ISI Document Delivery No.: 148BE Times Cited: 3 Cited Reference Count: 40 Cited References: Charette MA, 2007, DEEP-SEA RES PT II, V54, P1989, DOI 10.1016/j.dsr2.2007.06.003 Charette MA, 2001, LIMNOL OCEANOGR, V46, P465 Clarke A, 2008, DEEP-SEA RES PT II, V55, P1988, DOI 10.1016/j.dsr2.2008.04.035 COCHRAN JK, 1980, AM J SCI, V280, P849 Cook AJ, 2005, SCIENCE, V308, P541, DOI 10.1126/science.1104235 Dimova N, 2008, MAR CHEM, V109, P220, DOI 10.1016/j.marchem.2007.06.016 DULAIOVA H., 2009, GLOBAL BIOGEOCHEMICA, DOI [10.1029/2008GB003406, DOI 10.1029/2008GB003406."] Garcia-Solsona E, 2008, MAR CHEM, V109, P198, DOI 10.1016/j.marchem.2007.11.006 Geibert W, 2008, MAR CHEM, V109, P238, DOI 10.1016/j.marchem.2007.07.012 Geibert W, 2002, EARTH PLANET SC LETT, V198, P147, DOI 10.1016/S0012-821X(02)00512-5 Hanfland C., 2002, THESIS U BREMEN Hoffmann LJ, 2008, POLAR BIOL, V31, P1067, DOI 10.1007/s00300-008-0448-6 Howard SL, 2004, DEEP-SEA RES PT II, V51, P1965, DOI 10.1016/j.dsr2.2004.08.002 Jeandel C., 2011, EOS, V92, P217, DOI DOI 10.1029/2011E0260001 Klinck JM, 1998, J GEOPHYS RES-OCEANS, V103, P7617, DOI 10.1029/98JC00369 Martinson DG, 2008, DEEP-SEA RES PT II, V55, P1964, DOI 10.1016/j.dsr2.2008.04.038 MEREDITH M. P., J CLIMATE IN PRESS Meredith MP, 2010, PROG OCEANOGR, V87, P127, DOI 10.1016/j.pocean.2010.09.019 Meredith MP, 2005, GEOPHYS RES LETT, V32, DOI 10.1029/2005GL024042 Moffat C, 2008, DEEP-SEA RES PT II, V55, P277, DOI 10.1016/j.dsr2.2007.10.003 Moffat C, 2009, J GEOPHYS RES-OCEANS, V114, DOI 10.1029/2008JC004955 Montes-Hugo M, 2009, SCIENCE, V323, P1470, DOI 10.1126/science.1164533 Moore WS, 1996, J GEOPHYS RES-OCEANS, V101, P1321, DOI 10.1029/95JC03139 Moore WS, 2000, J GEOPHYS RES-OCEANS, V105, P22117, DOI 10.1029/1999JC000289 Moore WS, 2000, CONT SHELF RES, V20, P1993, DOI 10.1016/S0278-4343(00)00054-6 Moore WS, 2008, MAR CHEM, V109, P188, DOI 10.1016/j.marchem.2007.06.015 Pritchard HD, 2012, NATURE, V484, P502, DOI 10.1038/nature10968 Raiswell R, 2011, DEEP-SEA RES PT II, V58, P1364, DOI 10.1016/j.dsr2.2010.11.011 VANDERLOEFF MMR, 1994, GEOPHYS MONOGRAPH SE, V0085 Scholten JC, 2010, MAR CHEM, V121, P206, DOI 10.1016/j.marchem.2010.04.009 Shaw TJ, 2002, MAR CHEM, V78, P197, DOI 10.1016/S0304-4203(02)00022-1 Shaw TJ, 2011, DEEP-SEA RES PT II, V58, P1376, DOI 10.1016/j.dsr2.2010.11.012 Smale DA, 2008, MAR ECOL PROG SER, V355, P85, DOI 10.3354/meps07311 Stammerjohn SE, 2008, J GEOPHYS RES-OCEANS, V113, DOI 10.1029/2007JC004269 VAN BEEK P., J ENV RADIO IN PRESS van Beek P, 2010, J ENVIRON RADIOACTIV, V101, P521, DOI 10.1016/j.jenvrad.2009.12.002 van Beek P, 2008, DEEP-SEA RES PT II, V55, P622, DOI 10.1016/j.dsr2.2007.12.025 Vaughan DG, 2003, CLIMATIC CHANGE, V60, P243, DOI 10.1023/A:1026021217991 VENABLES H. J., LIMNOLOGY O IN PRESS Wallace MI, 2008, DEEP-SEA RES PT II, V55, P2023, DOI 10.1016/j.dsr2.2008.04.033 Annett, Amber L. Henley, Sian F. Van Beek, Pieter Souhaut, Marc Ganeshram, Raja Venables, Hugh J. Meredith, Michael P. Geibert, Walter Antarctic Science Bursary; National Environment Research Council, UK; British Council-EGIDE ALLIANCE/Franco-British Research Partnership Programme; NSERC; University of Edinburgh The authors would like to thank the Rothera Research Station marine staff, in particular Danny Edmunds, for help with sample collection, and the British Antarctic Survey for logistical support. Jan Scholten at the International Atomic Energy Agency in Monaco kindly provided standards, and helpful discussion regarding methodology. The editor (L. Padman) and two anonymous reviewers provided valuable comments to improve the manuscript. This work was supported by an Antarctic Science Bursary, Collaborative Gearing Scheme funding (through the National Environment Research Council, UK), the British Council-EGIDE ALLIANCE/Franco-British Research Partnership Programme, an NSERC scholarship and the University of Edinburgh. 3 CAMBRIDGE UNIV PRESS NEW YORK ANTARCT SCI; In the western Antarctic Peninsula region, micronutrient injection facilitates strong plankton blooms that support productive food webs, unlike large areas of the low-productivity Southern Ocean. We use naturally occurring radioisotopes of radium to constrain rates of chemical fluxes into Ryder Bay (a small coastal embayment in northern Marguerite Bay), and hence to evaluate possible sources of sediment-derived micronutrients and estimate sediment-ocean mixing rates. We present the first coupled, short-lived radium isotope (Ra-223 and Ra-224) measurements from Antarctic waters, both present at very low activities (mean 0.155 and 3.21 dpm m(-3), respectively), indicating much lower radium inputs than in other coastal environments. Longer-lived Ra-228 activity was also lower than existing nearshore values, but higher than open ocean waters, indicating some degree of coastal radium input on timescales exceeding the week-to-month range reflected by Ra-223 and Ra-224. Using a simple diffusion model along a shore to mid-bay transect, effective horizontal eddy diffusivity estimates ranged from 0.22-0.83m(2) s(-1) from Ra-223 and Ra-224, respectively, much lower than already-low mixing estimates for the Southern Ocean. Significant radium enrichment and much faster mixing (18m(2) s(-1)) was found near a marine-terminating glacier and consequently any sediment-derived micronutrient inputs in this location are more probably dominated by glacial processes than groundwater, land runoff, or marine sediment sources.