42 results on '"Silvia Vilariño"'
Search Results
2. A Neural Circuit Model of the Striatum Resolves the Conflict between Context and Dominance Apparent in the Prefrontal Cortex
- Author
-
Silvia Vilariño and Salva Ardid
- Subjects
context-dependent decision-making ,dominance of inhibitory control ,corticostriatal processing ,neural representation ,oscillatory activity ,Engineering machinery, tools, and implements ,TA213-215 - Abstract
Neurons in the prefrontal cortex (PFC) encode sensory and context information, as well as sensory dominance in context-dependent decision-making [...]
- Published
- 2022
- Full Text
- View/download PDF
3. Methods Of Differential Geometry In Classical Field Theories: K-symplectic And K-cosymplectic Approaches: k-Symplectic and k-Cosymplectic Approaches
- Author
-
Manuel de León, Modesto Salgado, Silvia Vilariño
- Published
- 2015
4. Reduction and reconstruction of multisymplectic Lie systems
- Author
-
Javier De Lucas, Xavier Gracia, Silvia Vilariño, Xavier Rivas, Narciso Román-Roy, Universitat Politècnica de Catalunya. Departament de Matemàtiques, and Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions
- Subjects
Matemàtiques i estadística::Àlgebra::Anells i àlgebres [Àrees temàtiques de la UPC] ,Mathematics - Differential Geometry ,Statistics and Probability ,34A26, 34A05, 34A34 (primary), 17B66, 22E70 (secondary) ,Vessiot–Guldberg Lie algebra ,Nonlinear Sciences - Exactly Solvable and Integrable Systems ,Lie system ,FOS: Physical sciences ,General Physics and Astronomy ,Statistical and Nonlinear Physics ,Mathematical Physics (math-ph) ,Lie, Àlgebres de ,Lie group ,Energy–momentum method ,17 Nonassociative rings and algebras::17B Lie algebras and Lie superalgebras [Classificació AMS] ,Differential Geometry (math.DG) ,Lie algebras ,Modeling and Simulation ,FOS: Mathematics ,Multisymplectic manifold ,Time-dependent harmonic oscillator ,Exactly Solvable and Integrable Systems (nlin.SI) ,Multisymplectic reduction and reconstruction ,Mathematical Physics - Abstract
A Lie system is a non-autonomous system of first-order ordinary differential equations describing the integral curves of a non-autonomous vector field taking values in a finite-dimensional real Lie algebra of vector fields, a so-called Vessiot--Guldberg Lie algebra. In this work, multisymplectic structures are applied to the study of the reduction of Lie systems through their Lie symmetries. By using a momentum map, we perform a reduction and reconstruction procedure of multisymplectic Lie systems, which allows us to solve the original problem by analysing several simpler multisymplectic Lie systems. Conversely, we study how reduced multisymplectic Lie systems allow us to retrieve the form of the multisymplectic Lie system that gave rise to them. Our results are illustrated with examples occurring in physics, mathematics, and control theory., 29 pages, no figures. A new multisymplectic reconstruction theorem and several applications thereof added. Several parts have been simplified and the presentation has been improved
- Published
- 2022
- Full Text
- View/download PDF
5. Análisis, estudio y posibilidades que aporta el uso de micro-UAV,s en unidades tipo pelotón mecanizado en combate híbrido
- Author
-
Alejandro Pérez Garrido, Tutor militar: Capitán D. Pablo Martín López, and Director académico: Dra. Dña Silvia Vilariño Fernández
- Abstract
En la actualidad, la tecnología se ha vuelto un componente imprescindible en todos los ámbitos de la vida y, por tanto, se ha convertido en una herramienta muy útil para utilizar en el campo militar. La tecnología UAV (Unmaned Aerial Vehicle) ha ido evolucionando a la vez que la complejidad de los conflictos bélicos, evidenciando la necesidad de implementarlo en la función inteligencia del ejército.Con el presente Trabajo de Fin de Grado se busca realizar un análisis de algunos de los sistemas micro-UAV que destacan en la actualidad, con el fin de comprender sus capacidades y las posibilidades de aplicación que brindan a una unidad tipo pelotón mecanizado en combate híbrido. El estudio de los micro-UAV,s se completará con un estudio más amplio de los UAV,s vigentes de la mayoría de las clases.Para la realización del análisis del que se habla previamente ha sido necesario la búsqueda de información sobre este tipo de sistemas, tanto dentro de las fuentes accesibles del Ministerio de Defensa como materiales adicionales como son manuales, fichas técnicas o incluso noticias recogidas en diferentes páginas web.Así mismo, se analizará resumidamente la orgánica del pelotón para determinar el elemento de este que sería apropiado para la dotación del micro-UAV, enunciando los diferentes tipos de misiones que se realizan en un ambiente de combate híbrido, y analizando las posibilidades de mejora de las funciones ISTAR que ofrecen estos sistemas.Con el fin de ampliar el alcance de este trabajo y que no se limitase a un simple estudio de los sistemas micro-UAV’s disponibles y sus posibles aplicaciones en una unidad tipo pelotón en combate híbrido se ha decidido analizar, entre las alternativas existentes, cuál sería la mejor opción para la adquisición de uno de estos sistemas.La propuesta de adquisición planteada en este trabajo trata de ser lo más objetiva posible, evitando la toma de decisión en base a la experiencia de una única persona. Con el fin de buscar un método lo más objetivo posible para esta propuesta de adquisición se ha decidido implementar el método de decisión multicriterio AHP (Analytic Hierarchy Process) desarrollado por el profesor T. L. Saaty.A través del empleo de la metodología AHP se resolverá un proceso de selección en el que, utilizando como alternativas los micro-UAV,s analizados y aquellos pertenecientes a la clase mini, se determinará cuál de ellos es el más adecuado para el empleo dentro de un pelotón mecanizado en combate híbrido. Esto será posible gracias al empleo del software Superdecisions que permite obtener los resultados a partir de las ponderaciones de una serie de criterios y subcriterios, sin necesidad de recurrir al cálculo manual de las matrices y vectores de ponderación en los que se basa este método.Los criterios y subcriterios que se consideran en la implementación del método AHP son el resultado del análisis de las principales características que ha de poseer un micro-UAV para el empleo en una unidad tipo pelotón mecanizado en combate híbrido. Como es usual en este tipo de sistemas complejos, estas características (criterios/subcriterios) entran en conflicto entre sí, por lo que es fundamental establecer un peso a cada una de ellas.Parar conseguir que tanto el listado de características como la importancia o ponderación de cada una de ellas siga un proceso lo más objetivo posible, se ha contado con la colaboración de un grupo de expertos que se ha constituido del modo más heterogéneo posible, teniendo en cuenta no solo la visión de expertos en sistemas micro-UAV, sino también la opinión de los futuros usuarios de estos sistemas en las unidades antes mencionadas. Gracias a la colaboración de los integrantes del grupo de expertos, y partiendo de una propuesta inicial de criterios y subcriterios elaborada a partir del estudio del estado del arte realizado, se ha llegado a un consenso3sobre las principales características que debe poseer un micro-UAV en el contexto que se analiza en este trabajo. Los diferentes pesos que son asignados a estos criterios y subcriterios se han obtenido a través de la difusión de encuestas tanto a personal experto como a personal de una unidad mecanizada, empleando para ello el proceso de comparación por pares.Como paso final, aplicando el método AHP, se ha obtenido el modelo de micro-UAV que mejor se adapta a todos estos criterios y subcriterios, teniendo
- Published
- 2020
6. Comparativa de sistemas de armas con capacidad antimisil
- Author
-
ALBERTO CARRETERO ORTIZ, SILVIA VILARIÑO FERNÁNDEZ, and RAÚL GÁRCIA VALLADOLID
- Abstract
Desde el año 2010 en la denominada Cumbre de Lisboa la defensa antimisil ha constituido una de las principales prioridades de la Alianza Atlántica OTAN. Dicho impulso fue propuesto, principalmente, a raíz de la proliferación de misiles balísticos y la amenaza Iraní, bien es cierto que también ha influido la amenaza de Corea del Norte y que desde hace dos años está representando una seria amenaza. Aunque su desarrollo en el marco de la OTAN ha sido abanderado fundamentalmente por los EEUU, los demás países europeos han ido sumándose a este impulso. En Europa existe un cuartel general (CG) en Ramstein, donde se coordina la defensa aérea de toda Europa a nivel OTAN, dentro de este CG es donde se integran y coordinan los diferentes sistemas de armas con capacidad antimisil de otras naciones contribuyendo en la defensa colectiva Europea en este ámbito. España es uno de los países aliados OTAN que dispone, a día de hoy, de un sistema de armas que puede ser integrado en esta estructura de la de defensa antimisil Europea. Esta aportación es llevada a cabo por el ET con su sistema antiaéreo PATRIOT. Este sistema de armas pertenece en la actualidad al GAAA III/73 sito en Marines (Valencia). En la actualidad España tiene desplegada en Turquía una batería de misiles antiaéreos PATRIOT con una capacidad antimisil real, si bien es cierto con algunas limitaciones. Esta es la forma en la que España contribuye a uno de los compromisos que tiene en el ámbito de Defensa. Además, este compromiso representa una gran oportunidad de probar el material en zona de operaciones, desarrollarlo y mejorar las capacidades del personal en dicho contingente. Si bien es cierto de que la OTAN reconoce que en estos momentos no existe ninguna nación que represente una amenaza directa para sus miembros, reconoce que hay una proliferación de misiles balísticos con lo que conlleva a medio plazo un riesgo para la población, territorio y fuerzas desplegadas en zonas de operaciones, por todo ello, es necesario dotarse de una defensa contra misiles balísticos. En este último sentido es necesario no solo conocer las capacidades antimisil de cada país sino de todo el conjunto de países comprometidos con este objetivo de la OTAN. En este sentido, y como ya se ha puesto de manifiesto en ejercicios conjuntos, es fundamental para un buen planeamiento conjunto conocer las características de los sistemas que aportan a este objetivo los países aliados. A día de hoy se ha detectado la carencia de estos conocimientos por lo que, atendiendo a las necesidades explicitadas por el personal que ha participado en operaciones conjuntas o ejercicios del carácter indicado en las líneas previas, se presenta la necesidad de realizar un estudio de los materiales disponibles en los aliados OTAN con la capacidad antimisil TBM.En este trabajo se pretende avanzar en la línea de solventar la carencia indicada anteriormente, si bien no es posible resolver el problema en su totalidad si se plantean algunas medidas que permitan solventar las carencias detectadas. En concreto se plantea como principal objetivo el desarrollar una herramienta práctica que permita disponer de la información al personal que participa en los ejercicios conjuntos antes mencionados. Mediante la utilización del método comparativo se estudiarán los sistemas de armas con capacidad anti TBM disponibles en la actualidad por los países miembros de la OTAN. Se realiza un análisis profundo de los sistemas de armas mediante distintas fuentes, tanto libres como de ámbito militar, y otras formas de obtención de la información como son las prácticas en la unidad, que permite tener información de primera mano, así como del uso de videos explicativos de los sistemas de armas, todo ello permite ampliar el conocimiento de los sistema de armas y contrastar la información con otras fuente. Una vez obtenida la herramienta que motivo la propuesta del título del trabajo desde la unidad GAAA III/73, el cuadro comparativo con los sistemas de armas estudiados, se desarrolla una posible solución a un despliegue de defensa antiaérea. Dicha solución viene determinada por el estudio de los sistemas de armas aprovechando al máximo las capacidades que cada sistema tiene, creando así una sinergia que fortalece el perímetro de la defensa antiaérea. Si bien es cierto que existen ciertas lagunas de información sobre todo en lo referente a las capacidades de los radares, puesto que se trata de información confidencial. Una vez realizada una posible solución al despliegue antiaéreo mediante la utilización de los sistemas de armas, se determinan unas conclusiones del trabajo, en concreto, unas conclusiones de los sistemas de armas en las cuales se determinan que todos los sistemas cumplen su misión adecuadamente y que ninguno de ellos está obsoleto, puesto que cada sistema de armas presenta unas capacidades que otros sistema no tienen. Otra gran conclusión ligada a esta es que las múltiples combinaciones de los sistemas de armas para una defensa antiaérea proporcionan una sinergia que les otorga unas capacidades defensivas muy altas y con unas garantías muy altas de que se van a cumplir las misiones encomendadas. Para finalizar cabe resaltar que la herramienta comparativa creada y utilizada en este trabajo podría ser empleada en otro tipo de estudios incluso de diferentes ámbitos. La ventaja que proporciona esta herramienta es que permite simplificar de una forma clara y ordenada un volumen alto de información lleno de detalles y complejidades a un simple cuadro comparativo en el cuál están recogidas todas las variables determinantes para un estudio de tal envergadura.
- Published
- 2018
7. Multisymplectic structures and invariant tensors for Lie systems
- Author
-
Silvia Vilariño, Miguel C. Muñoz-Lecanda, J. de Lucas, and Xavier Gràcia
- Subjects
Mathematics - Differential Geometry ,Statistics and Probability ,Pure mathematics ,Coalgebra ,FOS: Physical sciences ,General Physics and Astronomy ,02 engineering and technology ,01 natural sciences ,Tensor field ,34A26 (primary), 34A05, 34C14, 53C15, 16T15 (secondary) ,0103 physical sciences ,Lie algebra ,Classical Analysis and ODEs (math.CA) ,FOS: Mathematics ,0202 electrical engineering, electronic engineering, information engineering ,Tensor ,Mathematics::Symplectic Geometry ,Exterior algebra ,Mathematical Physics ,Mathematics ,Physics::Computational Physics ,Nonlinear Sciences - Exactly Solvable and Integrable Systems ,010308 nuclear & particles physics ,Statistical and Nonlinear Physics ,Mathematical Physics (math-ph) ,Invariant (physics) ,Casimir element ,Differential Geometry (math.DG) ,Mathematics - Classical Analysis and ODEs ,Modeling and Simulation ,Mathematics::Mathematical Physics ,020201 artificial intelligence & image processing ,Vector field ,Exactly Solvable and Integrable Systems (nlin.SI) - Abstract
A Lie system is the non-autonomous system of differential equations describing the integral curves of a non-autonomous vector field taking values in a finite-dimensional Lie algebra of vector fields, a so-called Vessiot--Guldberg Lie algebra. This work pioneers the analysis of Lie systems admitting a Vessiot--Guldberg Lie algebra of Hamiltonian vector fields relative to a multisymplectic structure: the multisymplectic Lie systems. Geometric methods are developed to consider a Lie system as a multisymplectic one. By attaching a multisymplectic Lie system via its multisymplectic structure with a tensor coalgebra, we find methods to derive superposition rules, constants of motion, and invariant tensor fields relative to the evolution of the multisymplectic Lie system. Our results are illustrated with examples occurring in physics, mathematics, and control theory., Comment: 33 pages
- Published
- 2019
- Full Text
- View/download PDF
8. Methods Of Differential Geometry In Classical Field Theories: K-symplectic And K-cosymplectic Approaches
- Author
-
Manuel De Leon, Modesto Salgado-seco, Silvia Vilarino-fernandez, Manuel De Leon, Modesto Salgado-seco, and Silvia Vilarino-fernandez
- Subjects
- Manifolds (Mathematics), Hamiltonian operator, Symplectic geometry, Geometry, Differential
- Abstract
This book is devoted to review two of the most relevant approaches to the study of classical field theories of the first order, say k-symplectic and k-cosymplectic geometry. This approach is also compared with others like multisymplectic formalism.It will be very useful for researchers working in classical field theories and graduate students interested in developing a scientific career in the subject.
- Published
- 2016
9. Geometry of Riccati equations over normed division algebras
- Author
-
Mariusz Tobolski, Silvia Vilariño, and J. de Lucas
- Subjects
34A26 (primary), 53Z05, 17B66 (secondary) ,Mathematics::Optimization and Control ,FOS: Physical sciences ,01 natural sciences ,Octonion ,Algebraic Riccati equation ,Computer Science::Systems and Control ,0103 physical sciences ,Lie algebra ,Riccati equation ,Classical Analysis and ODEs (math.CA) ,FOS: Mathematics ,0101 mathematics ,010306 general physics ,Mathematical Physics ,Mathematics ,Normed algebra ,Nonlinear Sciences - Exactly Solvable and Integrable Systems ,Euclidean space ,Applied Mathematics ,010102 general mathematics ,Mathematical Physics (math-ph) ,Algebra ,Nonlinear Sciences::Exactly Solvable and Integrable Systems ,Mathematics - Classical Analysis and ODEs ,Projective line ,Division algebra ,Mathematics::Mathematical Physics ,Exactly Solvable and Integrable Systems (nlin.SI) ,Analysis - Abstract
This work presents and studies Riccati equations over finite-dimensional normed division algebras. We prove that a Riccati equation over a finite-dimensional normed division algebra $A$ is a particular case of conformal Riccati equation on a Euclidean space and it can be considered as a curve in a Lie algebra of vector fields $V\simeq\mathfrak{so}(\dim A+1,1)$. Previous results on known types of Riccati equations are recovered from a new viewpoint. A new type of Riccati equations, the octonionic Riccati equations, are extended to the octonionic projective line $\mathbb{O}{\rm P}^1$. As a new physical application, quaternionic Riccati equations are applied to study quaternionic Schr\"odinger equations on 1+1 dimensions., Comment: 28 pages
- Published
- 2016
- Full Text
- View/download PDF
10. k-Cosymplectic Classical Field Theories: Tulczyjew and Skinner–Rusk Formulations
- Author
-
Angel M. Rey, Modesto Salgado, Silvia Vilariño, and Narciso Román-Roy
- Subjects
Tangent bundle ,Lie algebroid ,Rotation formalisms in three dimensions ,symbols.namesake ,symbols ,Mathematics::Differential Geometry ,Geometry and Topology ,Field equation ,Hamiltonian (quantum mechanics) ,Mathematics::Symplectic Geometry ,Mathematical Physics ,Lagrangian ,Mathematics ,Mathematical physics - Abstract
The k-cosymplectic Lagrangian and Hamiltonian formalisms of first-order field theories are reviewed and completed. In particular, they are stated for singular and almost-regular systems. Subsequently, several alternative formulations for k-cosymplectic first-order field theories are developed: First, generalizing the construction of Tulczyjew for mechanics, we give a new interpretation of the classical field equations in terms of certain submanifolds of the tangent bundle of the $k^1$-velocities of a manifold. Second, the Lagrangian and Hamiltonian formalisms are unified by giving an extension of the Skinner-Rusk formulation on classical mechanics. Finally, both formalisms are formulated in terms of Lie algebroids.
- Published
- 2012
- Full Text
- View/download PDF
11. k-SYMPLECTIC AND k-COSYMPLECTIC LAGRANGIAN FIELD THEORIES: SOME INTERESTING EXAMPLES AND APPLICATIONS
- Author
-
Modesto Salgado, Silvia Vilariño, and Miguel C. Muñoz-Lecanda
- Subjects
symbols.namesake ,Formalism (philosophy of mathematics) ,Partial differential equation ,Physics and Astronomy (miscellaneous) ,symbols ,Geometry ,Mathematics::Symplectic Geometry ,Lagrangian ,Symplectic geometry ,Mathematics ,Mathematical physics - Abstract
In this paper, we present a geometric version of several examples of partial differential equations which appear in field theories. These examples are described using the k-symplectic and k-cosymplectic Lagrangian formalism.
- Published
- 2010
- Full Text
- View/download PDF
12. NONHOLONOMIC CONSTRAINTS IN k-SYMPLECTIC CLASSICAL FIELD THEORIES
- Author
-
Modesto Salgado, Silvia Vilariño, M. de León, and D. Martin de Diego
- Subjects
Nonholonomic system ,37J60 ,Classical field theories ,Physics and Astronomy (miscellaneous) ,Mathematics::Optimization and Control ,FOS: Physical sciences ,70G45 ,Mathematical Physics (math-ph) ,70F25 ,Nonholonomic constraints ,Computer Science::Robotics ,Formalism (philosophy of mathematics) ,Nonlinear Sciences::Exactly Solvable and Integrable Systems ,Classical mechanics ,k-symplectic formalism ,Homogeneous space ,Mathematics::Mathematical Physics ,Nonholonomic mechanics ,Nonholonomic Momentum Map ,Mathematics::Symplectic Geometry ,Mathematical Physics ,Symplectic geometry ,Mathematics - Abstract
27 pages.-- MSC classes: 70F25; 37J60; 70G45., A k-symplectic framework for classical field theories subject to nonholonomic constraints is presented. If the constrained problem is regular one can construct a projection operator such that the solutions of the constrained problem are obtained by projecting the solutions of the free problem. Symmetries for the nonholonomic system are introduced and we show that for every such symmetry, there exist a nonholonomic momentum equation. The proposed formalism permits to introduce in a simple way many tools of nonholonomic mechanics to nonholonomic field theories., This work has been partially supported by MEC (Spain) Grant MTM 2007-62478, project “IngenioMathematica” (i-MATH) No. CSD 2006-00032 (Consolider-Ingenio 2010) and S-0505/ESP/0158 of the CAM. Silvia Vilariño acknowledges the financial support of Xunta de Galicia Grants IN840C 2006/119-0 and IN809A 2007/151-0.
- Published
- 2008
- Full Text
- View/download PDF
13. Hamilton-Jacobi Equation
- Author
-
Manuel de León, Silvia Vilariño, and Modesto Salgado
- Subjects
symbols.namesake ,Partial differential equation ,Integro-differential equation ,Riccati equation ,First-order partial differential equation ,symbols ,Fisher's equation ,Kadomtsev–Petviashvili equation ,Hamilton–Jacobi equation ,Burgers' equation ,Mathematical physics - Published
- 2015
- Full Text
- View/download PDF
14. Lagrangian Classical Field Theories
- Author
-
Modesto Salgado, Silvia Vilariño, and Manuel de León
- Subjects
Physics ,symbols.namesake ,Classical mechanics ,Field (physics) ,Inverse problem for Lagrangian mechanics ,symbols ,Classical physics ,Lagrangian ,Gauge symmetry - Published
- 2015
- Full Text
- View/download PDF
15. k-symplectic Geometry
- Author
-
Modesto Salgado, Silvia Vilariño, and Manuel de León
- Subjects
Physics ,Solid geometry ,Mathematical physics ,Symplectic geometry - Published
- 2015
- Full Text
- View/download PDF
16. Relationship between k-symplectic and k-cosymplectic approaches and the multisymplectic formalism
- Author
-
Modesto Salgado, Manuel de León, and Silvia Vilariño
- Subjects
Physics ,Formalism (philosophy of mathematics) ,Symplectic geometry ,Mathematical physics - Published
- 2015
- Full Text
- View/download PDF
17. k-symplectic Systems versus Autonomous k-cosymplectic Systems
- Author
-
Modesto Salgado, Manuel de León, and Silvia Vilariño
- Subjects
Pure mathematics ,Symplectic geometry - Published
- 2015
- Full Text
- View/download PDF
18. k-symplectic Formalism
- Author
-
Manuel de León, Modesto Salgado, and Silvia Vilariño
- Subjects
Physics ,Formalism (philosophy) ,Covariant Hamiltonian field theory ,Symplectic geometry ,Mathematical physics - Published
- 2015
- Full Text
- View/download PDF
19. A review of Hamiltonian and Lagrangian mechanics
- Author
-
Silvia Vilariño, Modesto Salgado, and Manuel de León
- Subjects
Hamiltonian mechanics ,Physics ,symbols.namesake ,Classical mechanics ,Relation between Schrödinger's equation and the path integral formulation of quantum mechanics ,Canonical coordinates ,symbols ,Covariant Hamiltonian field theory ,Hamiltonian optics ,Hamiltonian (quantum mechanics) ,Analytical dynamics ,Mathematical physics ,Hamiltonian system - Published
- 2015
- Full Text
- View/download PDF
20. k-symplectic formulation of classical field theories
- Author
-
Manuel de León, Silvia Vilariño, and Modesto Salgado
- Subjects
Physics ,Theoretical physics ,Classical unified field theories ,Field (physics) ,Scalar theories of gravitation ,Classical physics - Published
- 2015
- Full Text
- View/download PDF
21. k-cosymplectic Formalism
- Author
-
Modesto Salgado, Silvia Vilariño, and Manuel de León
- Subjects
Physics ,Formalism (philosophy of mathematics) ,Covariant Hamiltonian field theory ,Mathematical physics - Published
- 2015
- Full Text
- View/download PDF
22. Hamiltonian and Lagrangian Mechanics
- Author
-
Manuel de León, Silvia Vilariño, and Modesto Salgado
- Subjects
Hamiltonian mechanics ,Physics ,symbols.namesake ,Relation between Schrödinger's equation and the path integral formulation of quantum mechanics ,symbols ,Canonical coordinates ,Covariant Hamiltonian field theory ,Superintegrable Hamiltonian system ,Hamiltonian (quantum mechanics) ,Analytical dynamics ,Mathematical physics ,Hamiltonian system - Published
- 2015
- Full Text
- View/download PDF
23. k-cosymplectic Geometry
- Author
-
Manuel de León, Modesto Salgado, and Silvia Vilariño
- Subjects
Physics ,Solid geometry ,Geometry - Published
- 2015
- Full Text
- View/download PDF
24. Methods of Differential Geometry in Classical Field Theories
- Author
-
Manuel de León, Modesto Salgado, and Silvia Vilariño
- Published
- 2015
- Full Text
- View/download PDF
25. Hamilton-Jacobi theory in multisymplectic classical field theories
- Author
-
Manuel de León, Narciso Román-Roy, Pedro Daniel Prieto-Martínez, Silvia Vilariño, Universitat Politècnica de Catalunya. Departament de Matemàtiques, and Universitat Politècnica de Catalunya. DGDSA - Geometria Diferencial, Sistemes Dinàmics i Aplicacions
- Subjects
Field theory (Physics) ,Geometria diferencial ,General problem ,FOS: Physical sciences ,01 natural sciences ,Hamilton–Jacobi equation ,symbols.namesake ,Theoretical physics ,53C15, 53C80, 70S05, 35F21, 70H20 ,0103 physical sciences ,Differential geometry ,Matemàtiques i estadística::Geometria::Geometria diferencial [Àrees temàtiques de la UPC] ,Camps, Teoria dels (Física) ,0101 mathematics ,Special case ,Geometric framework ,Mathematical Physics ,Mathematics ,010308 nuclear & particles physics ,010102 general mathematics ,Matemàtiques i estadística [Àrees temàtiques de la UPC] ,Statistical and Nonlinear Physics ,Mathematical Physics (math-ph) ,53 Differential geometry::53C Global differential geometry [Classificació AMS] ,Rotation formalisms in three dimensions ,Mechanical system ,symbols ,Hamiltonian (quantum mechanics) ,Lagrangian - Abstract
The geometric framework for the Hamilton-Jacobi theory developed in previous works is extended for multisymplectic first-order classical field theories. The Hamilton-Jacobi problem is stated for the Lagrangian and the Hamiltonian formalisms of these theories as a particular case of a more general problem, and the classical Hamilton-Jacobi equation for field theories is recovered from this geometrical setting. Particular and complete solutions to these problems are defined and characterized in several equivalent ways in both formalisms, and the equivalence between them is proved. The use of distributions in jet bundles that represent the solutions to the field equations is the fundamental tool in this formulation. Some examples are analyzed and, in particular, the Hamilton-Jacobi equation for non-autonomous mechanical systems is obtained as a special case of our results., 44 pp
- Published
- 2015
26. Reduction of polysymplectic manifolds
- Author
-
Modesto Salgado, Silvia Vilariño, Narciso Román-Roy, Juan Carlos Marrero, Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada IV, and Universitat Politècnica de Catalunya. DGDSA - Geometria Diferencial, Sistemes Dinàmics i Aplicacions
- Subjects
Statistics and Probability ,DYNAMICS ,Pure mathematics ,General Physics and Astronomy ,FOS: Physical sciences ,SPACES ,Nonholonomic mechanical systems ,MULTI-MOMENT MAPS ,Hamiltonian system ,Matemàtiques i estadística::Anàlisi numèrica [Àrees temàtiques de la UPC] ,Reduction procedure ,polysymplectic manifolds ,Hamiltonian systems ,Mathematics::Symplectic Geometry ,Quotient ,Mathematical Physics ,NONHOLONOMIC MECHANICAL SYSTEMS ,Mathematics ,Marsden-Weinstein reduction ,57M60, 57S25, 70S05, 70S10, 53D05 ,Classical field theory ,37 Dynamical systems and ergodic theory::37J Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems [Classificació AMS] ,Statistical and Nonlinear Physics ,FORMALISM ,Mathematical Physics (math-ph) ,polysymplectic Hamiltonian systems ,CLASSICAL FIELD-THEORY ,Formalism (philosophy of mathematics) ,Hamilton, Sistemes de ,Modeling and Simulation ,Homogeneous space ,SYMMETRIES ,k-coadjoint orbits ,Mathematics::Differential Geometry ,Symplectic geometry - Abstract
The aim of this paper is to generalize the classical Marsden-Weinstein reduction procedure for symplectic manifolds to polysymplectic manifolds in order to obtain quotient manifolds which in- herit the polysymplectic structure. This generalization allows us to reduce polysymplectic Hamiltonian systems with symmetries, such as those appearing in certain kinds of classical field theories. As an application of this technique, an analogous to the Kirillov-Kostant-Souriau theorem for polysymplectic manifolds is obtained and some other mathematical examples are also analyzed. Our procedure corrects some mistakes and inaccuracies in previous papers [29, 50] on this subject., Comment: Latex file. 33 pages. New examples, comments and references are added
- Published
- 2015
27. A new application of k-symplectic Lie systems
- Author
-
Mariusz Tobolski, Silvia Vilariño, and Javier de Lucas
- Subjects
Mathematics - Differential Geometry ,Pure mathematics ,Partial differential equation ,Diffusion equation ,Physics and Astronomy (miscellaneous) ,Field (physics) ,Nonlinear Sciences - Exactly Solvable and Integrable Systems ,FOS: Physical sciences ,Mathematical Physics (math-ph) ,Type (model theory) ,34A26 ,Superposition principle ,Differential Geometry (math.DG) ,Ordinary differential equation ,FOS: Mathematics ,Diffusion (business) ,Exactly Solvable and Integrable Systems (nlin.SI) ,Mathematics::Symplectic Geometry ,Mathematical Physics ,Symplectic geometry ,Mathematics - Abstract
The $k$-symplectic structures appear in the geometric study of the partial differential equations of classical field theories. Meanwhile, we present a new application of the $k$-symplectic structures to investigate a type of systems of first-order ordinary differential equations, the $k$-symplectic Lie systems. In particular, we analyse the properties, e.g. the superposition rules, of a new example of $k$-symplectic Lie system which occurs in the analysis of diffusion equations., 5 pages
- Published
- 2014
28. Symmetries in Lagrangian Field Theory
- Author
-
Manuel de León, Lucia Búa, Modesto Salgado, Silvia Vilariño, and Ioan Bucataru
- Subjects
Conservation law ,Jet (mathematics) ,Field (physics) ,FOS: Physical sciences ,Statistical and Nonlinear Physics ,Mathematical Physics (math-ph) ,Space (mathematics) ,symbols.namesake ,Lagrangian mechanics ,Homogeneous space ,symbols ,Field theory (psychology) ,Noether's theorem ,Mathematics::Symplectic Geometry ,Mathematical Physics ,Mathematical physics ,Mathematics - Abstract
By generalizing the cosymplectic setting for time-dependent Lagrangian mechanics, we propose a geometric framework for the Lagrangian formulation of classical field theories with a Lagrangian depending on the independent variables. For that purpose we consider the first order jet bundles $J^1\pi$ of a fiber bundle $\pi:E\to {\mathbb R}^k$ where ${\mathbb R}^k$ is the space of independent variables. Generalized symmetries of the Lagrangian are introduced and the corresponding Noether Theorem is proved., Comment: 26 pages, pre-published version in Reports on Mathematical Physics, 2015
- Published
- 2014
29. k-symplectic Lie systems: theory and applications
- Author
-
Silvia Vilariño and J. de Lucas
- Subjects
Mathematics - Differential Geometry ,Pure mathematics ,Applied Mathematics ,Simple Lie group ,Adjoint representation ,Lie group ,FOS: Physical sciences ,Mathematical Physics (math-ph) ,Lie conformal algebra ,Graded Lie algebra ,Algebra ,Adjoint representation of a Lie algebra ,Differential Geometry (math.DG) ,Mathematics - Classical Analysis and ODEs ,Lie bracket of vector fields ,Classical Analysis and ODEs (math.CA) ,FOS: Mathematics ,Fundamental vector field ,34A26, 34A34, 53Z05 ,Mathematics::Symplectic Geometry ,Mathematical Physics ,Analysis ,Mathematics - Abstract
A Lie system is a system of first-order ordinary differential equations describing the integral curves of a $t$-dependent vector field taking values in a finite-dimensional real Lie algebra of vector fields: a so-called Vessiot-Guldberg Lie algebra. We suggest the definition of a particular class of Lie systems, the $k$-symplectic Lie systems, admitting a Vessiot-Guldberg Lie algebra of Hamiltonian vector fields with respect to the presymplectic forms of a $k$-symplectic structure. We devise new $k$-symplectic geometric methods to study their superposition rules, time independent constants of motion and general properties. Our results are illustrated by examples of physical and mathematical interest. As a byproduct, we find a new interesting setting of application of the $k$-symplectic geometry: systems of first-order ordinary differential equations., Comment: 29 pages. An example and several minor details were corrected
- Published
- 2014
- Full Text
- View/download PDF
30. Hamilton-Jacobi theory in k-cosymplectic field theories
- Author
-
Silvia Vilariño and M. de León
- Subjects
Physics and Astronomy (miscellaneous) ,010308 nuclear & particles physics ,010102 general mathematics ,Classical field theory ,FOS: Physical sciences ,Mathematical Physics (math-ph) ,01 natural sciences ,Relationship between string theory and quantum field theory ,Hamilton–Jacobi equation ,Combinatorics ,Classical unified field theories ,Formalism (philosophy of mathematics) ,0103 physical sciences ,Mathematics::Differential Geometry ,0101 mathematics ,Liouville field theory ,Unified field theory ,Mathematical Physics ,Mathematical physics ,Mathematics - Abstract
In this paper, we extend the geometric formalism of the Hamilton–Jacobi theory for time-dependent Mechanics to the case of classical field theories in the k-cosymplectic framework.
- Published
- 2013
- Full Text
- View/download PDF
31. Preface
- Author
-
Manuel de León, Giuseppe Marmo, Miguel Muñoz, and Silvia Vilariño
- Subjects
Physics and Astronomy (miscellaneous) - Published
- 2016
- Full Text
- View/download PDF
32. Lagrangian submanifolds in k-symplectic settings
- Author
-
M. de León and Silvia Vilariño
- Subjects
Mathematics - Differential Geometry ,Pure mathematics ,General Mathematics ,010102 general mathematics ,Mathematical analysis ,Classical field theory ,Normal form theorem ,01 natural sciences ,symbols.namesake ,Differential Geometry (math.DG) ,0103 physical sciences ,symbols ,FOS: Mathematics ,53C15, 53D12, 57R50, 58A10 ,010307 mathematical physics ,Mathematics::Differential Geometry ,0101 mathematics ,Symplectomorphism ,Mathematics::Symplectic Geometry ,Lagrangian ,Symplectic geometry ,Mathematics - Abstract
In this paper we extend the well-know normal form theorem for Lagrangian submanifolds proved by A. Weinstein in symplectic geometry to the setting of k-symplectic manifolds.
- Published
- 2012
- Full Text
- View/download PDF
33. SOPDEs and Nonlinear Connections
- Author
-
Narciso Román Roy, Modesto Salgado Seco, and Silvia Vilariño Fernández
- Subjects
Partial differential equation ,General Mathematics ,FOS: Physical sciences ,Mathematical Physics (math-ph) ,53C05, 70S05 ,Nonlinear system ,Formalism (philosophy of mathematics) ,symbols.namesake ,symbols ,Mathematics::Symplectic Geometry ,Lagrangian ,Mathematical Physics ,Mathematics ,Mathematical physics - Abstract
The canonical k-tangent structure on $T^1_kQ=TQ\oplus\stackrel{k}...\oplus TQ$ allows us to characterize nonlinear connections on $T^1_kQ$ and to develop G\"unther's (k-symplectic) Lagrangian formalism. We study the relationship between nonlinear connections and second-order partial differential equations (SOPDEs), which appear in G\"unther's Lagrangian formalism., Comment: 14 pp
- Published
- 2011
34. Symmetries, Noether’s theorem and reduction in k-cosymplectic field theories
- Author
-
Juan Carlos Marrero, Narciso Román-Roy, Modesto Salgado, Silvia Vilariño, Manuel Asorey, Jesús Clemente-Gallardo, Eduardo Martínez, and José F. Cariñena
- Subjects
Fundamental theorem ,One-parameter group ,Hamiltonian system ,Algebra ,symbols.namesake ,Haag–Lopuszanski–Sohnius theorem ,No-go theorem ,symbols ,Covariant Hamiltonian field theory ,Mathematics::Differential Geometry ,Noether's theorem ,Mathematics::Symplectic Geometry ,Mathematics ,Gauge symmetry ,Mathematical physics - Abstract
We present generalized versions of the Noether theorem and the Marsden‐Weinstein reduction theorem for certain class of symmetries of k‐cosymplectic Hamiltonian systems in field theories.
- Published
- 2010
- Full Text
- View/download PDF
35. K-symplectic formalism on Lie algebroids
- Author
-
D. Martin de Diego, M. de León, Modesto Salgado, and Silvia Vilariño
- Subjects
Statistics and Probability ,Sigma model ,General Physics and Astronomy ,Classical field theory ,FOS: Physical sciences ,Statistical and Nonlinear Physics ,Mathematical Physics (math-ph) ,53D99, 53Z05, 70S05 ,Legendre transformation ,Formalism (philosophy of mathematics) ,symbols.namesake ,Theoretical physics ,Modeling and Simulation ,symbols ,Mathematics::Symplectic Geometry ,Lagrangian ,Hamiltonian (control theory) ,Mathematical Physics ,Mathematics ,Symplectic geometry - Abstract
In this paper we introduce a geometric description of Lagrangian and Hamiltonian classical field theories on Lie algebroids in the framework of k-symplectic geometry. We discuss the relation between Lagrangian and Hamiltonian descriptions through a convenient notion of Legendre transformation. The theory is a natural generalization of the standard one; in addition, other interesting examples are studied, in particular, systems with symmetry and Poisson sigma models., 35 pages
- Published
- 2009
36. Lie-Algebroid Formulation of k-Cosymplectic Field Theories
- Author
-
Narciso Román-Roy, Modesto Salgado, Silvia Vilariño, Fernando Etayo, Mario Fioravanti, and Rafael Santamaría
- Subjects
Lie algebroid ,Pure mathematics ,Simple Lie group ,Adjoint representation ,Killing form ,Graded Lie algebra ,Adjoint representation of a Lie algebra ,Mathematics::K-Theory and Homology ,Lie bracket of vector fields ,Fundamental representation ,Mathematics::Differential Geometry ,Mathematics::Symplectic Geometry ,Mathematics ,Mathematical physics - Abstract
We present a description for the k‐cosymplectic formalism of Hamiltonian field theories in terms of Lie algebroids.
- Published
- 2009
- Full Text
- View/download PDF
37. Symmetries and conservation laws in the Gunther k-symplectic formalism of field theory
- Author
-
Modesto Salgado, Silvia Vilariño, Narciso Román-Roy, Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada IV, and Universitat Politècnica de Catalunya. DGDSA - Geometria Diferencial, Sistemes Dinàmics i Aplicacions
- Subjects
70S05, 70S10, 53D05 ,FOS: Physical sciences ,Simetria ,Noether theorem ,symbols.namesake ,k-symplectic manifolds ,70 Mechanics of particles and systems::70S Classical field theories [Classificació AMS] ,Mathematics::Symplectic Geometry ,Mathematical Physics ,Mathematics ,Mathematical physics ,Conservation laws ,Conservation law ,Bayesian field theory ,Symplectic geometry ,Matemàtiques i estadística [Àrees temàtiques de la UPC] ,Statistical and Nonlinear Physics ,Mathematical Physics (math-ph) ,Lagrangian and Hamiltonian field theories ,53 Differential geometry::53D Symplectic geometry, contact geometry [Classificació AMS] ,Formalism (philosophy of mathematics) ,Homogeneous space ,Varietats simplèctiques ,symbols ,Noether's theorem ,Hamiltonian (quantum mechanics) ,Lagrangian ,Symmetries - Abstract
This paper is devoted to studying symmetries of k-symplectic Hamiltonian and Lagrangian first-order classical field theories. In particular, we define symmetries and Cartan symmetries and study the problem of associating conservation laws to these symmetries, stating and proving Noether's theorem in different situations for the Hamiltonian and Lagrangian cases. We also characterize equivalent Lagrangians, which lead to an introduction of Lagrangian gauge symmetries, as well as analyzing their relation with Cartan symmetries., 29 pages
- Published
- 2007
38. HIGHER-ORDER NOETHER SYMMETRIES IN k-SYMPLECTIC HAMILTONIAN FIELD THEORY
- Author
-
Modesto Salgado, Silvia Vilariño, and Narciso Román-Roy
- Subjects
symbols.namesake ,Conservation law ,Physics and Astronomy (miscellaneous) ,Hamiltonian field theory ,Infinitesimal ,Homogeneous space ,symbols ,Vector field ,Noether's theorem ,Hamiltonian (quantum mechanics) ,Mathematical physics ,Symplectic geometry ,Mathematics - Abstract
For κ-symplectic Hamiltonian field theories, we study infinitesimal transformations generated by some kinds of vector fields which are not Noether symmetries, but which allow us to obtain conservation laws by means of suitable generalizations of Noether's theorem. © 2013 World Scientific Publishing Company.
- Published
- 2013
- Full Text
- View/download PDF
39. On a kind of Noether symmetries and conservation laws ink-cosymplectic field theory
- Author
-
Narciso Román-Roy, Juan Carlos Marrero, Modesto Salgado, Silvia Vilariño, Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada IV, and Universitat Politècnica de Catalunya. DGDSA - Geometria Diferencial, Sistemes Dinàmics i Aplicacions
- Subjects
Class (set theory) ,Conservation law ,Generalization ,Matemàtiques i estadística::Equacions diferencials i integrals::Sistemes dinàmics [Àrees temàtiques de la UPC] ,FOS: Physical sciences ,Statistical and Nonlinear Physics ,Field (mathematics) ,Mathematical Physics (math-ph) ,Sistemes dinàmics ,Hamiltonian system ,Theoretical physics ,symbols.namesake ,Homogeneous space ,symbols ,37K Infinite-dimensional Hamiltonian systems ,Field theory (psychology) ,Hamiltonian systems ,Noether's theorem ,Mathematical Physics ,Mathematics - Abstract
This paper is devoted to studying symmetries of certain kinds of k-cosymplectic Hamiltonian systems in first-order classical field theories. Thus, we introduce a particular class of symmetries and study the problem of associating conservation laws to them by means of a suitable generalization of Noether's theorem., Comment: 23 pp. Section 3 has been revised
- Published
- 2011
- Full Text
- View/download PDF
40. Nonstandard connections in k-cosympletic field theory
- Author
-
Modesto Salgado, Silvia Vilariño, and Miguel C. Muñoz-Lecanda
- Subjects
Physics ,Classical field theory ,Statistical and Nonlinear Physics ,First order ,symbols.namesake ,Formalism (philosophy of mathematics) ,Hamiltonian formalism ,Lagrangian system ,Bundle ,symbols ,Equations for a falling body ,Mathematical Physics ,Lagrangian ,Mathematical physics - Abstract
In the jet-bundle description of time-dependent mechanics there are some elements, such as the Lagrangian energy and the construction of the Hamiltonian formalism, which require the prior choice of a connection. This situation is analyzed by Echeverria-Enriquez et al. [J. Phys. A 28, 5553–5567 (1995)]. The aim of this paper is to extend the results in that paper to first order field theory, using the k-cosymplectic formalism described by de Leon and co-workers [J. Math. Phys. 39, 876–893 (1998); 42, 2092–2104 (2001)]. If the trivial configuration bundle of a Lagrangian system is endowed with one connection, different from the trivial one given by the product structure, we study the consequences on the geometric elements of the theory, the dynamical equations and the variational principles.
- Published
- 2005
- Full Text
- View/download PDF
41. Symmetries in k-symplectic field theories
- Author
-
Narciso Román-Roy, Modesto Salgado, Silvia Vilariño, Rui Loja Fernandes, and Roger Picken
- Subjects
Conservation law ,Rotation formalisms in three dimensions ,symbols.namesake ,Theoretical physics ,Classical mechanics ,Homogeneous space ,symbols ,Noether's theorem ,Hamiltonian (quantum mechanics) ,Mathematics::Symplectic Geometry ,Lagrangian ,Gauge symmetry ,Symplectic geometry ,Mathematics - Abstract
k‐symplectic geometry provides the simplest geometric framework for describing certain class of first‐order classical field theories. Using this description we analyze different kinds of symmetries for the Hamiltonian and Lagrangian formalisms of these field theories, including the study of conservation laws associated to them and stating Noether's theorem.
42. Reduction of polysymplectic manifolds.
- Author
-
Juan Carlos Marrero, Narciso Román-Roy, Modesto Salgado, and Silvia Vilariño
- Subjects
SYMPLECTIC manifolds ,SYMPLECTIC geometry ,HAMILTONIAN systems ,MATHEMATICAL physics ,MATHEMATICS theorems - Abstract
The aim of this paper is to generalize the classical Marsden–Weinstein reduction procedure for symplectic manifolds to polysymplectic manifolds in order to obtain quotient manifolds which inherit the polysymplectic structure. This generalization allows us to reduce polysymplectic Hamiltonian systems with symmetries, such as those appearing in certain kinds of classical field theories. As an application of this technique, an analogue to the Kirillov–Kostant–Souriau theorem for polysymplectic manifolds is obtained and some other mathematical examples are also analyzed. Our procedure corrects some mistakes and inaccuracies in previous papers (Günther 1987 J. Differ. Geom.25 23–53; Munteanu et al 2004 J. Math. Phys.45 1730–51) on this subject. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.