15 results on '"Siemelink, MA"'
Search Results
2. Smoking is Associated to DNA Methylation in Atherosclerotic Carotid Lesions
- Author
-
Experimentele Afd. Cardiologie 1, Circulatory Health, Divisie Biomedische Genetica, Onderzoek Vrouw Hart & Vaatziekten, Team Medisch, Cardiologie, MDL onderzoek 1, Child Health, Brain, Zorgeenheid Vaatchirurgie Medisch, CDL Staf Research, Experimentele Afd. Cardiologie 2, Cardiovasculaire Immunologie, Infection & Immunity, Onderzoek Cardiovasculair Reg. Med., Siemelink, MA, van der Laan, S.W., Haitjema, S, van Koeverden, ID, Schaap, J, Wesseling, M, de Jager, SCA, Mokry, M, Van Iterson, Maarten, Dekkers, Koen F, Luijk, René, Foroughi Asl, Hassan, Björkegren, Johan L M, Aavik, Einari, Ylä-Herttuala, Seppo, de Borst, GJ, Asselbergs, FW, el Azzouzi, H, den Ruijter, HM, Heijmans, Bastiaan T., Pasterkamp, G, Experimentele Afd. Cardiologie 1, Circulatory Health, Divisie Biomedische Genetica, Onderzoek Vrouw Hart & Vaatziekten, Team Medisch, Cardiologie, MDL onderzoek 1, Child Health, Brain, Zorgeenheid Vaatchirurgie Medisch, CDL Staf Research, Experimentele Afd. Cardiologie 2, Cardiovasculaire Immunologie, Infection & Immunity, Onderzoek Cardiovasculair Reg. Med., Siemelink, MA, van der Laan, S.W., Haitjema, S, van Koeverden, ID, Schaap, J, Wesseling, M, de Jager, SCA, Mokry, M, Van Iterson, Maarten, Dekkers, Koen F, Luijk, René, Foroughi Asl, Hassan, Björkegren, Johan L M, Aavik, Einari, Ylä-Herttuala, Seppo, de Borst, GJ, Asselbergs, FW, el Azzouzi, H, den Ruijter, HM, Heijmans, Bastiaan T., and Pasterkamp, G
- Published
- 2018
3. Exploring the complex biology of the carotid atherosclerotic plaque
- Author
-
Siemelink, MA, Pasterkamp, Gerard, Prakken, Berent, el Azzouzi, Hamid, and University Utrecht
- Subjects
Genetic ,CpG ,Epigenetic ,SNP ,DNA ,Atherosclerosis ,Cardiovascular ,Methylation ,Carotis ,Plaque - Abstract
Cardiovascular disease (CVD) as result of atherosclerosis is a major cause of morbidity and mortality in many societies, despite the enormous research efforts in recent decades directed at prevention and improved treatment. Atherosclerosis of blood vessels can result in life threatening health complications including stroke, myocardial infarction, aortic dissection and leg amputation. When patients suffer from atherosclerosis of the carotid artery, the disease lesion may be removed by a carotid endarterectomy procedure. The Athero-Express biobank is the largest biobank in the world in which excised carotid artery specimens and blood samples are stored together with recorded patient health data. Subsequent extensive laboratory investigations of patient specimens have caused the Athero-Express to become an exceptionally well phenotyped cohort with unique value for the investigation of atherosclerotic cardiovascular disease and carotid artery disease in specific. The aim of this thesis was to explore the complex biology of the human carotid atherosclerotic plaque in order to provide a stepping stone towards improved risk prediction and precision drug development. To this end, we leveraged the unique properties of the Athero-Express Biobank to investigate carotid plaque parameters including histology and DNA methylation in relation to systemic risk factors such as sex, genetic variation, lipid levels, medication and smoking. This has shown that integration of genotyping, epigenotyping and phenotyping of the atherosclerotic disease lesion may yield meaningful new insights in cardiovascular disease.
- Published
- 2016
4. Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits
- Author
-
Justice, AE, Winkler, TW, Feitosa, MF, Graff, M, Fisher, V A, Young, K, Barata, L, Deng, X, Czajkowski, J, Hadley, D, Ngwa, JS, Ahluwalia, TS, Chu, AY, Heard-Costa, NL, Lim, E, Perez, J, Eicher, JD, Kutalik, Z, Xue, L, Mahajan, A, Renstrom, F, Wu, J, Qi, QB, Ahmad, Shahzad, Alfred, T, Amin, Najaf, Bielak, LF, Bonnefond, A, Bragg, J, Cadby, G, Chittani, M, Coggeshall, S, Corre, T, Direk, N, Eriksson, J, Fischer, K, Gorski, M, Harder, MN, Horikoshi, M, Huang, T, Huffman, JE, Jackson, AU, Justesen, JM, Kanoni, S, Kinnunen, L, Kleber, ME, Komulainen, P, Kumari, M, Lim, U, Luan, J, Lyytikainen, LP, Mangino, M, Manichaikul, A, Marten, J, Middelberg, RPS, Mueller-Nurasyid, M, Navarro, P, Perusse, L, Pervjakova, N, Sarti, C, Smith, AV, Smith, JA, Stancakova, A, Strawbridge, RJ, Stringham, HM, Sung, YJ, Tanaka, T, Teumer, A, Trompet, S, van der Laan, SW, van der Most, PJ, van Vliet-Ostaptchouk, JV, Vedantam, SL, Verweij, N (Niek), Vink, JM, Vitart, V, Wu, Fenny, Yengo, L, Zhang, WH, Zhao, JH, Zimmermann, ME, Zubair, N, Abecasis, GR, Adair, LS, Afaq, S, Afzal, U, Bakker, SJL, Bartz, TM, Beilby, J, Bergman, RN, Bergmann, S, Biffar, R, Blangero, J, Boerwinkle, E, Bonnycastle, LL, Bottinger, E, Braga, D, Buckley, BM, Buyske, S, Campbell, H, Chambers, JC, Collins, FS, Curran, JE, de Borst, GJ, de Craen, AJM, de Geus, EJC, Dedoussis, G, Delgado, GE, den Ruijter, HM, Eiriksdottir, G, Eriksson, AL, Esko, T, Faul, JD, Ford, I, Forrester, T, Gertow, K, Gigante, B, Glorioso, N, Gong, J, Grallert, H, Grammer, TB, Grarup, N, Haitjema, S, Hallmans, G, Hamsten, A, Hansen, T, Harris, TB, Hartman, CA, Hassinen, M, Hastie, ND, Heath, AC, Hernandez, D, Hindorff, L, Hocking, LJ, Hollensted, M, Holmen, OL, Homuth, G, Hottenga, JJ, Huang, J, Hung, J, Hutri-Kahonen, N, Ingelsson, E, James, AL, Jansson, JO, Jarvelin, MR, Jhun, MA, Jorgensen, ME, Juonala, M, Kahonen, M, Karlsson, M, Koistinen, HA, Kolcic, I, Kolovou, G, Kooperberg, C, Kramer, BK, Kuusisto, J, Kvaloy, K, Lakka, TA, Langenberg, C, Launer, LJ, Leander, K, Lee, NR, Lind, L, Lindgren, CM, Linneberg, A, Lobbens, S, Loh, M, Lorentzon, M, Luben, R, Lubke, G, Ludolph-Donislawski, A, Lupoli, S, Madden, PAF, Mannikko, R, Marques-Vidal, P, Martin, NG, McKenzie, CA, McKnight, B, Mellstrom, D, Menni, C, Montgomery, GW, Musk, AW, Narisu, N, Nauck, M, Nolte, IM, Oldehinkel, AJ, Olden, M, Ong, KK, Padmanabhan, S, Peyser, PA, Pisinger, C, Porteous, DJ, Raitakari, OT, Rankinen, T, Rao, DC, Rasmussen-Torvik, LJ, Rawal, R, Rice, T, Ridker, PM, Rose, LM, Bien, SA, Rudan, I, Sanna, S, Sarzynski, MA, Sattar, N, Savonen, K, Schlessinger, D, Scholtens, s, Schurmann, C, Scott, RA, Sennblad, B, Siemelink, MA, Silbernagel, G, Slagboom, PE (Eline), Snieder, H, Staessen, JA, Stott, DJ, Swertz, MA, Swift, AJ, Taylor, KD, Tayo, BO, Thorand, B, Thuillier, D, Tuomilehto, J, Uitterlinden, André, Vandenput, L, Vohl, MC, Volzke, H, Vonk, JM, Waeber, G, Waldenberger, M, Westendorp, RGJ, Wild, S, Willemsen, G, Wolffenbuttel, BHR, Wong, A, Wright, AF, Zhao, W, Zillikens, M.C., Baldassarre, D, Balkau, B, Bandinelli, S, Boger, CA, Boomsma, DI, Bouchard, C, Bruinenberg, M, Chasman, DI, Chen, YDI, Chines, PS, Cooper, RS, Cucca, F, Cusi, D, de Faire, U, Ferrucci, L, Franks, PW, Froguel, P, Gordon-Larsen, P, Grabe, HJ, Gudnason, V, Haiman, CA, Hayward, C, Hveem, K, Johnson, AD, Jukema, W, Kardia, SLR, Kivimaki, M, Kooner, JS, Kuh, D, Laakso, M, Lehtimaki, T, Le Marchand, L, Marz, W, McCarthy, MI, Metspalu, A, Morris, AP, Ohlsson, C, Palmer, LJ, Pasterkamp, G, Pedersen, O, Peters, A, Peters, U, Polasek, O, Psaty, BM, Qi, L, Rauramaa, R, Smith, BH, Sorensen, TIA, Strauch, K, Tiemeier, Henning, Tremoli, E, van der Harst, P, Vestergaard, H, Vollenweider, P, Wareham, NJ, Weir, DR, Whitfield, JB, Wilson, JF, Tyrrell, J, Frayling, TM, Barroso, I, Boehnke, M, Deloukas, P, Fox, CS, Hirschhorn, JN, Hunter, DJ, Spector, TD, Strachan, DP, Duijn, Cornelia, Heid, IM, Mohlke, KL, Marchini, J, Loos, RJF, Kilpelainen, TO, Liu, CT, Borecki, IB, North, KE, Cupples, LA, Justice, AE, Winkler, TW, Feitosa, MF, Graff, M, Fisher, V A, Young, K, Barata, L, Deng, X, Czajkowski, J, Hadley, D, Ngwa, JS, Ahluwalia, TS, Chu, AY, Heard-Costa, NL, Lim, E, Perez, J, Eicher, JD, Kutalik, Z, Xue, L, Mahajan, A, Renstrom, F, Wu, J, Qi, QB, Ahmad, Shahzad, Alfred, T, Amin, Najaf, Bielak, LF, Bonnefond, A, Bragg, J, Cadby, G, Chittani, M, Coggeshall, S, Corre, T, Direk, N, Eriksson, J, Fischer, K, Gorski, M, Harder, MN, Horikoshi, M, Huang, T, Huffman, JE, Jackson, AU, Justesen, JM, Kanoni, S, Kinnunen, L, Kleber, ME, Komulainen, P, Kumari, M, Lim, U, Luan, J, Lyytikainen, LP, Mangino, M, Manichaikul, A, Marten, J, Middelberg, RPS, Mueller-Nurasyid, M, Navarro, P, Perusse, L, Pervjakova, N, Sarti, C, Smith, AV, Smith, JA, Stancakova, A, Strawbridge, RJ, Stringham, HM, Sung, YJ, Tanaka, T, Teumer, A, Trompet, S, van der Laan, SW, van der Most, PJ, van Vliet-Ostaptchouk, JV, Vedantam, SL, Verweij, N (Niek), Vink, JM, Vitart, V, Wu, Fenny, Yengo, L, Zhang, WH, Zhao, JH, Zimmermann, ME, Zubair, N, Abecasis, GR, Adair, LS, Afaq, S, Afzal, U, Bakker, SJL, Bartz, TM, Beilby, J, Bergman, RN, Bergmann, S, Biffar, R, Blangero, J, Boerwinkle, E, Bonnycastle, LL, Bottinger, E, Braga, D, Buckley, BM, Buyske, S, Campbell, H, Chambers, JC, Collins, FS, Curran, JE, de Borst, GJ, de Craen, AJM, de Geus, EJC, Dedoussis, G, Delgado, GE, den Ruijter, HM, Eiriksdottir, G, Eriksson, AL, Esko, T, Faul, JD, Ford, I, Forrester, T, Gertow, K, Gigante, B, Glorioso, N, Gong, J, Grallert, H, Grammer, TB, Grarup, N, Haitjema, S, Hallmans, G, Hamsten, A, Hansen, T, Harris, TB, Hartman, CA, Hassinen, M, Hastie, ND, Heath, AC, Hernandez, D, Hindorff, L, Hocking, LJ, Hollensted, M, Holmen, OL, Homuth, G, Hottenga, JJ, Huang, J, Hung, J, Hutri-Kahonen, N, Ingelsson, E, James, AL, Jansson, JO, Jarvelin, MR, Jhun, MA, Jorgensen, ME, Juonala, M, Kahonen, M, Karlsson, M, Koistinen, HA, Kolcic, I, Kolovou, G, Kooperberg, C, Kramer, BK, Kuusisto, J, Kvaloy, K, Lakka, TA, Langenberg, C, Launer, LJ, Leander, K, Lee, NR, Lind, L, Lindgren, CM, Linneberg, A, Lobbens, S, Loh, M, Lorentzon, M, Luben, R, Lubke, G, Ludolph-Donislawski, A, Lupoli, S, Madden, PAF, Mannikko, R, Marques-Vidal, P, Martin, NG, McKenzie, CA, McKnight, B, Mellstrom, D, Menni, C, Montgomery, GW, Musk, AW, Narisu, N, Nauck, M, Nolte, IM, Oldehinkel, AJ, Olden, M, Ong, KK, Padmanabhan, S, Peyser, PA, Pisinger, C, Porteous, DJ, Raitakari, OT, Rankinen, T, Rao, DC, Rasmussen-Torvik, LJ, Rawal, R, Rice, T, Ridker, PM, Rose, LM, Bien, SA, Rudan, I, Sanna, S, Sarzynski, MA, Sattar, N, Savonen, K, Schlessinger, D, Scholtens, s, Schurmann, C, Scott, RA, Sennblad, B, Siemelink, MA, Silbernagel, G, Slagboom, PE (Eline), Snieder, H, Staessen, JA, Stott, DJ, Swertz, MA, Swift, AJ, Taylor, KD, Tayo, BO, Thorand, B, Thuillier, D, Tuomilehto, J, Uitterlinden, André, Vandenput, L, Vohl, MC, Volzke, H, Vonk, JM, Waeber, G, Waldenberger, M, Westendorp, RGJ, Wild, S, Willemsen, G, Wolffenbuttel, BHR, Wong, A, Wright, AF, Zhao, W, Zillikens, M.C., Baldassarre, D, Balkau, B, Bandinelli, S, Boger, CA, Boomsma, DI, Bouchard, C, Bruinenberg, M, Chasman, DI, Chen, YDI, Chines, PS, Cooper, RS, Cucca, F, Cusi, D, de Faire, U, Ferrucci, L, Franks, PW, Froguel, P, Gordon-Larsen, P, Grabe, HJ, Gudnason, V, Haiman, CA, Hayward, C, Hveem, K, Johnson, AD, Jukema, W, Kardia, SLR, Kivimaki, M, Kooner, JS, Kuh, D, Laakso, M, Lehtimaki, T, Le Marchand, L, Marz, W, McCarthy, MI, Metspalu, A, Morris, AP, Ohlsson, C, Palmer, LJ, Pasterkamp, G, Pedersen, O, Peters, A, Peters, U, Polasek, O, Psaty, BM, Qi, L, Rauramaa, R, Smith, BH, Sorensen, TIA, Strauch, K, Tiemeier, Henning, Tremoli, E, van der Harst, P, Vestergaard, H, Vollenweider, P, Wareham, NJ, Weir, DR, Whitfield, JB, Wilson, JF, Tyrrell, J, Frayling, TM, Barroso, I, Boehnke, M, Deloukas, P, Fox, CS, Hirschhorn, JN, Hunter, DJ, Spector, TD, Strachan, DP, Duijn, Cornelia, Heid, IM, Mohlke, KL, Marchini, J, Loos, RJF, Kilpelainen, TO, Liu, CT, Borecki, IB, North, KE, and Cupples, LA
- Published
- 2017
5. Exploring the complex biology of the carotid atherosclerotic plaque
- Author
-
Pasterkamp, Gerard, Prakken, Berent, el Azzouzi, Hamid, Siemelink, MA, Pasterkamp, Gerard, Prakken, Berent, el Azzouzi, Hamid, and Siemelink, MA
- Published
- 2016
6. Exploring the complex biology of the carotid atherosclerotic plaque
- Author
-
Experimentele Afd. Cardiologie 1, Pasterkamp, G, Prakken, Berent, el Azzouzi, Hamid, Siemelink, MA, Experimentele Afd. Cardiologie 1, Pasterkamp, G, Prakken, Berent, el Azzouzi, Hamid, and Siemelink, MA
- Published
- 2016
7. Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits
- Author
-
Justice, AE, Winkler, TW, Feitosa, MF, Graff, M, Fisher, VA, Young, K, Barata, L, Deng, X, Czajkowski, J, Hadley, D, Ngwa, JS, Ahluwalia, TS, Chu, AY, Heard-Costa, NL, Lim, E, Perez, J, Eicher, JD, Kutalik, Z, Xue, L, Mahajan, A, Renström, F, Wu, J, Qi, Q, Ahmad, S, Alfred, T, Amin, N, Bielak, LF, Bonnefond, A, Bragg, J, Cadby, G, Chittani, M, Coggeshall, S, Corre, T, Direk, N, Eriksson, J, Fischer, K, Gorski, M, Neergaard Harder, M, Horikoshi, M, Huang, T, Huffman, JE, Jackson, AU, Justesen, JM, Kanoni, S, Kinnunen, L, Kleber, ME, Komulainen, P, Kumari, M, Lim, U, Luan, J, Lyytikäinen, L-P, Mangino, M, Manichaikul, A, Marten, J, Middelberg, RPS, Müller-Nurasyid, M, Navarro, P, Pérusse, L, Pervjakova, N, Sarti, C, Smith, AV, Smith, JA, Stančáková, A, Strawbridge, RJ, Stringham, HM, Sung, YJ, Tanaka, T, Teumer, A, Trompet, S, Van Der Laan, SW, Van Der Most, PJ, Van Vliet-Ostaptchouk, JV, Vedantam, SL, Verweij, N, Vink, JM, Vitart, V, Wu, Y, Yengo, L, Zhang, W, Hua Zhao, J, Zimmermann, ME, Zubair, N, Abecasis, GR, Adair, LS, Afaq, S, Afzal, U, Bakker, SJL, Bartz, TM, Beilby, J, Bergman, RN, Bergmann, S, Biffar, R, Blangero, J, Boerwinkle, E, Bonnycastle, LL, Bottinger, E, Braga, D, Buckley, BM, Buyske, S, Campbell, H, Chambers, JC, Collins, FS, Curran, JE, De Borst, GJ, De Craen, AJM, De Geus, EJC, Dedoussis, G, Delgado, GE, Den Ruijter, HM, Eiriksdottir, G, Eriksson, AL, Esko, T, Faul, JD, Ford, I, Forrester, T, Gertow, K, Gigante, B, Glorioso, N, Gong, J, Grallert, H, Grammer, TB, Grarup, N, Haitjema, S, Hallmans, G, Hamsten, A, Hansen, T, Harris, TB, Hartman, CA, Hassinen, M, Hastie, ND, Heath, AC, Hernandez, D, Hindorff, L, Hocking, LJ, Hollensted, M, Holmen, OL, Homuth, G, Jan Hottenga, J, Huang, J, Hung, J, Hutri-Kähönen, N, Ingelsson, E, James, AL, Jansson, J-O, Jarvelin, M-R, Jhun, MA, Jørgensen, ME, Juonala, M, Kähönen, M, Karlsson, M, Koistinen, HA, Kolcic, I, Kolovou, G, Kooperberg, C, Krämer, BK, Kuusisto, J, Kvaløy, K, Lakka, TA, Langenberg, C, Launer, LJ, Leander, K, Lee, NR, Lind, L, Lindgren, CM, Linneberg, A, Lobbens, S, Loh, M, Lorentzon, M, Luben, R, Lubke, G, Ludolph-Donislawski, A, Lupoli, S, Madden, PAF, Männikkö, R, Marques-Vidal, P, Martin, NG, McKenzie, CA, McKnight, B, Mellström, D, Menni, C, Montgomery, GW, Musk, AB, Narisu, N, Nauck, M, Nolte, IM, Oldehinkel, AJ, Olden, M, Ong, KK, Padmanabhan, S, Peyser, PA, Pisinger, C, Porteous, DJ, Raitakari, OT, Rankinen, T, Rao, DC, Rasmussen-Torvik, LJ, Rawal, R, Rice, T, Ridker, PM, Rose, LM, Bien, SA, Rudan, I, Sanna, S, Sarzynski, MA, Sattar, N, Savonen, K, Schlessinger, D, Scholtens, S, Schurmann, C, Scott, RA, Sennblad, B, Siemelink, MA, Silbernagel, G, Slagboom, PE, Snieder, H, Staessen, JA, Stott, DJ, Swertz, MA, Swift, AJ, Taylor, KD, Tayo, BO, Thorand, B, Thuillier, D, Tuomilehto, J, Uitterlinden, AG, Vandenput, L, Vohl, M-C, Völzke, H, Vonk, JM, Waeber, G, Waldenberger, M, Westendorp, RGJ, Wild, S, Willemsen, G, Wolffenbuttel, BHR, Wong, A, Wright, AF, Zhao, W, Zillikens, MC, Baldassarre, D, Balkau, B, Bandinelli, S, Böger, CA, Boomsma, DI, Bouchard, C, Bruinenberg, M, Chasman, DI, Chen, Y-D, Chines, PS, Cooper, RS, Cucca, F, Cusi, D, Faire, UD, Ferrucci, L, Franks, PW, Froguel, P, Gordon-Larsen, P, Grabe, H-J, Gudnason, V, Haiman, CA, Hayward, C, Hveem, K, Johnson, AD, Wouter Jukema, J, Kardia, SLR, Kivimaki, M, Kooner, JS, Kuh, D, Laakso, M, Lehtimäki, T, Marchand, LL, März, W, McCarthy, MI, Metspalu, A, Morris, AP, Ohlsson, C, Palmer, LJ, Pasterkamp, G, Pedersen, O, Peters, A, Peters, U, Polasek, O, Psaty, BM, Qi, L, Rauramaa, R, Smith, BH, Sørensen, TIA, Strauch, K, Tiemeier, H, Tremoli, E, Van Der Harst, P, Vestergaard, H, Vollenweider, P, Wareham, NJ, Weir, DR, Whitfield, JB, Wilson, JF, Tyrrell, J, Frayling, TM, Barroso, I, Boehnke, M, Deloukas, P, Fox, CS, Hirschhorn, JN, Hunter, DJ, Spector, TD, Strachan, DP, Van Duijn, CM, Heid, IM, Mohlke, KL, Marchini, J, Loos, RJF, Kilpeläinen, TO, Liu, C-T, Borecki, IB, North, KE, and Cupples, LA
- Subjects
Adult ,Waist-Hip Ratio ,Quantitative Trait Loci ,Smoking ,Epistasis, Genetic ,Polymorphism, Single Nucleotide ,3. Good health ,Body Mass Index ,Phenotype ,Body Fat Distribution ,Humans ,Genetic Predisposition to Disease ,Obesity ,Waist Circumference ,Adiposity ,Genome-Wide Association Study - Abstract
Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic susceptibility to overall adiposity and body fat distribution.
8. Smoking is Associated to DNA Methylation in Atherosclerotic Carotid Lesions.
- Author
-
Siemelink MA, van der Laan SW, Haitjema S, van Koeverden ID, Schaap J, Wesseling M, de Jager SCA, Mokry M, van Iterson M, Dekkers KF, Luijk R, Foroughi Asl H, Michoel T, Björkegren JLM, Aavik E, Ylä-Herttuala S, de Borst GJ, Asselbergs FW, El Azzouzi H, den Ruijter HM, Heijmans BT, and Pasterkamp G
- Subjects
- Aged, Atherosclerosis etiology, Carotid Artery Diseases etiology, CpG Islands genetics, Endarterectomy, Carotid methods, Endarterectomy, Carotid statistics & numerical data, Epigenesis, Genetic, Female, Gene Expression Regulation, Humans, Male, Middle Aged, Plaque, Atherosclerotic etiology, Plaque, Atherosclerotic genetics, Atherosclerosis genetics, Carotid Artery Diseases genetics, DNA Methylation, Epigenomics methods, Genome-Wide Association Study methods, Smoking adverse effects
- Abstract
Background: Tobacco smoking is a major risk factor for atherosclerotic disease and has been associated with DNA methylation (DNAm) changes in blood cells. However, whether smoking influences DNAm in the diseased vascular wall is unknown but may prove crucial in understanding the pathophysiology of atherosclerosis. In this study, we associated current tobacco smoking to epigenome-wide DNAm in atherosclerotic plaques from patients undergoing carotid endarterectomy., Methods: DNAm at commonly methylated sites (cytosine-guanine nucleotide pairs separated by a phospho-group [CpGs]) was assessed in atherosclerotic plaque samples and peripheral blood samples from 485 carotid endarterectomy patients. We tested the association of current tobacco smoking with DNAm corrected for age and sex. To control for bias and inflation because of cellular heterogeneity, we applied a Bayesian method to estimate an empirical null distribution as implemented by the R package bacon. Replication of the smoking-associated methylated CpGs in atherosclerotic plaques was executed in the second sample of 190 carotid endarterectomy patients, and results were meta-analyzed using a fixed-effects model., Results: Tobacco smoking was significantly associated to differential DNAm in atherosclerotic lesions of 4 CpGs (false discovery rate <0.05) mapped to 2 different genes ( AHRR, ITPK1) and 17 CpGs mapped to 8 genes and RNAs in blood. The strongest associations were found for CpGs mapped to the gene AHRR, a repressor of the aryl hydrocarbon receptor transcription factor involved in xenobiotic detoxification. One of these methylated CpGs were found to be regulated by local genetic variation., Conclusions: The risk factor tobacco smoking associates with DNAm at multiple loci in carotid atherosclerotic lesions. These observations support further investigation of the relationship between risk factors and epigenetic regulation in atherosclerotic disease.
- Published
- 2018
- Full Text
- View/download PDF
9. Genetic Susceptibility Loci for Cardiovascular Disease and Their Impact on Atherosclerotic Plaques.
- Author
-
van der Laan SW, Siemelink MA, Haitjema S, Foroughi Asl H, Perisic L, Mokry M, van Setten J, Malik R, Dichgans M, Worrall BB, Samani NJ, Schunkert H, Erdmann J, Hedin U, Paulsson-Berne G, Björkegrenn JLM, de Borst GJ, Asselbergs FW, den Ruijter FW, de Bakker PIW, and Pasterkamp G
- Subjects
- Adaptor Proteins, Vesicular Transport genetics, Aged, Alleles, Carotid Artery Diseases genetics, Female, Gene Expression Regulation, Genotype, High Mobility Group Proteins genetics, Humans, Male, Middle Aged, Plaque, Atherosclerotic genetics, Repressor Proteins genetics, Atherosclerosis genetics, Cardiovascular Diseases genetics, Genetic Loci genetics, Genetic Predisposition to Disease genetics, Polymorphism, Single Nucleotide
- Abstract
Background: Atherosclerosis is a chronic inflammatory disease in part caused by lipid uptake in the vascular wall, but the exact underlying mechanisms leading to acute myocardial infarction and stroke remain poorly understood. Large consortia identified genetic susceptibility loci that associate with large artery ischemic stroke and coronary artery disease. However, deciphering their underlying mechanisms are challenging. Histological studies identified destabilizing characteristics in human atherosclerotic plaques that associate with clinical outcome. To what extent established susceptibility loci for large artery ischemic stroke and coronary artery disease relate to plaque characteristics is thus far unknown but may point to novel mechanisms., Methods: We studied the associations of 61 established cardiovascular risk loci with 7 histological plaque characteristics assessed in 1443 carotid plaque specimens from the Athero-Express Biobank Study. We also assessed if the genotyped cardiovascular risk loci impact the tissue-specific gene expression in 2 independent biobanks, Biobank of Karolinska Endarterectomy and Stockholm Atherosclerosis Gene Expression., Results: A total of 21 established risk variants (out of 61) nominally associated to a plaque characteristic. One variant (rs12539895, risk allele A) at 7q22 associated to a reduction of intraplaque fat, P=5.09×10
-6 after correction for multiple testing. We further characterized this 7q22 Locus and show tissue-specific effects of rs12539895 on HBP1 expression in plaques and COG5 expression in whole blood and provide data from public resources showing an association with decreased LDL (low-density lipoprotein) and increase HDL (high-density lipoprotein) in the blood., Conclusions: Our study supports the view that cardiovascular susceptibility loci may exert their effect by influencing the atherosclerotic plaque characteristics.- Published
- 2018
- Full Text
- View/download PDF
10. Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits.
- Author
-
Justice AE, Winkler TW, Feitosa MF, Graff M, Fisher VA, Young K, Barata L, Deng X, Czajkowski J, Hadley D, Ngwa JS, Ahluwalia TS, Chu AY, Heard-Costa NL, Lim E, Perez J, Eicher JD, Kutalik Z, Xue L, Mahajan A, Renström F, Wu J, Qi Q, Ahmad S, Alfred T, Amin N, Bielak LF, Bonnefond A, Bragg J, Cadby G, Chittani M, Coggeshall S, Corre T, Direk N, Eriksson J, Fischer K, Gorski M, Neergaard Harder M, Horikoshi M, Huang T, Huffman JE, Jackson AU, Justesen JM, Kanoni S, Kinnunen L, Kleber ME, Komulainen P, Kumari M, Lim U, Luan J, Lyytikäinen LP, Mangino M, Manichaikul A, Marten J, Middelberg RPS, Müller-Nurasyid M, Navarro P, Pérusse L, Pervjakova N, Sarti C, Smith AV, Smith JA, Stančáková A, Strawbridge RJ, Stringham HM, Sung YJ, Tanaka T, Teumer A, Trompet S, van der Laan SW, van der Most PJ, Van Vliet-Ostaptchouk JV, Vedantam SL, Verweij N, Vink JM, Vitart V, Wu Y, Yengo L, Zhang W, Hua Zhao J, Zimmermann ME, Zubair N, Abecasis GR, Adair LS, Afaq S, Afzal U, Bakker SJL, Bartz TM, Beilby J, Bergman RN, Bergmann S, Biffar R, Blangero J, Boerwinkle E, Bonnycastle LL, Bottinger E, Braga D, Buckley BM, Buyske S, Campbell H, Chambers JC, Collins FS, Curran JE, de Borst GJ, de Craen AJM, de Geus EJC, Dedoussis G, Delgado GE, den Ruijter HM, Eiriksdottir G, Eriksson AL, Esko T, Faul JD, Ford I, Forrester T, Gertow K, Gigante B, Glorioso N, Gong J, Grallert H, Grammer TB, Grarup N, Haitjema S, Hallmans G, Hamsten A, Hansen T, Harris TB, Hartman CA, Hassinen M, Hastie ND, Heath AC, Hernandez D, Hindorff L, Hocking LJ, Hollensted M, Holmen OL, Homuth G, Jan Hottenga J, Huang J, Hung J, Hutri-Kähönen N, Ingelsson E, James AL, Jansson JO, Jarvelin MR, Jhun MA, Jørgensen ME, Juonala M, Kähönen M, Karlsson M, Koistinen HA, Kolcic I, Kolovou G, Kooperberg C, Krämer BK, Kuusisto J, Kvaløy K, Lakka TA, Langenberg C, Launer LJ, Leander K, Lee NR, Lind L, Lindgren CM, Linneberg A, Lobbens S, Loh M, Lorentzon M, Luben R, Lubke G, Ludolph-Donislawski A, Lupoli S, Madden PAF, Männikkö R, Marques-Vidal P, Martin NG, McKenzie CA, McKnight B, Mellström D, Menni C, Montgomery GW, Musk AB, Narisu N, Nauck M, Nolte IM, Oldehinkel AJ, Olden M, Ong KK, Padmanabhan S, Peyser PA, Pisinger C, Porteous DJ, Raitakari OT, Rankinen T, Rao DC, Rasmussen-Torvik LJ, Rawal R, Rice T, Ridker PM, Rose LM, Bien SA, Rudan I, Sanna S, Sarzynski MA, Sattar N, Savonen K, Schlessinger D, Scholtens S, Schurmann C, Scott RA, Sennblad B, Siemelink MA, Silbernagel G, Slagboom PE, Snieder H, Staessen JA, Stott DJ, Swertz MA, Swift AJ, Taylor KD, Tayo BO, Thorand B, Thuillier D, Tuomilehto J, Uitterlinden AG, Vandenput L, Vohl MC, Völzke H, Vonk JM, Waeber G, Waldenberger M, Westendorp RGJ, Wild S, Willemsen G, Wolffenbuttel BHR, Wong A, Wright AF, Zhao W, Zillikens MC, Baldassarre D, Balkau B, Bandinelli S, Böger CA, Boomsma DI, Bouchard C, Bruinenberg M, Chasman DI, Chen YD, Chines PS, Cooper RS, Cucca F, Cusi D, Faire U, Ferrucci L, Franks PW, Froguel P, Gordon-Larsen P, Grabe HJ, Gudnason V, Haiman CA, Hayward C, Hveem K, Johnson AD, Wouter Jukema J, Kardia SLR, Kivimaki M, Kooner JS, Kuh D, Laakso M, Lehtimäki T, Marchand LL, März W, McCarthy MI, Metspalu A, Morris AP, Ohlsson C, Palmer LJ, Pasterkamp G, Pedersen O, Peters A, Peters U, Polasek O, Psaty BM, Qi L, Rauramaa R, Smith BH, Sørensen TIA, Strauch K, Tiemeier H, Tremoli E, van der Harst P, Vestergaard H, Vollenweider P, Wareham NJ, Weir DR, Whitfield JB, Wilson JF, Tyrrell J, Frayling TM, Barroso I, Boehnke M, Deloukas P, Fox CS, Hirschhorn JN, Hunter DJ, Spector TD, Strachan DP, van Duijn CM, Heid IM, Mohlke KL, Marchini J, Loos RJF, Kilpeläinen TO, Liu CT, Borecki IB, North KE, and Cupples LA
- Subjects
- Adiposity genetics, Adult, Body Fat Distribution, Body Mass Index, Epistasis, Genetic, Humans, Phenotype, Polymorphism, Single Nucleotide, Waist Circumference genetics, Waist-Hip Ratio, Genetic Predisposition to Disease genetics, Genome-Wide Association Study methods, Obesity genetics, Quantitative Trait Loci genetics, Smoking genetics
- Abstract
Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic susceptibility to overall adiposity and body fat distribution.
- Published
- 2017
- Full Text
- View/download PDF
11. Human Validation of Genes Associated With a Murine Atherosclerotic Phenotype.
- Author
-
Pasterkamp G, van der Laan SW, Haitjema S, Foroughi Asl H, Siemelink MA, Bezemer T, van Setten J, Dichgans M, Malik R, Worrall BB, Schunkert H, Samani NJ, de Kleijn DP, Markus HS, Hoefer IE, Michoel T, de Jager SC, Björkegren JL, den Ruijter HM, and Asselbergs FW
- Subjects
- Animals, Computational Biology, Coronary Artery Disease pathology, Databases, Genetic, Disease Models, Animal, Gene Expression Regulation, Gene Regulatory Networks, Genetic Markers, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Intracranial Arteriosclerosis pathology, Mice, Phenotype, Plaque, Atherosclerotic, Quantitative Trait Loci, Reproducibility of Results, Risk Assessment, Risk Factors, Species Specificity, Stroke pathology, Coronary Artery Disease genetics, Gene Expression Profiling methods, Intracranial Arteriosclerosis genetics, Polymorphism, Single Nucleotide, Stroke genetics
- Abstract
Objective: The genetically modified mouse is the most commonly used animal model for studying the pathogenesis of atherosclerotic disease. We aimed to assess if mice atherosclerosis-related genes could be validated in human disease through examination of results from genome-wide association studies., Approach and Results: We performed a systematic review to identify atherosclerosis-causing genes in mice and carried out gene-based association tests of their human orthologs for an association with human coronary artery disease and human large artery ischemic stroke. Moreover, we investigated the association of these genes with human atherosclerotic plaque characteristics. In addition, we assessed the presence of tissue-specific cis-acting expression quantitative trait loci for these genes in humans. Finally, using pathway analyses we show that the putative atherosclerosis-causing genes revealed few associations with human coronary artery disease, large artery ischemic stroke, or atherosclerotic plaque characteristics, despite the fact that the majority of these genes have cis-acting expression quantitative trait loci., Conclusions: A role for genes that has been observed in mice for atherosclerotic lesion development could scarcely be confirmed by studying associations of disease development with common human genetic variants. The value of murine atherosclerotic models for selection of therapeutic targets in human disease remains unclear., (© 2016 American Heart Association, Inc.)
- Published
- 2016
- Full Text
- View/download PDF
12. Gene-based meta-analysis of genome-wide association studies implicates new loci involved in obesity.
- Author
-
Hägg S, Ganna A, Van Der Laan SW, Esko T, Pers TH, Locke AE, Berndt SI, Justice AE, Kahali B, Siemelink MA, Pasterkamp G, Strachan DP, Speliotes EK, North KE, Loos RJ, Hirschhorn JN, Pawitan Y, and Ingelsson E
- Subjects
- Female, Genome-Wide Association Study, Humans, Polymorphism, Single Nucleotide, White People genetics, Body Mass Index, Genetic Loci, Genetic Predisposition to Disease, Obesity genetics
- Abstract
To date, genome-wide association studies (GWASs) have identified >100 loci with single variants associated with body mass index (BMI). This approach may miss loci with high allelic heterogeneity; therefore, the aim of the present study was to use gene-based meta-analysis to identify regions with high allelic heterogeneity to discover additional obesity susceptibility loci. We included GWAS data from 123 865 individuals of European descent from 46 cohorts in Stage 1 and Metabochip data from additional 103 046 individuals from 43 cohorts in Stage 2, all within the Genetic Investigation of ANthropometric Traits (GIANT) consortium. Each cohort was tested for association between ∼2.4 million (Stage 1) or ∼200 000 (Stage 2) imputed or genotyped single variants and BMI, and summary statistics were subsequently meta-analyzed in 17 941 genes. We used the 'VErsatile Gene-based Association Study' (VEGAS) approach to assign variants to genes and to calculate gene-based P-values based on simulations. The VEGAS method was applied to each cohort separately before a gene-based meta-analysis was performed. In Stage 1, two known (FTO and TMEM18) and six novel (PEX2, MTFR2, SSFA2, IARS2, CEP295 and TXNDC12) loci were associated with BMI (P < 2.8 × 10(-6) for 17 941 gene tests). We confirmed all loci, and six of them were gene-wide significant in Stage 2 alone. We provide biological support for the loci by pathway, expression and methylation analyses. Our results indicate that gene-based meta-analysis of GWAS provides a useful strategy to find loci of interest that were not identified in standard single-marker analyses due to high allelic heterogeneity., (© The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.)
- Published
- 2015
- Full Text
- View/download PDF
13. Common variants associated with blood lipid levels do not affect carotid plaque composition.
- Author
-
Siemelink MA, van der Laan SW, van Setten J, de Vries JP, de Borst GJ, Moll FL, den Ruijter HM, Asselbergs FW, Pasterkamp G, and de Bakker PI
- Subjects
- Aged, Biological Specimen Banks, Biomarkers blood, Carotid Arteries metabolism, Carotid Arteries surgery, Carotid Artery Diseases blood, Carotid Artery Diseases diagnosis, Carotid Artery Diseases surgery, Endarterectomy, Carotid, Female, Genetic Association Studies, Genetic Markers, Genetic Predisposition to Disease, Humans, Linear Models, Logistic Models, Male, Middle Aged, Phenotype, Plaque, Atherosclerotic, Risk Assessment, Risk Factors, Carotid Arteries pathology, Carotid Artery Diseases genetics, Lipids blood, Polymorphism, Single Nucleotide
- Abstract
Introduction: Although plasma lipid levels are known to influence the risk of cardiovascular disease (CVD), little is known about their effect on atherosclerotic plaque composition. To date, large-scale genome-wide association studies have identified 157 common single-nucleotide polymorphisms (SNPs) that influence plasma lipid levels, providing a powerful tool to investigate the effect of plasma lipid levels on atherosclerotic plaque composition., Methods: In this study, we included 1443 carotid endarterectomy patients from the Athero-Express Biobank Study with genotype data. Plasma concentrations of high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC) and triglycerides (TG) were determined at the time of endarterectomy. Atherosclerotic plaques, obtained during surgery, were histologically examined. For all patients, we calculated weighted genetic burden scores (GBS) for all lipid traits on the basis of the available genotype data. Plasma lipid levels and GBS were tested for association with 7 histological features using linear and logistic regression models., Results: All GBS were associated with their respective plasma lipid concentrations (pHDL-C = 2.4 × 10(-14), pLDL-C = 0.003, pTC = 2.1 × 10(-6), pTG = 3.4 × 10(-8)). Neither the measured plasma lipids, nor the GBS, were associated with histological features of atherosclerotic plaque composition. In addition, neither the plasma lipids nor the GBS were associated with clinical endpoints within 3 years of follow-up, with the notable exception of a negative association between HDL-C and composite cardiovascular endpoints., Conclusion: This study found no evidence that plasma lipid levels or their genetic determinants influence carotid plaque composition., (Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
14. Biomarkers of coronary artery disease: the promise of the transcriptome.
- Author
-
Siemelink MA and Zeller T
- Subjects
- Coronary Artery Disease genetics, Gene Expression Profiling methods, Genomics methods, Humans, Biomarkers analysis, Coronary Artery Disease diagnosis, Transcriptome
- Abstract
The last years have witnessed tremendous technical advances in the field of transcriptomics that enable the simultaneous assessment of nearly all transcripts expressed in a tissue at a given time. These advances harbor the potential to gain a better understanding of the complex biological systems and for the identification and development of novel biomarkers. This article will review the current knowledge of transcriptomics biomarkers in the cardiovascular field and will provide an overview about the promises and challenges of the transcriptomics approach for biomarker identification.
- Published
- 2014
- Full Text
- View/download PDF
15. Differential homeostatic dynamics of human regulatory T-cell subsets following neonatal thymectomy.
- Author
-
Schadenberg AW, van den Broek T, Siemelink MA, Algra SO, de Jong PR, Jansen NJ, Prakken BJ, and van Wijk F
- Subjects
- CD4 Lymphocyte Count, Cell Proliferation, Child, Preschool, Forkhead Transcription Factors metabolism, Humans, Immune Tolerance, Immunologic Memory, Infant, Infant, Newborn, Cardiac Surgical Procedures, Homeostasis immunology, T-Lymphocyte Subsets immunology, T-Lymphocytes, Regulatory immunology, Thymectomy
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.