1. Behavior of a vacuum and naked singularity under a smooth gauge function in Lyra geometry
- Author
-
Zhi, Haizhao
- Subjects
Geometry -- Research ,Mathematical research ,Singularities (Mathematics) -- Research ,Physics - Abstract
Lyra geometry is a conformai geometry that originated from Weyl geometry. In this article, we derive the exterior field equation under a spherically symmetric gauge function [x.sup.0](r) and metric in Lyra geometry. When we impose a specific form of the gauge function [x.sup.0](r), the radial differential equation of the metric component [g.sub.00] will possess an irregular singular point (ISP) at r = 0. Moreover, we can apply the method of dominant balance to get the asymptotic behavior of the new space-time solution. The significance of this work is that we can use a series of smooth gauge functions [x.sup.0](r) to modulate the degree of divergence of the singularity at r =0, which will become a naked singularity under certain conditions. Furthermore, we investigate the physical meaning of this novel behavior of space-time in Lyra geometry and find out that no spaceship with finite integrated acceleration can arrive at this singularity at r =0. The physical meaning of the gauge function and integrability is also discussed. Key words: Lyra geometry, Weyl geometry, singularity, event horizon, dominant balance. La geometrie de Lyra est une geometrie conforme qui origine de la geometrie de Weyl. Dans ce travail, nous derivons l'equation du champ exterieur sous une fonction de jauge [x.sup.0](r) de symetrie spherique et une metrique en geometrie de Lyra. Quand nous imposons une forme specifique a la fonction de jauge [x.sup.0](r), l'equation differentielle radiale de la composante metrique [g.sub.00] possede alors un point singulier irregulier (PSI/ISP) a r = 0. De plus, nous appliquons la methode du comportement asymptotique dominant pour obtenir la forme asymptotique de notre nouvelle solution espace-temps. La signification de ce travail est que nous pourrions utiliser une serie de fonctions de jauge continues [x.sup.0](r) pour moduler le niveau de divergence de la singularite a r = 0, avec comme resultat que la singularite devient alors une singularite nue sous certaines conditions. De plus, nous analysons la signification physique de l'espace-temps dans la geometrie de Lyra et nous trouvons qu'aucun vaisseau spatial d'acceleration integree finie ne peut parvenir a la singularite a r =0. Nous discutons aussi la signification physique de la fonction de jauge et l'integrabilite. [Traduit par la Redaction] Mots-cles : geometrie de Lyra, singularite, horizon des evenements, comportement asymptotique dominant, geometrie de Weyl., 1. Introduction Weyl [1] created his version of generalized Riemannian geometry, Weyl geometry, to try to unify gravitation and electromagnetism. The structure of Weyl geometry is insightful because it has [...]
- Published
- 2018
- Full Text
- View/download PDF