends were found only in the North Atlantic Water region with mean annual rates of 2.39 ± 0.58 μatm/year, −0.0024 ± 0.001 year‐1, and −0.010 ± 0.003 year‐1 for pCO2, pH, and Ωar, respectively. The drivers of the observed trends as well as reasons for the lack of statistically significant trends in the Skagerrak region are discussed. Plain Language Summary: Temperate and high latitude marine shelf areas are generally net sinks of atmospheric carbon dioxide (CO2), and they are experiencing ocean acidification. Decadal trends in the magnitude of the sinks and acidification occurring in these regions are not accurately known mainly due to limited time series and higher natural spatiotemporal variability compared to open oceans. Hence, an important question is whether the surface seawater CO2 growth and acidification on the shelves can be predicted from atmospheric CO2 increase as is the case for the open oceans? To contribute to the answer of this question, we compiled the first decade‐long, monthly time series of surface seawater CO2 and acidification parameters in the northern North Sea (2004–2015). Our analyses confirm that the area is a year‐round CO2 sink and further demonstrate its strong seasonal and interannual variations. In the western parts of the study area, we found wintertime trends that are statistically significant and similar to what is expected from atmospheric CO2 increase and observed in the open ocean. In the eastern parts, seasonal and interannual changes were somewhat stronger, but wintertime trends were weaker and not statistically significant. Key Points: The study area is a year‐round CO2 sink with strong seasonal and spatial variationsDIC is the primary driver of variability in pCO2 and ocean acidification variables while SST and TA have couteracting secondary influencesIn the western region, rates of pCO2 growth and acidification over the last decade closely tracked the atmospheric CO2 increase [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
15. A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT)
- Author
-
Bakker, D.C.E., Pfeil, B., Landa, C.S., Metzl, N., O'Brien, K.M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S.D., Nakaoka, S., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S.R., Balestrini, C.F., Barbero, L., Bates, N.R., Bianchi, A.A., Bonou, F., Boutin, J., Bozec, Y., Burger, E.F., Cai, W.-J., Castle, R.D., Chen, L., Chierici, M., Currie, K., Evans, W., Featherstone, C., Feely, R.A., Fransson, A., Goyet, C., Greenwood, N., Gregor, L., Hankin, S., Hardman-Mountford, N.J., Harlay, J., Hauck, J., Hoppema, M., Humphreys, M.P., Hunt, C.W., Huss, B., Ibánhez, J.S.P., Johannessen, T., Keeling, R., Kitidis, V., Kortzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Landschützer, P., Lauvset, S.K., Lefèvre, N., Monaco, C.L., Manke, A., Mathis, J.T., Merlivat, L., Millero, F.J., Monteiro, P.M.S., Munro, D.R., Murata, A., Newberger, T., Omar, A.M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L.L., Saito, S., Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger, R., Skjelvan, I., Sullivan, K.F., Sutherland, S.C., Sutton, A.J., Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S.M.A.C., Vandemark, D., Ward, B., Watson, A.J., Xu, S., Bakker, D.C.E., Pfeil, B., Landa, C.S., Metzl, N., O'Brien, K.M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S.D., Nakaoka, S., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S.R., Balestrini, C.F., Barbero, L., Bates, N.R., Bianchi, A.A., Bonou, F., Boutin, J., Bozec, Y., Burger, E.F., Cai, W.-J., Castle, R.D., Chen, L., Chierici, M., Currie, K., Evans, W., Featherstone, C., Feely, R.A., Fransson, A., Goyet, C., Greenwood, N., Gregor, L., Hankin, S., Hardman-Mountford, N.J., Harlay, J., Hauck, J., Hoppema, M., Humphreys, M.P., Hunt, C.W., Huss, B., Ibánhez, J.S.P., Johannessen, T., Keeling, R., Kitidis, V., Kortzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Landschützer, P., Lauvset, S.K., Lefèvre, N., Monaco, C.L., Manke, A., Mathis, J.T., Merlivat, L., Millero, F.J., Monteiro, P.M.S., Munro, D.R., Murata, A., Newberger, T., Omar, A.M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L.L., Saito, S., Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger, R., Skjelvan, I., Sullivan, K.F., Sutherland, S.C., Sutton, A.J., Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S.M.A.C., Vandemark, D., Ward, B., Watson, A.J., and Xu, S.
- Abstract
The Surface Ocean CO2 Atlas (SOCAT) is a synthesis of quality-controlled fCO2 (fugacity of carbon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT has 14.7 million fCO2 values from 3646 data sets covering the years 1957 to 2014. This latest version has an additional 4.6 million fCO2 values relative to version 2 and extends the record from 2011 to 2014. Version 3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately 1.2 million surface water fCO2 values per year for the years 2006 to 2012. Quality and documentation of the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water fCO2 has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer (previously known as the Cruise Data Viewer) allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. High-profile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This ESSD (Earth System Science Data) "living data" publication documents the methods and data sets used for the assembly of this new version of the SOCAT data collection and compares these with those used for ea
- Published
- 2016
16. Global Carbon Budget 2016
- Author
-
Environmental Sciences, Le Quéré, C., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Peters, G. P., Manning, A. C., Boden, T. A., Tans, P. P., Houghton, R. A., Keeling, R. F., Alin, S., Andrews, O. D., Anthoni, P., Barbero, L., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Currie, K., Delire, C., Doney, S. C., Friedlingstein, P., Gkritzalis, T., Harris, I., Hauck, J., Haverd, V., Hoppema, M., Klein Goldewijk, K., Jain, A. K., Kato, E., Körtzinger, A., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Melton, J. R., Metzl, N., Millero, F., Monteiro, P. M. S., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., O'Brien, K., Olsen, A., Omar, A. M., Ono, T., Pierrot, D., Poulter, B., Rödenbeck, C., Salisbury, J., Schuster, U., Schwinger, J., Séférian, R., Skjelvan, I., Stocker, B. D., Sutton, A. J., Takahashi, T., Tian, H., Tilbrook, B., van der Laan-Luijkx, I. T., van der Werf, G. R., Viovy, N., Walker, A. P., Wiltshire, A. J., Zaehle, S., Environmental Sciences, Le Quéré, C., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Peters, G. P., Manning, A. C., Boden, T. A., Tans, P. P., Houghton, R. A., Keeling, R. F., Alin, S., Andrews, O. D., Anthoni, P., Barbero, L., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Currie, K., Delire, C., Doney, S. C., Friedlingstein, P., Gkritzalis, T., Harris, I., Hauck, J., Haverd, V., Hoppema, M., Klein Goldewijk, K., Jain, A. K., Kato, E., Körtzinger, A., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Melton, J. R., Metzl, N., Millero, F., Monteiro, P. M. S., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., O'Brien, K., Olsen, A., Omar, A. M., Ono, T., Pierrot, D., Poulter, B., Rödenbeck, C., Salisbury, J., Schuster, U., Schwinger, J., Séférian, R., Skjelvan, I., Stocker, B. D., Sutton, A. J., Takahashi, T., Tian, H., Tilbrook, B., van der Laan-Luijkx, I. T., van der Werf, G. R., Viovy, N., Walker, A. P., Wiltshire, A. J., and Zaehle, S.
- Published
- 2016
17. Global Carbon Budget 2016
- Author
-
Le Quéré, Corinne, Andrew, R.M., Canadell, J.G., Sitch, S., Korsbakken, J.I., Peters, G.P., Manning, A.C., Boden, T.A., Tans, P.P., Houghton, R.A., Keeling, R.F., Alin, S., Andrews, O.D., Anthoni, P., Barbero, L., Bopp, L., Chevallier, F., Chini, L.P., Ciais, P., Currie, K., Delire, C., Doney, S.C., Friedlingstein, P., Gkritzalis, T., Harris, I., Hauck, Judith, Haverd, V., Hoppema, Mario, Klein Goldewijk, K., Jain, A.K., Kato, E., Körtzinger, A., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Melton, J.R., Metzl, N., Millero, F., Monteiro, P.M.S., Munro, D.R., Nabel, J.E.M.S., Nakaoka, S.-i., O'Brien, K., Olsen, A., Omar, A.M., Ono, T., Pierrot, D., Poulter, B., Rödenbeck, C., Salisbury, J., Schuster, U., Schwinger, J., Séférian, R., Skjelvan, I., Stocker, B.D., Sutton, A.J., Takahashi, T., Tian, H., Tilbrook, B., van der Laan-Luijkx, I.T., van der Werf, G.R., Viovy, N., Walker, A.P., Wiltshire, A.J., Zaehle, S., Le Quéré, Corinne, Andrew, R.M., Canadell, J.G., Sitch, S., Korsbakken, J.I., Peters, G.P., Manning, A.C., Boden, T.A., Tans, P.P., Houghton, R.A., Keeling, R.F., Alin, S., Andrews, O.D., Anthoni, P., Barbero, L., Bopp, L., Chevallier, F., Chini, L.P., Ciais, P., Currie, K., Delire, C., Doney, S.C., Friedlingstein, P., Gkritzalis, T., Harris, I., Hauck, Judith, Haverd, V., Hoppema, Mario, Klein Goldewijk, K., Jain, A.K., Kato, E., Körtzinger, A., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Melton, J.R., Metzl, N., Millero, F., Monteiro, P.M.S., Munro, D.R., Nabel, J.E.M.S., Nakaoka, S.-i., O'Brien, K., Olsen, A., Omar, A.M., Ono, T., Pierrot, D., Poulter, B., Rödenbeck, C., Salisbury, J., Schuster, U., Schwinger, J., Séférian, R., Skjelvan, I., Stocker, B.D., Sutton, A.J., Takahashi, T., Tian, H., Tilbrook, B., van der Laan-Luijkx, I.T., van der Werf, G.R., Viovy, N., Walker, A.P., Wiltshire, A.J., and Zaehle, S.
- Published
- 2016
18. Aragonite saturation states and pH in western Norway fjords: seasonal cycles and controlling factors, 2005–2009
- Author
-
Omar, A. M., primary, Skjelvan, I., additional, Erga, S. R., additional, and Olsen, A., additional
- Published
- 2016
- Full Text
- View/download PDF
19. Supplementary material to "Aragonite saturation states and pH in western Norway fjords: seasonal cycles and controlling factors, 2005–2009"
- Author
-
Omar, A. M., primary, Skjelvan, I., additional, Erga, S. R., additional, and Olsen, A., additional
- Published
- 2016
- Full Text
- View/download PDF
20. The Surface Ocean CO2 Atlas (SOCAT) enables detection of changes in the ocean carbon sink
- Author
-
Bakker, D. C. E., Pfeil, B., Smith, K., Hankin, S., Olsen, A., Alin, S. R., Cosca, C., Harasawa, S., Kozyr, A., Nojiri, Y., O'Brien, K. M., Schuster, U., Telszewski, M., Tilbrook, B., Wada, C., Akl, J., Barbero, L., Bates, N.R., Boutin, J., Bozec, Y., Cai, W.-J., Castle, R.D., Chavez, F. P., Chen, L., Chierici, M., Currie, K., de Baar, H.J.W., Evans, W., Feely, R.A., Fransson, A., Gao, Z., Hales, B., Hardman-Mountford, N.J., Hoppema, Mario, Huang, W.-J., Hunt, C. W., Huss, B., Ichikawa, T., Johannessen, T., Jones, E. M., Jones, S.D., Jutterström, S., Kitidis, V., Körtzinger, A., Landschϋtzer, P., Lauvset, S. K., Lefèvre, N., Manke, A. B., Mathis, J.T., Merlivat, L., Metzl, N., Murata, A., Newberger, T., Omar, A.M., Ono, T., Park, G.-H., Paterson, K., Pierrot, D., Ríos,, A.F., Sabine, C.L., Saito, S., Salisbury, J., Sarma, V. V. S. S., Schlitzer, Reiner, Sieger, R., Skjelvan, I., Steinhoff, T., Sullivan, K.F., Sun, H., Sutton, A.J., Suzuki, T., Sweeney, C., Takahashi, T., Tjiputra, J., Tsurushima, N., Van Heuven, S. M. A. C., Vandemark, D., Vlahos, P., Wallace, D. W. R., Wanninkhof, R., Watson, A. J., Bakker, D. C. E., Pfeil, B., Smith, K., Hankin, S., Olsen, A., Alin, S. R., Cosca, C., Harasawa, S., Kozyr, A., Nojiri, Y., O'Brien, K. M., Schuster, U., Telszewski, M., Tilbrook, B., Wada, C., Akl, J., Barbero, L., Bates, N.R., Boutin, J., Bozec, Y., Cai, W.-J., Castle, R.D., Chavez, F. P., Chen, L., Chierici, M., Currie, K., de Baar, H.J.W., Evans, W., Feely, R.A., Fransson, A., Gao, Z., Hales, B., Hardman-Mountford, N.J., Hoppema, Mario, Huang, W.-J., Hunt, C. W., Huss, B., Ichikawa, T., Johannessen, T., Jones, E. M., Jones, S.D., Jutterström, S., Kitidis, V., Körtzinger, A., Landschϋtzer, P., Lauvset, S. K., Lefèvre, N., Manke, A. B., Mathis, J.T., Merlivat, L., Metzl, N., Murata, A., Newberger, T., Omar, A.M., Ono, T., Park, G.-H., Paterson, K., Pierrot, D., Ríos,, A.F., Sabine, C.L., Saito, S., Salisbury, J., Sarma, V. V. S. S., Schlitzer, Reiner, Sieger, R., Skjelvan, I., Steinhoff, T., Sullivan, K.F., Sun, H., Sutton, A.J., Suzuki, T., Sweeney, C., Takahashi, T., Tjiputra, J., Tsurushima, N., Van Heuven, S. M. A. C., Vandemark, D., Vlahos, P., Wallace, D. W. R., Wanninkhof, R., and Watson, A. J.
- Published
- 2015
21. Fluxes of carbon and nutrients to the Iceland Sea surface layer and inferred primary productivity and stoichiometry
- Author
-
Jeansson, E., Bellerby, R. G. J., Skjelvan, I., Frigstad, H., Olafsdottir, S. R., Olafsson, J., Jeansson, E., Bellerby, R. G. J., Skjelvan, I., Frigstad, H., Olafsdottir, S. R., and Olafsson, J.
- Abstract
This study evaluates long-term mean fluxes of carbon and nutrients to the upper 100m of the Iceland Sea. The study utilises hydro-chemical data from the Iceland Sea time series station (68.00 degrees N, 12.67 degrees W), for the years between 1993 and 2006. By comparing data of dissolved inorganic carbon (DIC) and nutrients in the surface layer (upper 100 m), and a sub-surface layer (100-200 m), we calculate monthly deficits in the surface, and use these to deduce the long-term mean surface layer fluxes that affect the deficits: vertical mixing, horizontal advection, air-sea exchange, and biological activity. The deficits show a clear seasonality with a minimum in winter, when the mixed layer is at the deepest, and a maximum in early autumn, when biological uptake has removed much of the nutrients. The annual vertical fluxes of DIC and nitrate amounts to 2.9 +/- 0.5 and 0.45 +/- 0.09 mol m(-2) yr(-1), respectively, and the annual air-sea uptake of atmospheric CO2 is 4.4 +/- 1.1 mol C m(-2) yr(-1). The biologically driven changes in DIC during the year relates to net community production (NCP), and the net annual NCP corresponds to export production, and is here calculated as 7.3 +/- 1.0 mol C m(-2) yr(-1). The typical, median C : N ratio during the period of net community uptake is 9.0, and clearly higher than the Redfield ratio, but is varying during the season.
- Published
- 2015
- Full Text
- View/download PDF
22. An update to the surface ocean CO2 Atlas (SOCAT version 2)
- Author
-
Bakker, Dorothee, Pfeil, B., Smith, K, Hankin, S., Olsen, A, Alin, S. R., Cosca, C., Harasawa, S, Kozyr, A., Nojiri, Y., O'Brien, M, Schuster, Ute, Telszewski, Maciej, Tilbrook, B., Wada, C, Akl, J., Barbero, L, Bates, N., Boutin, J., Cai, W.-J., Castle, RD, Chavez, F. P., Chen, L, Chierici, M, Currie, K, de Baar, HJW, Evans, W., Feely, RA, Fransson, A, Gao, Z, Hales, B., Hardman-Mountford, N., Hoppema, M., Huang, W, Hunt, C. W., huss, b, Ichikawa, T, Johannessen, T., Jones, EM, Jones, S., Jutterstrom, Sara, Kitidis, V, Kortzinger, A, Lauvset, S. K., Lefevre, N, Manke, A., Mathis, T, Merlivat, L., Metzl, N., Murata, A., Newburger, T, Ono, T, Park, G.-H., Paterson, K., Pierrot, D., Rios, AF, Sabine, C. L., Saito, S, Salisbury, J., Sarma, V. V. S. S., Schlitzer, R., Sieger, R., Skjelvan, I., Steinhoff, T., Sullivan, K, Sun, H, Sutton, AJ, Suzuki, T., Sweeney, C, Takahashi, T., Tjiputra, J., Tsurushima, N, van Heuven, S.M.A.C, Vandemark, D., Vlahos, P, Wallace, D, Wanninkhof, R, and Watson, A. J.
- Published
- 2013
23. Tilførselsprogrammet 2012. Overvåking av havforsuring av norske farvann
- Author
-
Chierici, M., Sørensen, K., Johannessen, T., Børsheim, K.Y., Olsen, A., Yakushev, E., Omar. A., Skjelvan, I., Norli, M., Lauvseth, S., and Green, N. - Project manager
- Subjects
monitoring ,barentshavet ,Matematikk og naturvitenskap: 400 [VDP] ,havforsuring ,overvåking ,ocean acidification ,norske farvann ,barents sea ,marine miljøgifter ,norwegian seas - Abstract
Denne rapporten gjelder undersøkelser av havforsuring som er utført av IMR, NIVA og BCCR på oppdrag fra Klif i 2012. Den er basert på målinger på strekningen Oslo-Kiel og Tromsø-Longyearbyen utført av NIVA, vannsøylemålinger langs faste snitt i Nordsjøen (Torungen – Hirtshals), Norskehavet (Svinøy-NW), og to snitt i Barentshavet (Vardø-N og Fugløya-Bjørnøya) utført av Havforskningsinstituttet, og kontinuerlige overflatemålinger av pCO2 i Norskehavet utført av BCCR i 2012. Resultatene fra Barentshavet viser en klar sesongvariasjon i de øvre 100 m av vannsøylen, som for det meste er styrt av primærproduksjon og ferskvannstilførsel gjennom året. I nordøstlige Barentshavet (Vardø-N) lå metningsgrad for aragonitt (Ar) mellom 1,1 og 2,2 med minimumsverdier i polarvannet ved sørspissen av Svalbard. I tillegg påvirkes karboninnholdet her av polarvannet, spesielt tydelig i den nordlige delen av Barentshavet. Mellom Fugløya og Bjørnøya vistes tydelig sesongvariasjon på grunn av ferskvannstilførsel og primærproduksjon. I Norskehavet var det stor variasjon fra kyst til åpent hav og karboninnholdet påvirkes av kystvannet som brer seg vestover i løpet av sommeren. Konklusjonen er at overflatevann i områdene som er studert i denne rapporten er mettet i forhold til både kalsitt og aragonitt. Laveste metningsgrad ble funnet i polarvannet i nordøstlige Barentshavet. Det er i tillegg viktig å merke seg at metningshorisonten i dyphavet stiger, og per i dag er undermetning av aragonitt påvist på 2400 meters dyp i Norskehavet. Hastigheten av havforsuringen bestemmer når undermetning utvikles både i dyphav og overflaten. Hastigheten for utviklingen vil kunne estimeres nøyaktig først når målinger fra flere år foreligger. Klif
- Published
- 2013
24. Trends of Ocean Acidification and pCO2in the Northern North Sea, 2003–2015
- Author
-
Omar, A. M., Thomas, H., Olsen, A., Becker, M., Skjelvan, I., and Reverdin, G.
- Abstract
For continental shelf regions, the long‐term trend in sea surface carbon dioxide (CO2) partial pressure (pCO2) and rates of ocean acidification are not accurately known. Here, we investigate the decadal trend of observed wintertime pCO2as well as computed wintertime pH and aragonite saturation state (Ωar) in the northern North Sea, using the first decade long monthly underway data from a voluntary observing ship covering the period 2004–2015. We also evaluate how seawater CO2chemistry, in response to physical and biological processes, drives variations in the above parameters on seasonal and interannual timescales. In the northern North Sea, pCO2, pH, and Ωarare subject to strong seasonal variations with mean wintertime values of 375 ± 11 μatm, 8.17 ± 0.01, and 1.96 ± 0.05. Dissolved inorganic carbon is found to be the primary driver of both seasonal and interannual changes while total alkalinity and sea surface temperature have secondary effects that reduce the changes produced by dissolved inorganic carbon. Average interannual variations during winter are around 3%, 0.1%, and 2% for pCO2, pH, and Ωar, respectively and slightly larger in the eastern part of the study area (Skagerrak region) than in the western part (North Atlantic Water region). Statistically significant long‐term trends were found only in the North Atlantic Water region with mean annual rates of 2.39 ± 0.58 μatm/year, −0.0024 ± 0.001 year‐1, and −0.010 ± 0.003 year‐1for pCO2, pH, and Ωar, respectively. The drivers of the observed trends as well as reasons for the lack of statistically significant trends in the Skagerrak region are discussed. Temperate and high latitude marine shelf areas are generally net sinks of atmospheric carbon dioxide (CO2), and they are experiencing ocean acidification. Decadal trends in the magnitude of the sinks and acidification occurring in these regions are not accurately known mainly due to limited time series and higher natural spatiotemporal variability compared to open oceans. Hence, an important question is whether the surface seawater CO2growth and acidification on the shelves can be predicted from atmospheric CO2increase as is the case for the open oceans? To contribute to the answer of this question, we compiled the first decade‐long, monthly time series of surface seawater CO2and acidification parameters in the northern North Sea (2004–2015). Our analyses confirm that the area is a year‐round CO2sink and further demonstrate its strong seasonal and interannual variations. In the western parts of the study area, we found wintertime trends that are statistically significant and similar to what is expected from atmospheric CO2increase and observed in the open ocean. In the eastern parts, seasonal and interannual changes were somewhat stronger, but wintertime trends were weaker and not statistically significant. The study area is a year‐round CO2sink with strong seasonal and spatial variationsDIC is the primary driver of variability in pCO2and ocean acidification variables while SST and TA have couteracting secondary influencesIn the western region, rates of pCO2growth and acidification over the last decade closely tracked the atmospheric CO2increase
- Published
- 2019
- Full Text
- View/download PDF
25. The EuroSITES open ocean observatory network: the data managers' perspective
- Author
-
Pangnani, M., Lampitt, R., Larkin, K., Hartman, S., Campbell, J., Pebody, C., Ruhl, H., Billett, D., Hühnerbach, V., Masson, D., Osterhus, S., Skjelvan, I., Lykousis, V., Nittis, K., Perivoliotis, L., Kassis, D., Petihakis, G., Cardin, V., Bensi, M., Brunetti, F., Giorgetti, A., Bozzano, R., Pensieri, S., Wallace, Douglas W.R., Karstensen, Johannes, Berndt, Christian, Priede, I., Holford, A., Niedzielski, T., Hastie, L., Jamieson, A., Coppola, L., Tamburini, C., Lefevre, D., Robert, A., Pouliquen, S., Carval, T., Ghiron, G., Llinas-Gonzolez, O., Cianca, A., Melicio, O., Santos, C., Medina, A., Silva, P., Monteiro, I., Gonzalez-Davila, M., and Santana-Casiano, M.
- Abstract
The EuroSITES project was funded within the EU framework 7 to aid the convergence of the efforts of the 11 European-wide deep ocean observatories which formed its core. A major output of the project was envisaged as the synergies of the 13 partners working together to create a network providing sets of data in near-real-time, and in delayed-mode, which have been collected and processed in such a way as to be accessible to the wider scientific community, and comparable across time and site. The common data policy agreed by all the partners at the start of the project, and the evolution of a EuroSITES quality control manual which includes all the observatories practices, have formed the framework within which each data management group has delivered datasets which now carry the EuroSITES 'brand' as well as all the originators details. As a focal point for the, currently, 12 sites the EuroSITES data managers have worked as the European partner within the international OceanSITES project, developing the OceanSITES distribution standard, and studying the options for attaching additional metadata to data sets. The influence of EuroSITES as the European champion for the distribution of data in OceanSITES format will be an enduring legacy. The EuroSITES website (www.eurosites.info) provides a highly visible, and user accessible platform for the distribution of near-real time data from the observatories, as it becomes available. The data from the diverse sites are displayed in a consistent manner and the web pages form a coherent 'shop window' where potential data users can source data sets useful to their research, as well as a visual means of monitoring the health of the observatories. The sister site (outreach.eurosites.info) has been developed in parallel to be accessible to non-scientists. Working together EuroSITES has been able to develop a single conversion software package taking MEDATLAS and ODV ascii files and outputting the OceanSITES format. The sharing of knowledge in this and other developments ensures that costly duplication of effort is minimised. During the 3 years of the project the data management groups have interacted to share best practice, and although each is still independent and serves its own National Data Centre, the EuroSITES data inventory now carries data from all 13 sites, distributed in the OceanSITES v1.2 format. This format is NetCDF based, and carries within the file metadata. This describes the data in a consistent manner which achieves the first step towards interoperablility. The future of the funding of EuroSITES after April 2011 is not yet clear, but the project has achieved a remarkable degree of harmonisation already, and the relationships between the data management groups will undoubtedly continue as the cost benefits of resource and knowledge sharing become ever more important in the scientific arena.
- Published
- 2011
26. Fluxes of carbon and nutrients to the Iceland Sea surface layer and inferred primary productivity and stoichiometry
- Author
-
Jeansson, E., primary, Bellerby, R. G. J., additional, Skjelvan, I., additional, Frigstad, H., additional, Ólafsdóttir, S. R., additional, and Olafsson, J., additional
- Published
- 2015
- Full Text
- View/download PDF
27. An update to the Surface Ocean CO2 Atlas (SOCAT version 2)
- Author
-
Bakker, D. C. E., Pfeil, B., Smith, K., Hankin, S., Olsen, A., Alin, S. R., Cosca, C., Harasawa, S., Kozyr, A., Nojiri, Y., O'Brien, K. M., Schuster, U., Telszewski, M., Tilbrook, B., Wada, C., Akl, J., Barbero, L., Bates, N. R., Boutin, J., Bozec, Y., Cai, W. -j., Castle, R. D., Chavez, F. P., Chen, L., Chierici, M., Currie, K., De Baar, H. J. W., Evans, W., Feely, R. A., Fransson, A., Gao, Z., Hales, B., Hardman-mountford, N. J., Hoppema, M., Huang, W. -j., Hunt, C. W., Huss, B., Ichikawa, T., Johannessen, T., Jones, E. M., Jones, S. D., Jutterstrom, S., Kitidis, V., Koertzinger, A., Landschuetzer, P., Lauvset, S. K., Lefevre, N., Manke, A. B., Mathis, J. T., Merlivat, L., Metzl, N., Murata, A., Newberger, T., Omar, A. M., Ono, T., Park, G. -h., Paterson, K., Pierrot, D., Rios, A. F., Sabine, C. L., Saito, S., Salisbury, J., Sarma, V. V. S. S., Schlitzer, R., Sieger, R., Skjelvan, I., Steinhoff, T., Sullivan, K. F., Sun, H., Sutton, A. J., Suzuki, T., Sweeney, C., Takahashi, T., Tjiputra, J., Tsurushima, N., Van Heuven, S. M. A. C., Vandemark, D., Vlahos, P., Wallace, D. W. R., Wanninkhof, R., Watson, A. J., Bakker, D. C. E., Pfeil, B., Smith, K., Hankin, S., Olsen, A., Alin, S. R., Cosca, C., Harasawa, S., Kozyr, A., Nojiri, Y., O'Brien, K. M., Schuster, U., Telszewski, M., Tilbrook, B., Wada, C., Akl, J., Barbero, L., Bates, N. R., Boutin, J., Bozec, Y., Cai, W. -j., Castle, R. D., Chavez, F. P., Chen, L., Chierici, M., Currie, K., De Baar, H. J. W., Evans, W., Feely, R. A., Fransson, A., Gao, Z., Hales, B., Hardman-mountford, N. J., Hoppema, M., Huang, W. -j., Hunt, C. W., Huss, B., Ichikawa, T., Johannessen, T., Jones, E. M., Jones, S. D., Jutterstrom, S., Kitidis, V., Koertzinger, A., Landschuetzer, P., Lauvset, S. K., Lefevre, N., Manke, A. B., Mathis, J. T., Merlivat, L., Metzl, N., Murata, A., Newberger, T., Omar, A. M., Ono, T., Park, G. -h., Paterson, K., Pierrot, D., Rios, A. F., Sabine, C. L., Saito, S., Salisbury, J., Sarma, V. V. S. S., Schlitzer, R., Sieger, R., Skjelvan, I., Steinhoff, T., Sullivan, K. F., Sun, H., Sutton, A. J., Suzuki, T., Sweeney, C., Takahashi, T., Tjiputra, J., Tsurushima, N., Van Heuven, S. M. A. C., Vandemark, D., Vlahos, P., Wallace, D. W. R., Wanninkhof, R., and Watson, A. J.
- Abstract
The Surface Ocean CO2 Atlas (SOCAT), an activity of the international marine carbon research community, provides access to synthesis and gridded fCO(2) (fugacity of carbon dioxide) products for the surface oceans. Version 2 of SOCAT is an update of the previous release (version 1) with more data (increased from 6.3 million to 10.1 million surface water fCO(2) values) and extended data coverage (from 1968-2007 to 1968-2011). The quality control criteria, while identical in both versions, have been applied more strictly in version 2 than in version 1. The SOCAT website (http://www.socat.info/) has links to quality control comments, metadata, individual data set files, and synthesis and gridded data products. Interactive online tools allow visitors to explore the richness of the data. Applications of SOCAT include process studies, quantification of the ocean carbon sink and its spatial, seasonal, year-to-year and longer-term variation, as well as initialisation or validation of ocean carbon models and coupled climate-carbon models.
- Published
- 2014
- Full Text
- View/download PDF
28. The Surface Ocean CO2 Atlas (SOCAT) enables detection of changes in the ocean carbon sink
- Author
-
Bakker, D. C. E., Pfeil, B., Smith, K., Hankin, S., Olsen, A., Alin, S. R., Cosca, C., Harasawa, S., Kozyr, A., Nojiri, Y., O'Brien, K.M., Schuster, U., Telszewski, M., Tilbrook, B., Wada, C., Akl, J., Barbero, L., Bates, N. R., Boutin, J., Bozec, Y., Cai, W.-J., Castle, R. D., Chavez, F. P., Chen, L., Chierici, M., Currie, K., De Baar, H. J. W., Evans, W., Feely, R. A., Fransson, A., Gao, Z., Hales, B., Hardman-Mountford, N. J., Hoppema, Mario, Huang, W.-J., Hunt, C. W., Huss, B., Ichikawa, T., Johannessen, T., Jones, E. M., Jones, S. D., Jutterström, S., Kitidis, V., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Manke, A. B., Mathis, J.T., Merlivat, L., Metzl, N., Murata, A., Newberger, T., Omar, A. M., Ono, T., Park, G.-H., Paterson, K., Pierrot, D., Ríos, A. F., Sabine, C. L., Saito, S., Salisbury, J., Sarma, V. V. S. S., Schlitzer, Reiner, Sieger, Rainer, Skjelvan, I., Steinhoff, T., Sullivan, K. F., Sun, H., Sutton, A. J., Suzuki, T., Sweeney, C., Takahashi, T., Tjiputra, J., Tsurushima, N., Van Heuven, S. M. A. C., Vandemark, D., Vlahos, P., Wallace, D. W. R., Wanninkhof, R., Watson, A. J., Bakker, D. C. E., Pfeil, B., Smith, K., Hankin, S., Olsen, A., Alin, S. R., Cosca, C., Harasawa, S., Kozyr, A., Nojiri, Y., O'Brien, K.M., Schuster, U., Telszewski, M., Tilbrook, B., Wada, C., Akl, J., Barbero, L., Bates, N. R., Boutin, J., Bozec, Y., Cai, W.-J., Castle, R. D., Chavez, F. P., Chen, L., Chierici, M., Currie, K., De Baar, H. J. W., Evans, W., Feely, R. A., Fransson, A., Gao, Z., Hales, B., Hardman-Mountford, N. J., Hoppema, Mario, Huang, W.-J., Hunt, C. W., Huss, B., Ichikawa, T., Johannessen, T., Jones, E. M., Jones, S. D., Jutterström, S., Kitidis, V., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Manke, A. B., Mathis, J.T., Merlivat, L., Metzl, N., Murata, A., Newberger, T., Omar, A. M., Ono, T., Park, G.-H., Paterson, K., Pierrot, D., Ríos, A. F., Sabine, C. L., Saito, S., Salisbury, J., Sarma, V. V. S. S., Schlitzer, Reiner, Sieger, Rainer, Skjelvan, I., Steinhoff, T., Sullivan, K. F., Sun, H., Sutton, A. J., Suzuki, T., Sweeney, C., Takahashi, T., Tjiputra, J., Tsurushima, N., Van Heuven, S. M. A. C., Vandemark, D., Vlahos, P., Wallace, D. W. R., Wanninkhof, R., and Watson, A. J.
- Published
- 2014
29. An update to the Surface Ocean CO2 Atlas (SOCAT version 2)
- Author
-
Bakker, D.C.E., Pfeil, B., Smith, K., Hankin, S., Olsen, A., Alin, S.R., Cosca, C., Harasawa, S., Kozyr, A., Nojiri, Y., O'Brien, K.M., Schuster, U., Telszewski, M., Tilbrook, B., Wada, C., Akl, J., Barbero, L., Bates, N.R., Boutin, J., Bozec, Y., Cai, W.-J., Castle, R.D., Chavez, F.P., Chen, L., Chierici, M., Currie, K., de Baar, H.J.W., Evans, W., Feely, R.A., Fransson, A., Gao, Z., Hales, B., Hardman-Mountford, N.J., Hoppema, M., Huang, W.-J., Hunt, C.W., Huss, B., Ichikawa, T., Johannessen, T., Jones, E.M., Jones, S.D., Jutterström, S., Kitidis, V., Körtzinger, A., Landschützer, P., Lauvset, S.K., Lefèvre, N., Manke, A.B., Mathis, J.T., Merlivat, L., Metzl, N., Murata, A., Newberger, T., Omar, A.M., Ono, T., Park, G.-H., Paterson, K., Pierrot, D., Rios, A.F., Sabine, C.L., Saito, S., Salisbury, J., Sarma, V.V.S.S., Schlitzer, R., Sieger, R., Skjelvan, I., Steinhoff, T., Sullivan, K.F., Sun, H., Sutton, A.J., Suzuki, T., Sweeney, C., Takahashi, T., Tjiputra, J., Tsurushima, N., van Heuven, S.M.A.C., Vandemark, D., Vlahos, P., Wallace, D.W.R., Wanninkhof, R., Watson, A.J., Bakker, D.C.E., Pfeil, B., Smith, K., Hankin, S., Olsen, A., Alin, S.R., Cosca, C., Harasawa, S., Kozyr, A., Nojiri, Y., O'Brien, K.M., Schuster, U., Telszewski, M., Tilbrook, B., Wada, C., Akl, J., Barbero, L., Bates, N.R., Boutin, J., Bozec, Y., Cai, W.-J., Castle, R.D., Chavez, F.P., Chen, L., Chierici, M., Currie, K., de Baar, H.J.W., Evans, W., Feely, R.A., Fransson, A., Gao, Z., Hales, B., Hardman-Mountford, N.J., Hoppema, M., Huang, W.-J., Hunt, C.W., Huss, B., Ichikawa, T., Johannessen, T., Jones, E.M., Jones, S.D., Jutterström, S., Kitidis, V., Körtzinger, A., Landschützer, P., Lauvset, S.K., Lefèvre, N., Manke, A.B., Mathis, J.T., Merlivat, L., Metzl, N., Murata, A., Newberger, T., Omar, A.M., Ono, T., Park, G.-H., Paterson, K., Pierrot, D., Rios, A.F., Sabine, C.L., Saito, S., Salisbury, J., Sarma, V.V.S.S., Schlitzer, R., Sieger, R., Skjelvan, I., Steinhoff, T., Sullivan, K.F., Sun, H., Sutton, A.J., Suzuki, T., Sweeney, C., Takahashi, T., Tjiputra, J., Tsurushima, N., van Heuven, S.M.A.C., Vandemark, D., Vlahos, P., Wallace, D.W.R., Wanninkhof, R., and Watson, A.J.
- Abstract
The Surface Ocean CO2 Atlas (SOCAT), an activity of the international marine carbon research community, provides access to synthesis and gridded fCO2 (fugacity of carbon dioxide) products for the surface oceans. Version 2 of SOCAT is an update of the previous release (version 1) with more data (increased from 6.3 million to 10.1 million surface water fCO2 values) and extended data coverage (from 1968–2007 to 1968–2011). The quality control criteria, while identical in both versions, have been applied more strictly in version 2 than in version 1. The SOCAT website has links to quality control comments, metadata, individual data set files, and synthesis and gridded data products. Interactive online tools allow visitors to explore the richness of the data. Applications of SOCAT include process studies, quantification of the ocean carbon sink and its spatial, seasonal, year-to-year and longerterm variation, as well as initialisation or validation of ocean carbon models and coupled climate-carbon models.
- Published
- 2014
30. Fluxes of carbon and nutrients to the Iceland Sea surface layer and inferred primary productivity and stoichiometry
- Author
-
Jeansson, E., primary, Bellerby, R. G. J., additional, Skjelvan, I., additional, Frigstad, H., additional, Ólafsdóttir, S. R., additional, and Ólafsson, J., additional
- Published
- 2014
- Full Text
- View/download PDF
31. CARINA Data Synthesis Project
- Author
-
Tanhua, Toste, Olsen, A., Hoppema, M., Jutterström, S., Schirnick, Carsten, van Heuven, S., Velo, A., Lin, X., Kozyr, A., Alvarez, M., Bakker, D.C.E., Brown, P., Falck, E., Jeansson, E., Lo Monaco, C., Olafsson, J., Perez, F.F., Pierrot, D., Rios, A.F., Sabine, C.L., Schuster, U., Steinfeldt, R., Stendardo, I., Anderson, L.G., Bates, N.R., Bellerby, R.G.J., Blindheim, J., Bullister, J.L., Gruber, N., Ishii, M., Johannessen, T., Jones, E.P., Köhler, J., Körtzinger, Arne, Metzl, N., Murata, A., Musielewicz, S., Omar, A.M., Olsson, K.A., de la Paz, M., Pfeil, B., Rey, F., Rhein, M., Skjelvan, I., Tilbrook, B., Wanninkhof, R., Mintrop, L., Wallace, Douglas W.R., and Key, R.M.
- Published
- 2009
32. Pelagic Ecosystems in a High CO2 Ocean: the Mesocosm Approach
- Author
-
Riebesell, Ulf, Allgaier, M., Avgoustidi, V., Bellerby, R., Carbonnel, V., Chou, L., Delille, B., Egge, J., Engel, Anja, Grossart, H.-P., Huonnic, P., Jansen, S., Johannessen, T., Joint, I., Krigstad, S., Lovdal, T., Martin-Jézéquel, V., Moros, C., Mühling, M., Nightingale, M., Passow, U., Rost, B., Schulz, Kai, Skjelvan, I., Terbrüggen, A., and Trimborn, S.
- Published
- 2004
33. An update to the Surface Ocean CO<sub>2</sub> Atlas (SOCAT version 2)
- Author
-
Bakker, D. C. E., primary, Pfeil, B., additional, Smith, K., additional, Hankin, S., additional, Olsen, A., additional, Alin, S. R., additional, Cosca, C., additional, Harasawa, S., additional, Kozyr, A., additional, Nojiri, Y., additional, O'Brien, K. M., additional, Schuster, U., additional, Telszewski, M., additional, Tilbrook, B., additional, Wada, C., additional, Akl, J., additional, Barbero, L., additional, Bates, N. R., additional, Boutin, J., additional, Bozec, Y., additional, Cai, W.-J., additional, Castle, R. D., additional, Chavez, F. P., additional, Chen, L., additional, Chierici, M., additional, Currie, K., additional, de Baar, H. J. W., additional, Evans, W., additional, Feely, R. A., additional, Fransson, A., additional, Gao, Z., additional, Hales, B., additional, Hardman-Mountford, N. J., additional, Hoppema, M., additional, Huang, W.-J., additional, Hunt, C. W., additional, Huss, B., additional, Ichikawa, T., additional, Johannessen, T., additional, Jones, E. M., additional, Jones, S. D., additional, Jutterström, S., additional, Kitidis, V., additional, Körtzinger, A., additional, Landschützer, P., additional, Lauvset, S. K., additional, Lefèvre, N., additional, Manke, A. B., additional, Mathis, J. T., additional, Merlivat, L., additional, Metzl, N., additional, Murata, A., additional, Newberger, T., additional, Omar, A. M., additional, Ono, T., additional, Park, G.-H., additional, Paterson, K., additional, Pierrot, D., additional, Ríos, A. F., additional, Sabine, C. L., additional, Saito, S., additional, Salisbury, J., additional, Sarma, V. V. S. S., additional, Schlitzer, R., additional, Sieger, R., additional, Skjelvan, I., additional, Steinhoff, T., additional, Sullivan, K. F., additional, Sun, H., additional, Sutton, A. J., additional, Suzuki, T., additional, Sweeney, C., additional, Takahashi, T., additional, Tjiputra, J., additional, Tsurushima, N., additional, van Heuven, S. M. A. C., additional, Vandemark, D., additional, Vlahos, P., additional, Wallace, D. W. R., additional, Wanninkhof, R., additional, and Watson, A. J., additional
- Published
- 2014
- Full Text
- View/download PDF
34. A uniform, quality controlled Surface Ocean CO2 Atlas (SOCAT)
- Author
-
Pfeil, B., Olsen, A., Bakker, D. C. E., Hankin, S., Koyuk, H., Kozyr, A., Malczyk, J., Manke, A., Metzl, N., Sabine, C. L., Akl, J., Alin, S. R., Bellerby, R. G. J., Borges, A., Boutin, J., Brown, P. J., Cai, W.-J., Chavez, F. P., Chen, A., Cosca, C., Fassbender, A. J., Feely, R. A., González-Dávila, M., Goyet, C., Hardman-Mountford, N., Heinze, C., Hood, M., Hoppema, M., Hunt, C. W., Hydes, D., Ishii, M., Johannessen, T., Jones, S. D., Key, R. M., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lourantou, A., Merlivat, L., Midorikawa, T., Mintrop, L., Miyazaki, C., Murata, A., Nakadate, A., Nakano, Y., Nakaoka, S., Nojiri, Y., Omar, A. M., Padin, X. A., Park, G.-H., Paterson, K., Perez, F. F., Pierrot, D., Poisson, A., Ríos, A. F., Santana-Casiano, J. M., Salisbury, J., Sarma, V. V. S. S., Schlitzer, R., Schneider, B., Schuster, U., Sieger, R., Skjelvan, I., Steinhoff, Tobias, Suzuki, T., Takahashi, T., Tedesco, K., Telszewski, M., Thomas, H., Tilbrook, B., Tjiputra, J., Vandemark, D., Veness, T., Wanninkhof, R., Watson, A. J., Weiss, R., Wong, C. S., Yoshikawa-Inoue, H., Pfeil, B., Olsen, A., Bakker, D. C. E., Hankin, S., Koyuk, H., Kozyr, A., Malczyk, J., Manke, A., Metzl, N., Sabine, C. L., Akl, J., Alin, S. R., Bellerby, R. G. J., Borges, A., Boutin, J., Brown, P. J., Cai, W.-J., Chavez, F. P., Chen, A., Cosca, C., Fassbender, A. J., Feely, R. A., González-Dávila, M., Goyet, C., Hardman-Mountford, N., Heinze, C., Hood, M., Hoppema, M., Hunt, C. W., Hydes, D., Ishii, M., Johannessen, T., Jones, S. D., Key, R. M., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lourantou, A., Merlivat, L., Midorikawa, T., Mintrop, L., Miyazaki, C., Murata, A., Nakadate, A., Nakano, Y., Nakaoka, S., Nojiri, Y., Omar, A. M., Padin, X. A., Park, G.-H., Paterson, K., Perez, F. F., Pierrot, D., Poisson, A., Ríos, A. F., Santana-Casiano, J. M., Salisbury, J., Sarma, V. V. S. S., Schlitzer, R., Schneider, B., Schuster, U., Sieger, R., Skjelvan, I., Steinhoff, Tobias, Suzuki, T., Takahashi, T., Tedesco, K., Telszewski, M., Thomas, H., Tilbrook, B., Tjiputra, J., Vandemark, D., Veness, T., Wanninkhof, R., Watson, A. J., Weiss, R., Wong, C. S., and Yoshikawa-Inoue, H.
- Abstract
A well documented, publicly available, global data set of surface ocean carbon dioxide (CO2) parameters has been called for by international groups for nearly two decades. The Surface Ocean CO2 Atlas (SOCAT) project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO2, which had been subject to quality control (QC). Many additional CO2 data, not yet made public via the Carbon Dioxide Information Analysis Center (CDIAC), were retrieved from data originators, public websites and other data centres. All data were put in a uniform format following a strict protocol. Quality control was carried out according to clearly defined criteria. Regional specialists performed the quality control, using state-of-the-art web-based tools, specially developed for accomplishing this global team effort. SOCAT version 1.5 was made public in September 2011 and holds 6.3 million quality controlled surface CO2 data points from the global oceans and coastal seas, spanning four decades (1968–2007). Three types of data products are available: individual cruise files, a merged complete data set and gridded products. With the rapid expansion of marine CO2 data collection and the importance of quantifying net global oceanic CO2 uptake and its changes, sustained data synthesis and data access are priorities
- Published
- 2013
35. Surface Ocean CO2 Atlas (SOCAT) Gridded Data Products
- Author
-
Sabine, C. L., Hankin, S., Koyuk, H., Bakker, D. C. E., Pfeil, B., Olsen, A., Metzl, N., Kozyr, A., Fassbender, A., Manke, A., Malczyk, J., Akl, J., Alin, S. R., Bellerby, R. G. J., Borges, A., Boutin, J., Brown, P. J., Cai, W. -j., Chavez, F. P., Chen, A., Cosca, C., Feely, R. A., Gonzalez-davila, M., Goyet, C., Hardman-mountford, N., Heinze, C., Hoppema, M., Hunt, C. W., Hydes, D., Ishii, M., Johannessen, T., Key, R. M., Koertzinger, A., Landschuetzer, P., Lauvset, S. K., Lefevre, N., Lenton, A., Lourantou, A., Merlivat, L., Midorikawa, T., Mintrop, L., Miyazaki, C., Murata, A., Nakadate, A., Nakano, Y., Nakaoka, S., Nojiri, Y., Omar, A. M., Padin, X. A., Park, G. -h., Paterson, K., Perez, F.f., Pierrot, D., Poisson, A., Rios, A. F., Salisbury, J., Santana-casiano, J. M., Sarma, V. V. S. S., Schlitzer, R., Schneider, B., Schuster, U., Sieger, R., Skjelvan, I., Steinhoff, T., Suzuki, T., Takahashi, T., Tedesco, K., Telszewski, M., Thomas, H., Tilbrook, B., Vandemark, D., Veness, T., Watson, A. J., Weiss, R., Wong, C. S., Yoshikawa-inoue, H., Sabine, C. L., Hankin, S., Koyuk, H., Bakker, D. C. E., Pfeil, B., Olsen, A., Metzl, N., Kozyr, A., Fassbender, A., Manke, A., Malczyk, J., Akl, J., Alin, S. R., Bellerby, R. G. J., Borges, A., Boutin, J., Brown, P. J., Cai, W. -j., Chavez, F. P., Chen, A., Cosca, C., Feely, R. A., Gonzalez-davila, M., Goyet, C., Hardman-mountford, N., Heinze, C., Hoppema, M., Hunt, C. W., Hydes, D., Ishii, M., Johannessen, T., Key, R. M., Koertzinger, A., Landschuetzer, P., Lauvset, S. K., Lefevre, N., Lenton, A., Lourantou, A., Merlivat, L., Midorikawa, T., Mintrop, L., Miyazaki, C., Murata, A., Nakadate, A., Nakano, Y., Nakaoka, S., Nojiri, Y., Omar, A. M., Padin, X. A., Park, G. -h., Paterson, K., Perez, F.f., Pierrot, D., Poisson, A., Rios, A. F., Salisbury, J., Santana-casiano, J. M., Sarma, V. V. S. S., Schlitzer, R., Schneider, B., Schuster, U., Sieger, R., Skjelvan, I., Steinhoff, T., Suzuki, T., Takahashi, T., Tedesco, K., Telszewski, M., Thomas, H., Tilbrook, B., Vandemark, D., Veness, T., Watson, A. J., Weiss, R., Wong, C. S., and Yoshikawa-inoue, H.
- Abstract
A well documented, publicly available, global data set for surface ocean carbon dioxide (CO2) parameters has been called for by international groups for nearly two decades. The Surface Ocean CO2 Atlas (SOCAT) project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO2, which had been subject to quality control (QC). SOCAT version 1.5 was made public in September 2011 and holds 6.3 million quality controlled surface CO2 data from the global oceans and coastal seas, spanning four decades (1968–2007). The SOCAT gridded data is the second data product to come from the SOCAT project. Recognizing that some groups may have trouble working with millions of measurements, the SOCAT gridded product was generated to provide a robust regularly spaced fCO2 product with minimal spatial and temporal interpolation which should be easier to work with for many applications. Gridded SOCAT is rich with information that has not been fully explored yet, but also contains biases and limitations that the user needs to recognize and address.
- Published
- 2013
- Full Text
- View/download PDF
36. An update to the Surface Ocean CO2 Atlas (SOCAT version 2)
- Author
-
Bakker, D. C. E., Pfeil, B., Smith, K., Hankin, S., Olsen, A., Alin, S. R., Cosca, C., Harasawa, S., Kozyr, A., Nojiri, Y., O'Brien, K. M., Schuster, U., Telszewski, M., Tilbrook, B., Wada, C., Akl, J., Barbero, L., Bates, N., Boutin, J., Cai, W.-J., Castle, R. D., Chavez, F. P., Chen, L., Chierici, M., Currie, K., de Baar, H. J. W., Evans, W., Feely, R. A., Fransson, A., Gao, Z., Hales, B., Hardman-Mountford, N., Hoppema, Mario, Huang, W.-J., Hunt, C. W., Huss, B., Ichikawa, T., Johannessen, T., Jones, Elizabeth M., Jones, S. D., Jutterström, S., Kitidis, V., Körtzinger, A., Landschtzer, P., Lauvset, S. K., Lefèvre, N., Manke, A. B., Mathis, J. T., Merlivat, L., Metzl, N., Murata, A., Newberger, T., Ono, T., Park, G.-H., Paterson, K., Pierrot, D., Ríos, A. F., Sabine, C. L., Saito, S., Salisbury, J., Sarma, V. V. S. S., Schlitzer, Reiner, Sieger, Rainer, Skjelvan, I., Steinhoff, T., Sullivan, K., Sun, H., Sutton, A. J., Suzuki, T., Sweeney, C., Takahashi, T., Tjiputra, J., Tsurushima, N., van Heuven, S. M. A. C., Vandemark, D., Vlahos, P., Wallace, D. W. R., Wanninkhof, R., Watson, A. J., Bakker, D. C. E., Pfeil, B., Smith, K., Hankin, S., Olsen, A., Alin, S. R., Cosca, C., Harasawa, S., Kozyr, A., Nojiri, Y., O'Brien, K. M., Schuster, U., Telszewski, M., Tilbrook, B., Wada, C., Akl, J., Barbero, L., Bates, N., Boutin, J., Cai, W.-J., Castle, R. D., Chavez, F. P., Chen, L., Chierici, M., Currie, K., de Baar, H. J. W., Evans, W., Feely, R. A., Fransson, A., Gao, Z., Hales, B., Hardman-Mountford, N., Hoppema, Mario, Huang, W.-J., Hunt, C. W., Huss, B., Ichikawa, T., Johannessen, T., Jones, Elizabeth M., Jones, S. D., Jutterström, S., Kitidis, V., Körtzinger, A., Landschtzer, P., Lauvset, S. K., Lefèvre, N., Manke, A. B., Mathis, J. T., Merlivat, L., Metzl, N., Murata, A., Newberger, T., Ono, T., Park, G.-H., Paterson, K., Pierrot, D., Ríos, A. F., Sabine, C. L., Saito, S., Salisbury, J., Sarma, V. V. S. S., Schlitzer, Reiner, Sieger, Rainer, Skjelvan, I., Steinhoff, T., Sullivan, K., Sun, H., Sutton, A. J., Suzuki, T., Sweeney, C., Takahashi, T., Tjiputra, J., Tsurushima, N., van Heuven, S. M. A. C., Vandemark, D., Vlahos, P., Wallace, D. W. R., Wanninkhof, R., and Watson, A. J.
- Abstract
The Surface Ocean CO2 Atlas (SOCAT) is an effort by the international marine carbon research community. It aims to improve access to carbon dioxide measurements in the surface oceans by regular releases of quality controlled and fully documented synthesis and gridded fCO2 (fugacity of carbon dioxide) products. SOCAT version 2 presented here extends the data set for the global oceans and coastal seas by four years and has 10.1 million surface water fCO2 values from 2660 cruises between 1968 and 2011. The procedures for creating version 2 have been comparable to those for version 1. The SOCAT website (http://www.socat.info/) provides access to the individual cruise data files, as well as to the synthesis and gridded data products. Interactive online tools allow visitors to explore the richness of the data. Scientific users can also retrieve the data as downloadable files or via Ocean Data View. Version 2 enables carbon specialists to expand their studies until 2011. Applications of SOCAT include process studies, quantification of the ocean carbon sink and its spatial, seasonal, year-to-year and longer-term variation, as well as initialisation or validation of ocean carbon models and coupled-climate carbon models.
- Published
- 2013
37. Surface Ocean CO2 Atlas (SOCAT) gridded data products
- Author
-
Sabine, C.L., Hankin, S., Koyuk, H., Bakker, D.C.E., Pfeil, B., Olsen, A., Metzl, N., Kozyr, A., Fassbender, A., Manke, A., Malczyk, J., Akl, J., Alin, S.R., Bellerby, R.G.J., Borges, A., Boutin, J., Brown, P.J., Cai, W.-J., Chavez, F.P., Chen, A., Cosca, C., Feely, R.A., González-Dávila, M., Goyet, C., Hardman-Mountford, N., Heinze, C., Hoppema, Mario, Hunt, C.W., Hydes, D., Ishii, M., Johannessen, T., Key, R.M., Körtzinger, A., Landschützer, P., Lauvset, S.K., Lefèvre, N., Lenton, A., Lourantou, A., Merlivat, L., Midorikawa, T., Mintrop, L., Miyazaki, C., Murata, A., Nakadate, A., Nakano, Y., Nakaoka, S., Nojiri, Y., Omar, A.M., Padin, X.A., Park, G.-H., Paterson, K., Perez, F.F., Pierrot, D., Poisson, A., Ríos, A.F., Salisbury, J., Santana-Casiano, J.M., Sarma, V.V.S.S., Schlitzer, Reiner, Schneider, B., Schuster, U., Sieger, Rainer, Skjelvan, I., Steinhoff, T., Suzuki, T., Takahashi, T., Tedesco, K., Telszewski, M., Thomas, H., Tilbrook, B., Vandemark, D., Veness, T., Watson, A.J., Weiss, R., Wong, C.S., Yoshikawa-Inoue, H., Sabine, C.L., Hankin, S., Koyuk, H., Bakker, D.C.E., Pfeil, B., Olsen, A., Metzl, N., Kozyr, A., Fassbender, A., Manke, A., Malczyk, J., Akl, J., Alin, S.R., Bellerby, R.G.J., Borges, A., Boutin, J., Brown, P.J., Cai, W.-J., Chavez, F.P., Chen, A., Cosca, C., Feely, R.A., González-Dávila, M., Goyet, C., Hardman-Mountford, N., Heinze, C., Hoppema, Mario, Hunt, C.W., Hydes, D., Ishii, M., Johannessen, T., Key, R.M., Körtzinger, A., Landschützer, P., Lauvset, S.K., Lefèvre, N., Lenton, A., Lourantou, A., Merlivat, L., Midorikawa, T., Mintrop, L., Miyazaki, C., Murata, A., Nakadate, A., Nakano, Y., Nakaoka, S., Nojiri, Y., Omar, A.M., Padin, X.A., Park, G.-H., Paterson, K., Perez, F.F., Pierrot, D., Poisson, A., Ríos, A.F., Salisbury, J., Santana-Casiano, J.M., Sarma, V.V.S.S., Schlitzer, Reiner, Schneider, B., Schuster, U., Sieger, Rainer, Skjelvan, I., Steinhoff, T., Suzuki, T., Takahashi, T., Tedesco, K., Telszewski, M., Thomas, H., Tilbrook, B., Vandemark, D., Veness, T., Watson, A.J., Weiss, R., Wong, C.S., and Yoshikawa-Inoue, H.
- Abstract
As a response to public demand for a well documented, quality controlled, publically available, global surface ocean carbon dioxide (CO2) data set, the international marine carbon science community developed the Surface Ocean CO2 Atlas (SOCAT). The first SOCAT product is a collection of 6.3 million quality controlled surface CO2 data from the global oceans and coastal seas, spanning four decades (1968–2007). The SOCAT gridded data presented here is the second data product to come from the SOCAT project. Recognizing that some groups may have trouble working with millions of measurements, the SOCAT gridded product was generated to provide a robust, regularly spaced CO2 fugacity (fCO2) product with minimal spatial and temporal interpolation, which should be easier to work with for many applications. Gridded SOCAT is rich with information that has not been fully explored yet (e.g., regional differences in the seasonal cycles), but also contains biases and limitations that the user needs to recognize and address (e.g., local influences on values in some coastal regions).
- Published
- 2013
38. A uniform, quality controlled Surface Ocean CO2 Atlas (SOCAT)
- Author
-
Pfeil, B., Olsen, A., Bakker, D. C. E., Hankin, S., Koyuk, H., Kozyr, A., Malczyk, J., Manke, A., Metzl, N., Sabine, C. L., Akl, J., Alin, S. R., Bellerby, R. G. J., Borges, A., Boutin, J., Brown, P. J., Cai, W.-J., Chavez, F. P., Chen, A., Cosca, C., Fassbender, A. J., Feely, R. A., González-Dávila, M., Goyet, C., Hardman-Mountford, N., Heinze, C., Hood, M., Hoppema, M., Hunt, C. W., Hydes, D., Ishii, M., Johannessen, T., Jones, S. D., Key, R. M., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lourantou, A., Merlivat, L., Midorikawa, T., Mintrop, L., Miyazaki, C., Murata, A., Nakadate, A., Nakano, Y., Nakaoka, S., Nojiri, Y., Omar, A. M., Padin, X. A., Park, G.-H., Paterson, K., Perez, F. F., Pierrot, D., Poisson, A., Ríos, A. F., Santana-Casiano, J. M., Salisbury, J., Sarma, V. V. S. S., Schlitzer, R., Schneider, B., Schuster, U., Sieger, R., Skjelvan, I., Steinhoff, T., Suzuki, T., Takahashi, T., Tedesco, K., Telszewski, M., Thomas, H., Tilbrook, B., Tjiputra, J., Vandemark, D., Veness, T., Wanninkhof, R., Watson, A. J., Weiss, R., Wong, C. S., Yoshikawa-Inoue, H., Pfeil, B., Olsen, A., Bakker, D. C. E., Hankin, S., Koyuk, H., Kozyr, A., Malczyk, J., Manke, A., Metzl, N., Sabine, C. L., Akl, J., Alin, S. R., Bellerby, R. G. J., Borges, A., Boutin, J., Brown, P. J., Cai, W.-J., Chavez, F. P., Chen, A., Cosca, C., Fassbender, A. J., Feely, R. A., González-Dávila, M., Goyet, C., Hardman-Mountford, N., Heinze, C., Hood, M., Hoppema, M., Hunt, C. W., Hydes, D., Ishii, M., Johannessen, T., Jones, S. D., Key, R. M., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lourantou, A., Merlivat, L., Midorikawa, T., Mintrop, L., Miyazaki, C., Murata, A., Nakadate, A., Nakano, Y., Nakaoka, S., Nojiri, Y., Omar, A. M., Padin, X. A., Park, G.-H., Paterson, K., Perez, F. F., Pierrot, D., Poisson, A., Ríos, A. F., Santana-Casiano, J. M., Salisbury, J., Sarma, V. V. S. S., Schlitzer, R., Schneider, B., Schuster, U., Sieger, R., Skjelvan, I., Steinhoff, T., Suzuki, T., Takahashi, T., Tedesco, K., Telszewski, M., Thomas, H., Tilbrook, B., Tjiputra, J., Vandemark, D., Veness, T., Wanninkhof, R., Watson, A. J., Weiss, R., Wong, C. S., and Yoshikawa-Inoue, H.
- Published
- 2012
39. Surface Ocean CO2 Atlas (SOCAT) gridded data products
- Author
-
Sabine, C. L., Hankin, S., Koyuk, H., Bakker, D. C. E., Pfeil, B., Olsen, A., Metzl, N., Kozyr, A., Fassbender, A., Manke, A., Malczyk, J., Akl, J., Alin, S. R., Bellerby, R. G. J., Borges, A., Boutin, J., Brown, P. J., Cai, W.-J., Chavez, F. P., Chen, A., Cosca, C., Feely, R. A., González-Dávila, M., Goyet, C., Hardman-Mountford, N., Heinze, C., Hoppema, M., Hunt, C. W., Hydes, D., Ishii, M., Johannessen, T., Key, R. M., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lourantou, A., Merlivat, L., Midorikawa, T., Mintrop, L., Miyazaki, C., Murata, A., Nakadate, A., Nakano, Y., Nakaoka, S., Nojiri, Y., Omar, A. M., Padin, X. A., Park, G.-H., Paterson, K., Perez, F. F., Pierrot, D., Poisson, A., Ríos, A. F., Salisbury, J., Santana-Casiano, J. M., Sarma, V. V. S. S., Schlitzer, R., Schneider, B., Schuster, U., Sieger, R., Skjelvan, I., Steinhoff, T., Suzuki, T., Takahashi, T., Tedesco, K., Telszewski, M., Thomas, H., Tilbrook, B., Vandemark, D., Veness, T., Watson, A. J., Weiss, R., Wong, C. S., Yoshikawa-Inoue, H., Sabine, C. L., Hankin, S., Koyuk, H., Bakker, D. C. E., Pfeil, B., Olsen, A., Metzl, N., Kozyr, A., Fassbender, A., Manke, A., Malczyk, J., Akl, J., Alin, S. R., Bellerby, R. G. J., Borges, A., Boutin, J., Brown, P. J., Cai, W.-J., Chavez, F. P., Chen, A., Cosca, C., Feely, R. A., González-Dávila, M., Goyet, C., Hardman-Mountford, N., Heinze, C., Hoppema, M., Hunt, C. W., Hydes, D., Ishii, M., Johannessen, T., Key, R. M., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lourantou, A., Merlivat, L., Midorikawa, T., Mintrop, L., Miyazaki, C., Murata, A., Nakadate, A., Nakano, Y., Nakaoka, S., Nojiri, Y., Omar, A. M., Padin, X. A., Park, G.-H., Paterson, K., Perez, F. F., Pierrot, D., Poisson, A., Ríos, A. F., Salisbury, J., Santana-Casiano, J. M., Sarma, V. V. S. S., Schlitzer, R., Schneider, B., Schuster, U., Sieger, R., Skjelvan, I., Steinhoff, T., Suzuki, T., Takahashi, T., Tedesco, K., Telszewski, M., Thomas, H., Tilbrook, B., Vandemark, D., Veness, T., Watson, A. J., Weiss, R., Wong, C. S., and Yoshikawa-Inoue, H.
- Published
- 2012
40. SOCAT Data treatment and adjustments
- Author
-
Pfeil, B., Olsen, A., Bakker, D. C. E., Sabine, C., Metzl, N., Kozyr, A., Borges, A., Schuster, U., Telszewski, M., Chen, A., Tilbrook, B., Sarma, V. V. S. S., Feely, R., Wanninkhof, R., Hankin, S., Koyuk, H., Malczyk, J., Tedesco, K., Cosca, C., Miyazaki, C., Hunt, C., Pierrot, D., Park, G. H., Skjelvan, I., Paterson, K., Santana-Casiano, M., Hood, M., Hoppema, Mario, Watson, A., Lourantou, A., Padin, A., Lefevre, N., Hardman-Mountford, N., Omar, A., Nakaoka, S., Alin, S., Steinhoff, T., Suzuki, T., Johannessen, T., Nakana, Y., Nojiri, Y., Pfeil, B., Olsen, A., Bakker, D. C. E., Sabine, C., Metzl, N., Kozyr, A., Borges, A., Schuster, U., Telszewski, M., Chen, A., Tilbrook, B., Sarma, V. V. S. S., Feely, R., Wanninkhof, R., Hankin, S., Koyuk, H., Malczyk, J., Tedesco, K., Cosca, C., Miyazaki, C., Hunt, C., Pierrot, D., Park, G. H., Skjelvan, I., Paterson, K., Santana-Casiano, M., Hood, M., Hoppema, Mario, Watson, A., Lourantou, A., Padin, A., Lefevre, N., Hardman-Mountford, N., Omar, A., Nakaoka, S., Alin, S., Steinhoff, T., Suzuki, T., Johannessen, T., Nakana, Y., and Nojiri, Y.
- Published
- 2011
41. Open ocean gas transfer velocity derived from long-term direct measurements of the CO2 flux
- Author
-
Prytherch, J., Yelland, M.J., Pascal, R.W., Moat, B.I., Skjelvan, I., Srokosz, M.A., Prytherch, J., Yelland, M.J., Pascal, R.W., Moat, B.I., Skjelvan, I., and Srokosz, M.A.
- Abstract
Air-sea open ocean CO2 flux measurements have been made using the Eddy Covariance (EC) technique onboard the weathership Polarfront in the North Atlantic between September 2006 and December 2009. Flux measurements were made using an autonomous system ‘AutoFlux’. CO2 mass density was measured with an open-path infrared gas analyzer. Following quality control procedures, 3938 20-minute flux measurements were made at mean wind speeds up to 19.6 m/s, significantly higher wind speeds than previously published results. The uncertainty in the determination of gas transfer velocities is large, but the mean relationship to wind speed allows a new parameterisation of the gas transfer velocity to be determined. A cubic dependence of gas transfer on wind speed is found, suggesting a significant influence of bubble-mediated exchange on gas transfer.
- Published
- 2010
42. Continuous Observations From the Weather Ship Polarfront at Station Mike
- Author
-
Hall, J., Harrison, D.E., Stammer, D., Yelland, M., Holliday, N., Skjelvan, I., Østerhus, S., Conway, T., Hall, J., Harrison, D.E., Stammer, D., Yelland, M., Holliday, N., Skjelvan, I., Østerhus, S., and Conway, T.
- Published
- 2010
43. Direct measurements of the CO2 flux over the ocean: development of a novel method
- Author
-
Prytherch, J., Yelland, M.J., Pascal, R.W., Moat, B.I., Skjelvan, I., Neill, C., Prytherch, J., Yelland, M.J., Pascal, R.W., Moat, B.I., Skjelvan, I., and Neill, C.
- Abstract
Over the ocean, eddy correlation measurements of the air-sea CO2 flux obtained with open-path sensors have typically been an order of magnitude larger than those estimated by other techniques or sensors. It is shown here that this discrepancy is due to cross sensitivity to water vapor fluctuations: a novel correction procedure is demonstrated, tested against an independent data set and proved to be robust. After correction, the observed gas transfer velocities are in reasonable agreement with published values obtained using closed-path sensors or by tracer techniques. Data from open-path sensors may now be used for air-sea CO2 flux estimation, greatly increasing the information available on air-sea gas transfer velocity.
- Published
- 2010
44. Ocean acidification response to surface ocean conditioning and transport - processes influencing anthropogenic carbon change in the Arctic and Southern oceans
- Author
-
Bellerby, R., Olsen, A., Nondal, G., Slagstad, D., Taucher, J., Hauck, Judith, Bethke, I., Jeansson, E., Årthun, M., Omar, A., Skjelvan, I., Assmann, K. M., Bopp, L., Johannessen, T., Hoppema, Mario, Völker, Christoph, Wolf-Gladrow, Dieter, Tyrrell, T., Findlay, H., Frigstad, H., Bellerby, R., Olsen, A., Nondal, G., Slagstad, D., Taucher, J., Hauck, Judith, Bethke, I., Jeansson, E., Årthun, M., Omar, A., Skjelvan, I., Assmann, K. M., Bopp, L., Johannessen, T., Hoppema, Mario, Völker, Christoph, Wolf-Gladrow, Dieter, Tyrrell, T., Findlay, H., and Frigstad, H.
- Published
- 2010
45. Initial turbulent flux results from station Mike
- Author
-
Prytherch, J., Yelland, M.J., Pascal, R.W., Taylor, P.K., Moat, B.I., Skjelvan, I., Neill, C., Prytherch, J., Yelland, M.J., Pascal, R.W., Taylor, P.K., Moat, B.I., Skjelvan, I., and Neill, C.
- Published
- 2009
46. CARINA DATA SYNTHESIS PROJECT
- Author
-
Tanhua, T., Olsen, A., Hoppema, Mario, Jutterström, S., Schirnick, C., Van Heuven, S., Velo, A., Lin, X., Kozyr, A., Alvarez, M., Bakker, D. C. E., Brown, P., Falck, E., Jeansson, E., Lo Monaco, C., Olafsson, J., Perez, F. F., Pierrot, D., Rios, A. F., Sabine, C. L., Schuster, U., Steinfeldt, R., Stendardo, I., Anderson, L. G., Bates, N. R., Bellerby, R. G. J., Blindheim, J., Bullister, J. L., Gruber, N., Ishii, M., Johannessen, T., Jones, E. P., Köhler, Jens, Körtzinger, A., Metzl, N., Murata, A., Musielewicz, S., Omar, A. M., Olsson, K. A., de la Paz, M., Pfeil, B., Rey, F., Rhein, M., Skjelvan, I., Tilbrook, B., Wanninkhof, R., Mintrop, L., Wallace, D. W. R., Key, R. M., Tanhua, T., Olsen, A., Hoppema, Mario, Jutterström, S., Schirnick, C., Van Heuven, S., Velo, A., Lin, X., Kozyr, A., Alvarez, M., Bakker, D. C. E., Brown, P., Falck, E., Jeansson, E., Lo Monaco, C., Olafsson, J., Perez, F. F., Pierrot, D., Rios, A. F., Sabine, C. L., Schuster, U., Steinfeldt, R., Stendardo, I., Anderson, L. G., Bates, N. R., Bellerby, R. G. J., Blindheim, J., Bullister, J. L., Gruber, N., Ishii, M., Johannessen, T., Jones, E. P., Köhler, Jens, Körtzinger, A., Metzl, N., Murata, A., Musielewicz, S., Omar, A. M., Olsson, K. A., de la Paz, M., Pfeil, B., Rey, F., Rhein, M., Skjelvan, I., Tilbrook, B., Wanninkhof, R., Mintrop, L., Wallace, D. W. R., and Key, R. M.
- Published
- 2009
47. Overview of the Nordic Seas CARINA data and salinity measurements
- Author
-
Olsen, A., Key, R. M., Jeansson, E., Falck, E., Olafsson, J., van Heuven, S., Skjelvan, I., Omar, A.M., Olsson, K.a., Anderson, L. G., Jutterström, S., Rey, F., Johannessen, T., Bellerby, R.G.J., Blindheim, J., Bullister, J., Pfeil, B., Lin, X., Schirnick, Carsten, Tanhua, Toste, Wallace, Douglas W.R., Olsen, A., Key, R. M., Jeansson, E., Falck, E., Olafsson, J., van Heuven, S., Skjelvan, I., Omar, A.M., Olsson, K.a., Anderson, L. G., Jutterström, S., Rey, F., Johannessen, T., Bellerby, R.G.J., Blindheim, J., Bullister, J., Pfeil, B., Lin, X., Schirnick, Carsten, Tanhua, Toste, and Wallace, Douglas W.R.
- Abstract
Water column data of carbon and carbon relevant hydrographic and hydrochemical parameters from 188 previously non-publicly available cruises in the Arctic, Atlantic, and Southern Ocean have been retrieved and merged into a new database: CARINA (CARbon IN the Atlantic). The data have been subject to rigorous quality control (QC) in order to ensure highest possible quality and consistency. The data for most of the parameters included were examined in order to quantify systematic biases in the reported values, i.e. secondary quality control. Significant biases have been corrected for in the data products, i.e. the three merged files with measured, calculated and interpolated values for each of the three CARINA regions; the Arctic Mediterranean Seas (AMS), the Atlantic (ATL) and the Southern Ocean (SO). With the adjustments the CARINA database is consistent both internally as well as with GLODAP (Key et al., 2004) and is suitable for accurate assessments of, for example, oceanic carbon inventories and uptake rates and for model validation. The Arctic Mediterranean Seas include the Arctic Ocean and the Nordic Seas, and the quality control was carried out separately in these two areas. This contribution provides an overview of the CARINA data from the Nordic Seas and summarises the findings of the QC of the salinity data. One cruise had salinity data that were of questionable quality, and these have been removed from the data product. An evaluation of the consistency of the quality controlled salinity data suggests that they are consistent to at least ±0.005.
- Published
- 2009
- Full Text
- View/download PDF
48. An update to the Surface Ocean CO2 Atlas (SOCAT version 2)
- Author
-
Bakker, D. C. E., primary, Pfeil, B., additional, Smith, K., additional, Hankin, S., additional, Olsen, A., additional, Alin, S. R., additional, Cosca, C., additional, Harasawa, S., additional, Kozyr, A., additional, Nojiri, Y., additional, O'Brien, K. M., additional, Schuster, U., additional, Telszewski, M., additional, Tilbrook, B., additional, Wada, C., additional, Akl, J., additional, Barbero, L., additional, Bates, N., additional, Boutin, J., additional, Cai, W.-J., additional, Castle, R. D., additional, Chavez, F. P., additional, Chen, L., additional, Chierici, M., additional, Currie, K., additional, de Baar, H. J. W., additional, Evans, W., additional, Feely, R. A., additional, Fransson, A., additional, Gao, Z., additional, Hales, B., additional, Hardman-Mountford, N., additional, Hoppema, M., additional, Huang, W.-J., additional, Hunt, C. W., additional, Huss, B., additional, Ichikawa, T., additional, Johannessen, T., additional, Jones, E. M., additional, Jones, S. D., additional, Jutterström, S., additional, Kitidis, V., additional, Körtzinger, A., additional, Landschtzer, P., additional, Lauvset, S. K., additional, Lefèvre, N., additional, Manke, A. B., additional, Mathis, J. T., additional, Merlivat, L., additional, Metzl, N., additional, Murata, A., additional, Newberger, T., additional, Ono, T., additional, Park, G.-H., additional, Paterson, K., additional, Pierrot, D., additional, Ríos, A. F., additional, Sabine, C. L., additional, Saito, S., additional, Salisbury, J., additional, Sarma, V. V. S. S., additional, Schlitzer, R., additional, Sieger, R., additional, Skjelvan, I., additional, Steinhoff, T., additional, Sullivan, K., additional, Sun, H., additional, Sutton, A. J., additional, Suzuki, T., additional, Sweeney, C., additional, Takahashi, T., additional, Tjiputra, J., additional, Tsurushima, N., additional, van Heuven, S. M. A. C., additional, Vandemark, D., additional, Vlahos, P., additional, Wallace, D. W. R., additional, Wanninkhof, R., additional, and Watson, A. J., additional
- Published
- 2013
- Full Text
- View/download PDF
49. Surface Ocean CO<sub>2</sub> Atlas (SOCAT) gridded data products
- Author
-
Sabine, C. L., primary, Hankin, S., additional, Koyuk, H., additional, Bakker, D. C. E., additional, Pfeil, B., additional, Olsen, A., additional, Metzl, N., additional, Kozyr, A., additional, Fassbender, A., additional, Manke, A., additional, Malczyk, J., additional, Akl, J., additional, Alin, S. R., additional, Bellerby, R. G. J., additional, Borges, A., additional, Boutin, J., additional, Brown, P. J., additional, Cai, W.-J., additional, Chavez, F. P., additional, Chen, A., additional, Cosca, C., additional, Feely, R. A., additional, González-Dávila, M., additional, Goyet, C., additional, Hardman-Mountford, N., additional, Heinze, C., additional, Hoppema, M., additional, Hunt, C. W., additional, Hydes, D., additional, Ishii, M., additional, Johannessen, T., additional, Key, R. M., additional, Körtzinger, A., additional, Landschützer, P., additional, Lauvset, S. K., additional, Lefèvre, N., additional, Lenton, A., additional, Lourantou, A., additional, Merlivat, L., additional, Midorikawa, T., additional, Mintrop, L., additional, Miyazaki, C., additional, Murata, A., additional, Nakadate, A., additional, Nakano, Y., additional, Nakaoka, S., additional, Nojiri, Y., additional, Omar, A. M., additional, Padin, X. A., additional, Park, G.-H., additional, Paterson, K., additional, Perez, F. F., additional, Pierrot, D., additional, Poisson, A., additional, Ríos, A. F., additional, Salisbury, J., additional, Santana-Casiano, J. M., additional, Sarma, V. V. S. S., additional, Schlitzer, R., additional, Schneider, B., additional, Schuster, U., additional, Sieger, R., additional, Skjelvan, I., additional, Steinhoff, T., additional, Suzuki, T., additional, Takahashi, T., additional, Tedesco, K., additional, Telszewski, M., additional, Thomas, H., additional, Tilbrook, B., additional, Vandemark, D., additional, Veness, T., additional, Watson, A. J., additional, Weiss, R., additional, Wong, C. S., additional, and Yoshikawa-Inoue, H., additional
- Published
- 2013
- Full Text
- View/download PDF
50. A uniform, quality controlled Surface Ocean CO<sub>2</sub> Atlas (SOCAT)
- Author
-
Pfeil, B., primary, Olsen, A., additional, Bakker, D. C. E., additional, Hankin, S., additional, Koyuk, H., additional, Kozyr, A., additional, Malczyk, J., additional, Manke, A., additional, Metzl, N., additional, Sabine, C. L., additional, Akl, J., additional, Alin, S. R., additional, Bates, N., additional, Bellerby, R. G. J., additional, Borges, A., additional, Boutin, J., additional, Brown, P. J., additional, Cai, W.-J., additional, Chavez, F. P., additional, Chen, A., additional, Cosca, C., additional, Fassbender, A. J., additional, Feely, R. A., additional, González-Dávila, M., additional, Goyet, C., additional, Hales, B., additional, Hardman-Mountford, N., additional, Heinze, C., additional, Hood, M., additional, Hoppema, M., additional, Hunt, C. W., additional, Hydes, D., additional, Ishii, M., additional, Johannessen, T., additional, Jones, S. D., additional, Key, R. M., additional, Körtzinger, A., additional, Landschützer, P., additional, Lauvset, S. K., additional, Lefèvre, N., additional, Lenton, A., additional, Lourantou, A., additional, Merlivat, L., additional, Midorikawa, T., additional, Mintrop, L., additional, Miyazaki, C., additional, Murata, A., additional, Nakadate, A., additional, Nakano, Y., additional, Nakaoka, S., additional, Nojiri, Y., additional, Omar, A. M., additional, Padin, X. A., additional, Park, G.-H., additional, Paterson, K., additional, Perez, F. F., additional, Pierrot, D., additional, Poisson, A., additional, Ríos, A. F., additional, Santana-Casiano, J. M., additional, Salisbury, J., additional, Sarma, V. V. S. S., additional, Schlitzer, R., additional, Schneider, B., additional, Schuster, U., additional, Sieger, R., additional, Skjelvan, I., additional, Steinhoff, T., additional, Suzuki, T., additional, Takahashi, T., additional, Tedesco, K., additional, Telszewski, M., additional, Thomas, H., additional, Tilbrook, B., additional, Tjiputra, J., additional, Vandemark, D., additional, Veness, T., additional, Wanninkhof, R., additional, Watson, A. J., additional, Weiss, R., additional, Wong, C. S., additional, and Yoshikawa-Inoue, H., additional
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.