349 results on '"Shuster, David L."'
Search Results
2. Oriented Bedrock Samples Drilled by the Perseverance Rover on Mars
- Author
-
Weiss, Benjamin P., primary, Mansbach, Elias N., additional, Carsten, Joseph L., additional, Kaplan, Kyle W., additional, Maki, Justin N., additional, Wiens, Roger C., additional, Bosak, Tanja, additional, Collins, Curtis L., additional, Fentress, Jennifer, additional, Feinberg, Joshua M., additional, Goreva, Yulia, additional, Kennedy Wu, Megan, additional, Estlin, Tara A., additional, Klein, Douglas E., additional, Kronyak, Rachel E., additional, Moeller, Robert C., additional, Peper, Nicholas, additional, Reyes‐Newell, Adriana, additional, Sephton, Mark A., additional, Shuster, David L., additional, Simon, Justin I., additional, Williford, Kenneth H., additional, Stack, Kathryn W., additional, and Farley, Kenneth A., additional
- Published
- 2024
- Full Text
- View/download PDF
3. Depositional and Diagenetic Sulfates of Hogwallow Flats and Yori Pass, Jezero Crater: Evaluating Preservation Potential of Environmental Indicators and Possible Biosignatures From Past Martian Surface Waters and Groundwaters
- Author
-
Benison, Kathleen C., Gill, Karena K., Sharma, Sunanda, Siljeström, Sandra, Zawaski, Mike, Bosak, Tanja, Broz, Adrian, Clark, Benton C., Cloutis, Edward, Czaja, Andrew D., Flannery, David, Fornaro, Teresa, Gómez, Felipe, Hand, Kevin, Herd, Chris D. K., Johnson, Jeffrey R., Madariaga, Juan Manuel, Madsen, Morten B., Martinez‐Frías, Jesús, Nachon, Marion, Núñez, Jorge I., Pedersen, David A. K., Randazzo, Nicholas, Shuster, David L., Simon, Justin, Steele, Andrew, Tate, Christian, Treiman, Allan, Uckert, Kyle, Williams, Amy J., Yanchilina, Anastasia, Benison, Kathleen C., Gill, Karena K., Sharma, Sunanda, Siljeström, Sandra, Zawaski, Mike, Bosak, Tanja, Broz, Adrian, Clark, Benton C., Cloutis, Edward, Czaja, Andrew D., Flannery, David, Fornaro, Teresa, Gómez, Felipe, Hand, Kevin, Herd, Chris D. K., Johnson, Jeffrey R., Madariaga, Juan Manuel, Madsen, Morten B., Martinez‐Frías, Jesús, Nachon, Marion, Núñez, Jorge I., Pedersen, David A. K., Randazzo, Nicholas, Shuster, David L., Simon, Justin, Steele, Andrew, Tate, Christian, Treiman, Allan, Uckert, Kyle, Williams, Amy J., and Yanchilina, Anastasia
- Abstract
The Mars 2020 Perseverance rover has examined and sampled sulfate-rich clastic rocks from the Hogwallow Flats member at Hawksbill Gap and the Yori Pass member at Cape Nukshak. Both strata are located on the Jezero crater western fan front, are lithologically and stratigraphically similar, and have been assigned to the Shenandoah formation. In situ analyses demonstrate that these are fine-grained sandstones composed of phyllosilicates, hematite, Ca-sulfates, Fe-Mg-sulfates, ferric sulfates, and possibly chloride salts. Sulfate minerals are found both as depositional grains and diagenetic features, including intergranular cement and vein- and vug-cements. Here, we describe the possibility of various sulfate phases to preserve potential biosignatures and the record of paleoenvironmental conditions in fluid and solid inclusions, based on findings from analog sulfate-rich rocks on Earth. The samples collected from these outcrops, Hazeltop and Bearwallow from Hogwallow Flats, and Kukaklek from Yori Pass, should be examined for such potential biosignatures and environmental indicators upon return to Earth.
- Published
- 2024
4. Three Centuries of Snowpack Decline at an Alpine Pass Revealed by Cosmogenic Paleothermometry and Luminescence Photochronometry
- Author
-
Guralnik, Benny, Tremblay, Marissa M., Phillips, Marcia, Sellwood, Elaine L., Gribenski, Natacha, Presl, Robert, Haberkorn, Anna, Sohbati, Reza, Shuster, David L., Valla, Pierre G., Jain, Mayank, Schindler, Konrad, Wallinga, Jakob, Hippe, Kristina, Guralnik, Benny, Tremblay, Marissa M., Phillips, Marcia, Sellwood, Elaine L., Gribenski, Natacha, Presl, Robert, Haberkorn, Anna, Sohbati, Reza, Shuster, David L., Valla, Pierre G., Jain, Mayank, Schindler, Konrad, Wallinga, Jakob, and Hippe, Kristina
- Abstract
The spatial and temporal distribution of Alpine snow is a sensitive gauge of environmental change. While understanding past snow dynamics is essential for reconstructing past climate and forecasting future trends, reliable snowpack data prior to the instrumental record are scarce. We present a novel pairing of cosmogenic paleothermometry and luminescence photochronometry which constrain the temperature and insolation history of bedrock outcrops at the Gotthard Pass, Switzerland, over the last ∼15,000 years. By coupling these results with cosmogenic 14C-10Be chronology and modern in situ rock thermometry, we infer a ∼70-day reduction of snowpack at the topographic mid-slope. Our data indicate stable environmental conditions throughout the Holocene, followed by a 6.6 ± 2.9°C increase of ground surface temperature, coeval with an order-of-magnitude or more increase in ground surface insolation. Bracketing the onset of these changes between 1504 and 1807 CE, our findings tie the snowpack decline with the onset of human industrialization.
- Published
- 2024
5. Depositional and Diagenetic Sulfates of Hogwallow Flats and Yori Pass, Jezero Crater:Evaluating Preservation Potential of Environmental Indicators and Possible Biosignatures From Past Martian Surface Waters and Groundwaters
- Author
-
Benison, Kathleen C., Gill, Karena K., Sharma, Sunanda, Siljeström, Sandra, Zawaski, Mike, Bosak, Tanja, Broz, Adrian, Clark, Benton C., Cloutis, Edward, Czaja, Andrew D., Flannery, David, Fornaro, Teresa, Gómez, Felipe, Hand, Kevin, Herd, Chris D. K., Johnson, Jeffrey R., Madariaga, Juan Manuel, Madsen, Morten B., Martinez‐frías, Jesús, Nachon, Marion, Núñez, Jorge I., Pedersen, David A. K., Randazzo, Nicholas, Shuster, David L., Simon, Justin, Steele, Andrew, Tate, Christian, Treiman, Allan, Uckert, Kyle, Williams, Amy J., Yanchilina, Anastasia, Benison, Kathleen C., Gill, Karena K., Sharma, Sunanda, Siljeström, Sandra, Zawaski, Mike, Bosak, Tanja, Broz, Adrian, Clark, Benton C., Cloutis, Edward, Czaja, Andrew D., Flannery, David, Fornaro, Teresa, Gómez, Felipe, Hand, Kevin, Herd, Chris D. K., Johnson, Jeffrey R., Madariaga, Juan Manuel, Madsen, Morten B., Martinez‐frías, Jesús, Nachon, Marion, Núñez, Jorge I., Pedersen, David A. K., Randazzo, Nicholas, Shuster, David L., Simon, Justin, Steele, Andrew, Tate, Christian, Treiman, Allan, Uckert, Kyle, Williams, Amy J., and Yanchilina, Anastasia
- Published
- 2024
6. Crustal block-controlled contrasts in deformation, uplift, and exhumation in the Santa Cruz Mountains, California, USA, imaged through apatite (U-Th)/He thermochronology and 3-D geological modeling.
- Author
-
Baden, Curtis W., Shuster, David L., Hourigan, Jeremy H., Gooley, Jared T., Cahill, Melanie R., and Hilley, George E.
- Subjects
- *
ROCK deformation , *DEFORMATIONS (Mechanics) , *FAULT zones , *APATITE , *GEOLOGICAL modeling , *GRABENS (Geology) , *PLIOCENE Epoch - Abstract
Deformation along strike-slip plate margins often accumulates within structurally partitioned and rheologically heterogeneous crustal blocks within the plate boundary. In these cases, contrasts in the physical properties and state of juxtaposed crustal blocks may play an important role in accommodation of deformation. Near the San Francisco Bay Area, California, USA, the Pacific-North American plate-bounding San Andreas fault bisects the Santa Cruz Mountains (SCM), which host numerous distinct, fault-bounded lithotectonic blocks that surround the San Andreas fault zone. In the SCM, a restraining bend in the San Andreas fault (the SCM bend) caused recent uplift of the mountain range since ca. 4 Ma. To understand how rheologic heterogeneity within a complex fault zone might influence deformation, we quantified plausible bounds on deformation and uplift across two adjacent SCM lithotectonic blocks on the Pacific Plate whose stratigraphic and tectonic histories differ. This was accomplished by combining 31 new apatite (U-Th)/He ages with existing thermochronological datasets to constrain exhumation of these two blocks. Additionally, surface exposures of the latest Miocene to late Pliocene Purisima Formation interpreted in 18 structural cross sections spanning the SCM allowed construction and restoration of Pliocene deformation in a three-dimensional geologic model. We found that rock uplift and deformation concentrated within individual Pacific Plate lithotectonic blocks in the SCM. Since 4 Ma, maximum principal strain computed for the more deformed block adjacent to the fault exceeded that computed for the less deformed block by at least 375%, and cumulative uplift has been more spatially extensive and higher in magnitude. We attribute the difference in uplift and deformation between the two blocks primarily to contrasts in lithotectonic structure, which resulted from diverging geologic histories along the evolving plate boundary. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
7. Troctolite 76535: A sample of the Moon's South Pole-Aitken basin?
- Author
-
Garrick-Bethell, Ian, Miljković, Katarina, Hiesinger, Harald, van der Bogert, Carolyn H., Laneuville, Matthieu, Shuster, David L., and Korycansky, Donald G.
- Published
- 2020
- Full Text
- View/download PDF
8. Depositional and Diagenetic Sulfates of Hogwallow Flats and Yori Pass, Jezero Crater: Evaluating Preservation Potential of Environmental Indicators and Possible Biosignatures From Past Martian Surface Waters and Groundwaters
- Author
-
Benison, Kathleen C., primary, Gill, Karena K., additional, Sharma, Sunanda, additional, Siljeström, Sandra, additional, Zawaski, Mike, additional, Bosak, Tanja, additional, Broz, Adrian, additional, Clark, Benton C., additional, Cloutis, Edward, additional, Czaja, Andrew D., additional, Flannery, David, additional, Fornaro, Teresa, additional, Gómez, Felipe, additional, Hand, Kevin, additional, Herd, Chris D. K., additional, Johnson, Jeffrey R., additional, Madariaga, Juan Manuel, additional, Madsen, Morten B., additional, Martinez‐Frías, Jesús, additional, Nachon, Marion, additional, Núñez, Jorge I., additional, Pedersen, David A. K., additional, Randazzo, Nicholas, additional, Shuster, David L., additional, Simon, Justin, additional, Steele, Andrew, additional, Tate, Christian, additional, Treiman, Allan, additional, Uckert, Kyle, additional, Williams, Amy J., additional, and Yanchilina, Anastasia, additional
- Published
- 2024
- Full Text
- View/download PDF
9. Three Centuries of Snowpack Decline at an Alpine Pass Revealed by Cosmogenic Paleothermometry and Luminescence Photochronometry
- Author
-
Guralnik, Benny, primary, Tremblay, Marissa M., additional, Phillips, Marcia, additional, Sellwood, Elaine L., additional, Gribenski, Natacha, additional, Presl, Robert, additional, Haberkorn, Anna, additional, Sohbati, Reza, additional, Shuster, David L., additional, Valla, Pierre G., additional, Jain, Mayank, additional, Schindler, Konrad, additional, Wallinga, Jakob, additional, and Hippe, Kristina, additional
- Published
- 2024
- Full Text
- View/download PDF
10. Tracing short-lived hydrothermal circulation systems and water-rock interactions around small-scale intrusions
- Author
-
Abbey, Alyssa L., primary, Randolph-Flagg, Noah, additional, de Villa, Kyla, additional, Kim, Sora L., additional, and Shuster, David L., additional
- Published
- 2023
- Full Text
- View/download PDF
11. Erosion in southern Tibet shut down at ∼10 Ma due to enhanced rock uplift within the Himalaya
- Author
-
Tremblay, Marissa M, Fox, Matthew, Schmidt, Jennifer L, Tripathy-Lang, Alka, Wielicki, Matthew M, Harrison, T Mark, Zeitler, Peter K, and Shuster, David L
- Subjects
Tibet-Himalaya ,thermochronometry ,landscape evolution ,Tibet–Himalaya - Abstract
Exhumation of the southern Tibetan plateau margin reflects interplay between surface and lithospheric dynamics within the Himalaya-Tibet orogen. We report thermochronometric data from a 1.2-km elevation transect within granitoids of the eastern Lhasa terrane, southern Tibet, which indicate rapid exhumation exceeding 1 km/Ma from 17-16 to 12-11 Ma followed by very slow exhumation to the present. We hypothesize that these changes in exhumation occurred in response to changes in the loci and rate of rock uplift and the resulting southward shift of the main topographic and drainage divides from within the Lhasa terrane to their current positions within the Himalaya. At ∼17 Ma, steep erosive drainage networks would have flowed across the Himalaya and greater amounts of moisture would have advected into the Lhasa terrane to drive large-scale erosional exhumation. As convergence thickened and widened the Himalaya, the orographic barrier to precipitation in southern Tibet terrane would have strengthened. Previously documented midcrustal duplexing around 10 Ma generated a zone of high rock uplift within the Himalaya. We use numerical simulations as a conceptual tool to highlight how a zone of high rock uplift could have defeated transverse drainage networks, resulting in substantial drainage reorganization. When combined with a strengthening orographic barrier to precipitation, this drainage reorganization would have driven the sharp reduction in exhumation rate we observe in southern Tibet.
- Published
- 2015
12. Consistent slow exhumation in a late Cenozoic glaciated landscape: The Presidential and Carter ranges of the White Mountains in New Hampshire, USA
- Author
-
Fame, Michelle L., Spotila, James A., Owen, Lewis A., and Shuster, David L.
- Published
- 2019
- Full Text
- View/download PDF
13. Cosmogenic and nucleogenic 21Ne in quartz in a 28-meter sandstone core from the McMurdo Dry Valleys, Antarctica
- Author
-
Balco, Greg, Blard, Pierre-Henri, Shuster, David L., Stone, John O.H., and Zimmermann, Laurent
- Published
- 2019
- Full Text
- View/download PDF
14. An optimization tool for identifying Multiple Diffusion Domain Model parameters.
- Author
-
Gorin, Andrew L., Gorin, Joshua M., Bergelin, Marie, and Shuster, David L.
- Subjects
TECTONIC exhumation ,GEOLOGICAL time scales ,NOBLE gases ,LOW temperatures ,MENTAL depression ,URANIUM-lead dating - Abstract
The Multiple-Diffusion Domain (MDD) model empirically describes the diffusive behavior of noble gases in some terrestrial materials and has been commonly used to interpret
40 Ar/39 Ar stepwise degassing observations in K-feldspar. When applied in this manner, the MDD model can be used to test crustal exhumation scenarios by identifying the permissible thermal paths a rock sample could have undergone over geological time, assuming the diffusive properties of Ar within the mineral are accurately understood. More generally, the MDD model provides a framework for quantifying the temperature-dependent diffusivity of noble gasses in minerals. However, constraining MDD parameters that successfully predict the results of step-heating diffusion experiments is a complex task and the assumptions made by existing numerical methods used to quantify model parameters can bias the absolute temperatures permitted by thermal modeling. For example, the most commonly used method (Lovera et al., 1997) assumes that no domains lose more than 60 % of their gas during early heating steps. This assumption is unverifiable, and we show that Lovera et al.'s (1997) procedure may bias predicted temperatures towards lower values when it is violated. To address this potential bias and to provide greater accessibility to the MDD model, we present a new, open-source method for constraining MDD parameters from stepwise degassing experimental results, called the "MDD Tool Kit." This software optimizes all MDD parameters simultaneously and removes any need for user-defined Ea or regression-fitting choices used by other tools. In doing so, this new method eliminates assumptions about the domain size distribution. To test the validity of our thermal predictions, we then use the MDD Tool Kit to interpret the40 Ar/39 Ar results of Wong et al. (2023) from the Grayback Fault, AZ, USA. Although the resulting thermal histories are consistently ~ 60–75 °C higher than those found by Wong et al. 2023), they agree with independent observations from apatite fission track, zircon fission track, and (U-Th)/He (Howard and Foster, 1996). [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF
15. Crustal block-controlled contrasts in deformation, uplift, and exhumation in the Santa Cruz Mountains, California, USA, imaged through apatite (U-Th)/He thermochronology and 3-D geological modeling
- Author
-
Baden, Curtis W., primary, Shuster, David L., additional, Hourigan, Jeremy H., additional, Gooley, Jared T., additional, Cahill, Melanie R., additional, and Hilley, George E., additional
- Published
- 2023
- Full Text
- View/download PDF
16. Synchronising rock clocks of Mars' history: Resolving the shergottite 40Ar/39Ar age paradox
- Author
-
Cohen, Benjamin E., primary, Mark, Darren F., additional, Cassata, William S., additional, Kalnins, Lara M., additional, Lee, Martin R., additional, Smith, Caroline L., additional, and Shuster, David L., additional
- Published
- 2023
- Full Text
- View/download PDF
17. Intercalibration of multiple thermochonometric systems at the Little Devil's Postpile contact aureole
- Author
-
Shuster, David L, primary, Reiners, Peter W, additional, Karlstrom, Leif, additional, Schmidt, Jennifer L, additional, and Zeitler, Peter K, additional
- Published
- 2023
- Full Text
- View/download PDF
18. Martian Surface Paleotemperatures from Thermochronology of Meteorites
- Author
-
Shuster, David L. and Weiss, Benjamin P.
- Published
- 2005
19. Improved spatial resolution of elemental maps through inversion of LA-ICP-MS data
- Author
-
Fox, Matthew, Tripathy-Lang, Alka, and Shuster, David L.
- Published
- 2017
- Full Text
- View/download PDF
20. Physical Sedimentology and Stratigraphy of the lower Western Fan (Shenandoah formation) Jezero Crater, Mars:: Results from the Mars 2020 'Delta Front' Campaign
- Author
-
Ives, Libby, Stack‐Morgan, Katie, Gupta, Sanjeev, Caravaca, Gwénaël, Russell, Patrick, Shuster, David L., Williams, Amy, Holm-Alwmark, Sanna, Barnes, Robert, Bell, Jim F., Beyssac, Olivier, Brown, Adrian, Flannery, David, Frydenvang, Jens, Grotzinger, John, Lamb, Michael P., Horgan, Briony, Hurowitz, Joel A., Kalucha, Hemani, Kanine, Oak, Núñez, Jorge, Randazzo, Nicolas, Seeger, Christina, Simon, Justin I., Tice, Michael M., Tebolt, Michelle, Kah, Linda C., Williams, Rebecca M.E., Amundsen, Hans, Annex, Andrew M., Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Department of Earth Science and Engineering [Imperial College London], Imperial College London, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Department of Earth, Planetary and Space Sciences [Los Angeles] (EPSS), University of California [Los Angeles] (UCLA), University of California (UC)-University of California (UC), Berkeley Geochronology Center (BGC), Department of Geological Sciences [Gainesville] (UF|Geological), University of Florida [Gainesville] (UF), University of Copenhagen = Københavns Universitet (UCPH), Arizona State University [Tempe] (ASU), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), NASA Headquarters, Queensland University of Technology [Brisbane] (QUT), Division of Geological and Planetary Sciences [Pasadena], California Institute of Technology (CALTECH), Purdue University [West Lafayette], Department of Geosciences [Stony Brook], Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), University of Alberta, NASA Johnson Space Center (JSC), NASA, Texas A&M University [College Station], University of Texas at Austin [Austin], Department of Earth and Planetary Sciences [Knoxville], The University of Tennessee [Knoxville], Planetary Science Institute [Tucson] (PSI), and Vestfonna Geophysical
- Subjects
jezero crater ,delta ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,Shenandoah formatin ,[SDU]Sciences of the Universe [physics] ,[SDU.STU.ST]Sciences of the Universe [physics]/Earth Sciences/Stratigraphy ,Mars 2020 ,perseverance ,Mars ,sedimentology ,stratigraphy ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences - Abstract
International audience; The Perseverance rover is exploring a sedimentary deposit within the Late Noachian-aged (4.0-4.8 Ga) Jezero Crater interpreted to be the remnants of a delta. From April 2022 through February 2023, Perseverance investigated the basal 25 m of sediments exposed in the fan’s eastern scarp. Rover instruments collected a suite of imaging, geochemical, mineralogical, and ground-penetrating radar data.Perseverance made detailed observations through two sections of the lower fan ~600 m apart. Similar facies and stratigraphic trends are present in both sections. Each section contains two coarsening-up successions. While some finer-grained units are laterally continuous between the two sections, the coarser-grained bodies that cap each section are laterally discontinuous and do not extend between sections.Both sequences are 10 - 15 m thick. Their lower strata are dominated by sulfate-cemented, planar laminated, very fine- to medium-grained sandstone and siltstone with rare low-angle truncations. Soft-sediment deformation occurs in the form of decimeter-scale lateral folds. Laminae are normally graded. These sequences are capped by meter-scale thick sheets of coarse-grained sandstone, pebbly sandstones, and conglomerates that are variably low-angle cross-bedded, trough cross-bedded, and planar-stratified. Plane beds are massive or normally graded.Two hypotheses for the depositional environment have emerged for this succession: a sub-aerial setting with extensive “overbank” facies and shallow braided channels and a proximal pro-deltaic setting with deposition driven by hyperpycnal flows. These hypotheses will be tested against observations made by Perseverance as it traverses the “Fan Top” and by more comprehensive studies of the “Delta Front” data.
- Published
- 2023
21. Alteration history of Séítah formation rocks inferred by PIXL x-ray fluorescence, x-ray diffraction, and multispectral imaging on Mars
- Author
-
Tice, Michael M, Hurowitz, Joel A, Allwood, Abigail C, Jones, Michael WM, Orenstein, Brendan J, Davidoff, Scott, Wright, Austin P, Pedersen, David AK, Henneke, Jesper, Tosca, Nicholas J, Moore, Kelsey R, Clark, Benton C, McLennan, Scott M, Flannery, David T, Steele, Andrew, Brown, Adrian J, Zorzano, Maria-Paz, Hickman-Lewis, Keyron, Liu, Yang, VanBommel, Scott J, Schmidt, Mariek E, Kizovski, Tanya V, Treiman, Allan H, O'Neil, Lauren, Fairén, Alberto G, Shuster, David L, Gupta, Sanjeev, PIXL Team, Tice, Michael M [0000-0003-2560-1702], Hurowitz, Joel A [0000-0002-5857-8652], Jones, Michael WM [0000-0002-0720-8715], Orenstein, Brendan J [0000-0002-6586-4227], Davidoff, Scott [0000-0002-4417-7268], Wright, Austin P [0000-0002-0197-4638], Pedersen, David AK [0000-0001-7182-8567], Henneke, Jesper [0000-0002-3195-7417], Tosca, Nicholas J [0000-0003-4415-4231], Clark, Benton C [0000-0002-5546-8757], McLennan, Scott M [0000-0003-4259-7178], Flannery, David T [0000-0001-8982-496X], Steele, Andrew [0000-0001-9643-2841], Brown, Adrian J [0000-0002-9352-6989], Zorzano, Maria-Paz [0000-0002-4492-9650], Hickman-Lewis, Keyron [0000-0001-8014-233X], Liu, Yang [0000-0003-0308-0942], VanBommel, Scott J [0000-0002-6565-0827], Schmidt, Mariek E [0000-0003-4793-7899], Kizovski, Tanya V [0000-0001-8188-9769], Treiman, Allan H [0000-0002-8073-2839], O'Neil, Lauren [0000-0003-1555-8229], Fairén, Alberto G [0000-0002-2938-6010], Shuster, David L [0000-0003-2507-9977], Gupta, Sanjeev [0000-0001-6415-1332], and Apollo - University of Cambridge Repository
- Subjects
PIXL Team - Abstract
Collocated crystal sizes and mineral identities are critical for interpreting textural relationships in rocks and testing geological hypotheses, but it has been previously impossible to unambiguously constrain these properties using in situ instruments on Mars rovers. Here, we demonstrate that diffracted and fluoresced x-rays detected by the PIXL instrument (an x-ray fluorescence microscope on the Perseverance rover) provide information about the presence or absence of coherent crystalline domains in various minerals. X-ray analysis and multispectral imaging of rocks from the Séítah formation on the floor of Jezero crater shows that they were emplaced as coarsely crystalline igneous phases. Olivine grains were then partially dissolved and filled by finely crystalline or amorphous secondary silicate, carbonate, sulfate, and chloride/oxychlorine minerals. These results support the hypothesis that Séítah formation rocks represent olivine cumulates altered by fluids far from chemical equilibrium at low water-rock ratios.
- Published
- 2022
- Full Text
- View/download PDF
22. Overview and Results from the Mars 2020 Perseverance Rover’s First Science Campaign on the Jezero Crater Floor
- Author
-
Sun, Vivian Z., primary, Hand, Kevin P., additional, Stack, Kathryn M., additional, Farley, Ken A., additional, Simon, Justin I., additional, Newman, Claire, additional, Sharma, Sunanda, additional, Liu, Yang, additional, Wiens, Roger C., additional, Williams, Amy J., additional, Tosca, Nicholas, additional, Alwmark, Sanna, additional, Beyssac, Olivier, additional, Brown, Adrian, additional, Calef, Fred, additional, Cardarelli, Emily L., additional, Clavé, Elise, additional, Cohen, Barbara, additional, Corpolongo, Andrea, additional, Czaja, Andrew D., additional, Del Sesto, Tyler, additional, Fairen, Alberto, additional, Fornaro, Teresa, additional, Fouchet, Thierry, additional, Garczynski, Brad, additional, Gupta, Sanjeev, additional, Herd, Chris D. K., additional, Hickman‐Lewis, Keyron, additional, Horgan, Briony, additional, Johnson, Jeffrey, additional, Kinch, Kjartan, additional, Kizovski, Tanya, additional, Kronyak, Rachel, additional, Lange, Robert, additional, Mandon, Lucia, additional, Milkovich, Sarah, additional, Moeller, Robert, additional, Núñez, Jorge, additional, Paar, Gerhard, additional, Pyrzak, Guy, additional, Quantin‐Nataf, Cathy, additional, Shuster, David L., additional, Siljestrom, Sandra, additional, Steele, Andrew, additional, Tice, Michael, additional, Toupet, Olivier, additional, Udry, Arya, additional, Vaughan, Alicia, additional, and Wogsland, Brittan, additional
- Published
- 2023
- Full Text
- View/download PDF
23. Overview and Results From the Mars 2020 Perseverance Rover's First Science Campaign on the Jezero Crater Floor
- Author
-
Sun, Vivian Z., Hand, Kevin P., Stack, Kathryn M., Farley, Ken A., Simon, Justin I., Newman, Claire, Sharma, Sunanda, Liu, Yang, Wiens, Roger C., Williams, Amy J., Tosca, Nicholas, Alwmark, Sanna, Beyssac, Olivier, Brown, Adrian, Calef, Fred, Cardarelli, Emily L., Clavé, Elise, Cohen, Barbara, Corpolongo, Andrea, Czaja, Andrew D., Del Sesto, Tyler, Fairen, Alberto, Fornaro, Teresa, Fouchet, Thierry, Garczynski, Brad, Gupta, Sanjeev, Herd, Chris D.K., Hickman-Lewis, Keyron, Horgan, Briony, Johnson, Jeffrey, Kinch, Kjartan, Kizovski, Tanya, Kronyak, Rachel, Lange, Robert, Mandon, Lucia, Milkovich, Sarah, Moeller, Robert, Núñez, Jorge, Paar, Gerhard, Pyrzak, Guy, Quantin-Nataf, Cathy, Shuster, David L., Siljestrom, Sandra, Steele, Andrew, Tice, Michael, Toupet, Olivier, Udry, Arya, Vaughan, Alicia, Wogsland, Brittan, Sun, Vivian Z., Hand, Kevin P., Stack, Kathryn M., Farley, Ken A., Simon, Justin I., Newman, Claire, Sharma, Sunanda, Liu, Yang, Wiens, Roger C., Williams, Amy J., Tosca, Nicholas, Alwmark, Sanna, Beyssac, Olivier, Brown, Adrian, Calef, Fred, Cardarelli, Emily L., Clavé, Elise, Cohen, Barbara, Corpolongo, Andrea, Czaja, Andrew D., Del Sesto, Tyler, Fairen, Alberto, Fornaro, Teresa, Fouchet, Thierry, Garczynski, Brad, Gupta, Sanjeev, Herd, Chris D.K., Hickman-Lewis, Keyron, Horgan, Briony, Johnson, Jeffrey, Kinch, Kjartan, Kizovski, Tanya, Kronyak, Rachel, Lange, Robert, Mandon, Lucia, Milkovich, Sarah, Moeller, Robert, Núñez, Jorge, Paar, Gerhard, Pyrzak, Guy, Quantin-Nataf, Cathy, Shuster, David L., Siljestrom, Sandra, Steele, Andrew, Tice, Michael, Toupet, Olivier, Udry, Arya, Vaughan, Alicia, and Wogsland, Brittan
- Abstract
The Mars 2020 Perseverance rover landed in Jezero crater on 18 February 2021. After a 100-sol period of commissioning and the Ingenuity Helicopter technology demonstration, Perseverance began its first science campaign to explore the enigmatic Jezero crater floor, whose igneous or sedimentary origins have been much debated in the scientific community. This paper describes the campaign plan developed to explore the crater floor's Máaz and Séítah formations and summarizes the results of the campaign between sols 100–379. By the end of the campaign, Perseverance had traversed more than 5 km, created seven abrasion patches, and sealed nine samples and a witness tube. Analysis of remote and proximity science observations show that the Máaz and Séítah formations are igneous in origin and composed of five and two geologic members, respectively. The Séítah formation represents the olivine-rich cumulate formed from differentiation of a slowly cooling melt or magma body, and the Máaz formation likely represents a separate series of lava flows emplaced after Séítah. The Máaz and Séítah rocks also preserve evidence of multiple episodes of aqueous alteration in secondary minerals like carbonate, Fe/Mg phyllosilicates, sulfates, and perchlorate, and surficial coatings. Post-emplacement processes tilted the rocks near the Máaz-Séítah contact and substantial erosion modified the crater floor rocks to their present-day expressions. Results from this crater floor campaign, including those obtained upon return of the collected samples, will help to build the geologic history of events that occurred in Jezero crater and provide time constraints on the formation of the Jezero delta., The Mars 2020 Perseverance rover landed in Jezero crater on 18 February 2021. After a 100-sol period of commissioning and the Ingenuity Helicopter technology demonstration, Perseverance began its first science campaign to explore the enigmatic Jezero crater floor, whose igneous or sedimentary origins have been much debated in the scientific community. This paper describes the campaign plan developed to explore the crater floor's Máaz and Séítah formations and summarizes the results of the campaign between sols 100–379. By the end of the campaign, Perseverance had traversed more than 5 km, created seven abrasion patches, and sealed nine samples and a witness tube. Analysis of remote and proximity science observations show that the Máaz and Séítah formations are igneous in origin and composed of five and two geologic members, respectively. The Séítah formation represents the olivine-rich cumulate formed from differentiation of a slowly cooling melt or magma body, and the Máaz formation likely represents a separate series of lava flows emplaced after Séítah. The Máaz and Séítah rocks also preserve evidence of multiple episodes of aqueous alteration in secondary minerals like carbonate, Fe/Mg phyllosilicates, sulfates, and perchlorate, and surficial coatings. Post-emplacement processes tilted the rocks near the Máaz-Séítah contact and substantial erosion modified the crater floor rocks to their present-day expressions. Results from this crater floor campaign, including those obtained upon return of the collected samples, will help to build the geologic history of events that occurred in Jezero crater and provide time constraints on the formation of the Jezero delta.
- Published
- 2023
24. Data and code associated with the manuscript: Three centuries of snowpack decline at an Alpine pass revealed by cosmogenic paleothermometry and luminescence photochronometry
- Author
-
Guralnik, Benny, Tremblay, Marissa, Phillips, Marcia, Sellwood, E.L., Gribenski, Natacha, Presl, Robert, Haberkorn, Anna, Sohbati, Reza, Shuster, David L., Valla, Pierre G., Jain, Mayank, Schindler, Konrad, Wallinga, Jakob, Hippe, Kristina, Guralnik, Benny, Tremblay, Marissa, Phillips, Marcia, Sellwood, E.L., Gribenski, Natacha, Presl, Robert, Haberkorn, Anna, Sohbati, Reza, Shuster, David L., Valla, Pierre G., Jain, Mayank, Schindler, Konrad, Wallinga, Jakob, and Hippe, Kristina
- Abstract
This dataset contains the data as well as the Matlab codes needed to reproduce the results in the following manuscript: Guralnik, B., Tremblay, M.M., Phillips, M., Sellwood, E.L., Gribenski, N., Presl, R., Haberkorn, A., Sohbati, R., Shuster, D.L., Valla, P., Jain, M., Schindler, K., Wallinga, J., and Hippe, K., Three centuries of snowpack decline at an Alpine pass revealed by cosmogenic paleothermometry and luminescence photochronometry. Briefly, this manuscript presents novel datasets of cosmogenic paleothermometery (quartz He-3) and luminescence photochronometery (feldspar IRSL), whose pairing constrains the temperature and insolation history of three bedrock outcrops at the Gotthard Pass in Switzerland over the last ~15,000 years. The data include (1) measured concentrations of cosmogenic Be-10, C-14, and He-3 in quartz, (2) stepwise degassing experiments on proton irradiated quartz grains that are used to determine sample-specific He-3 diffusion kinetics, (3) best-fit multiple diffusion domain (MDD) models to the proton-induced He-3 diffusion experiments, (5) Natural radioactivity and calculated feldspar infrared stimulated luminescence (ISRL) dose rates, (6) feldspar ISRL depth profiles, and (7) high-resolution microrelief surface scans and analysis. The code includes scripts necessary to reproduce the figures and results associated with this manuscript. The code is organized by figure into subfolders, and any data needed to reproduce a figure should be included in that folder. All original codes are distributed under the GNU General Public License. Codes written by others and utilized here are redistributed under their original license according to the terms and conditions therein, and are provided in the folder 'external.' Any questions about original Matlab codes published here should be directed to Benny Guralnik, benny.guralnik@gmail.com
- Published
- 2023
25. Performance of CRONUS-P – A pyroxene reference material for helium isotope analysis
- Author
-
Schaefer, Joerg M., Winckler, Gisela, Blard, Pierre-Henri, Balco, Greg, Shuster, David L., Friedrich, Ronny, Jull, A.J.T., Wieler, Rainer, and Schluechter, Christian
- Published
- 2016
- Full Text
- View/download PDF
26. Fine-scale sedimentary architecture of the upper part of the Jezero western delta front
- Author
-
Gupta, Sanjeev, Bell III, J.F., Caravaca, Gwénaël, Mangold, Nicolas, Stack‐Morgan, Katie, Kanine, Oak, Tate, Christian, Tice, Michael M., Williams, Amy, Russell, Patrick, Núñez, Jorge, Dromart, Gilles, Williams, R, Le Mouélic, Stéphane, Barnes, Robert, Annex, Andrew, Paar, Gerhard, Holm-Alwmark, Sanna, Rice, Melissa S., Rice, James, Horgan, Briony, Grotzinger, John, Maki, Justin, Hickman Lewis, Keyron, Kah, Lindah, Shuster, David L., Simon, Justin I., Minitti, Michelle, Siebach, Kirsten, Gasnault, Olivier, Wiens, Roger, Maurice, Sylvestre, Farley, Kenneth A., Department of Earth Science and Engineering [Imperial College London], Imperial College London, Arizona State University [Tempe] (ASU), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géosciences [UMR_C 6112] (LPG), Université d'Angers (UA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Division of Geological and Planetary Sciences [Pasadena], California Institute of Technology (CALTECH), Cornell University [New York], Texas A&M University [College Station], Department of Geological Sciences [Gainesville] (UF|Geological), University of Florida [Gainesville] (UF), Department of Earth, Planetary and Space Sciences [Los Angeles] (EPSS), University of California [Los Angeles] (UCLA), University of California (UC)-University of California (UC), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Planetary Science Institute [Tucson] (PSI), Joanneum Research, University of Copenhagen = Københavns Universitet (UCPH), Geology Department, Western Washington University, Western Washington University (WWU), School of Earth and Space Exploration [Tempe] (SESE), Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, The Natural History Museum [London] (NHM), The University of Tennessee [Knoxville], Berkeley Geochronology Center (BGC), NASA Johnson Space Center (JSC), NASA, Planetary Geosciences Institute [Knoxville], Department of Earth and Planetary Sciences [Knoxville], The University of Tennessee [Knoxville]-The University of Tennessee [Knoxville], Rice University [Houston], and Lunar and Planetary Institute
- Subjects
Jezero crater ,delta ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU]Sciences of the Universe [physics] ,Mars 2020 ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Mars ,sedimentology - Abstract
International audience; Orbital and rover observations of relict geomorphic features and stratigraphic architectures indicate Mars once had a warmer, wetter climate. Constraining the character, relative timing and persistence of ancient aqueous activity on Mars is possible through detailed interrogation of the stratal geometry of aqueously deposited sedimentary bodies. Such analyses inform interpretations of Martian climate evolution, potential habitability, and search strategies for rocks that might contain potential biosignatures. NASA’s Mars 2020 Perseverance rover mission is seeking signs of ancient life in Jezero crater and is collecting a cache of Martian rock and soil samples for planned return to Earth by a future mission.A prominent sedimentary fan deposit at the western margin of Jezero crater has been interpreted to be a riverdelta that built into an ancient lake basin during the Late Noachian-Early Hesperian epochs on Mars (~3.6-3.8Ga) [1, 2]. The Perseverance rover landed on 18 February 2021 ~2.2 km from the western fan. In March-April 2022, the rover conducted a rapid traverse along the eastern and southeastern side of Jezero fan onlyobtaining a few remote sensing observations along the way. In April 2022, the rover arrived at the base of theancient delta in the Three Forks region of the crater floor adjacent to the delta front (Fig. 1). During the ‘rapidtraverse’ and the exploration of two sections at the delta front - Cape Nukshak and Hawksbill Gap –Perseverance obtained striking images from the Mastcam-Z and SuperCam’s Remote Micro-Imagerinstruments of the stratigraphy exposed stratigraphically higher up in the fan’s erosional front [3]. Images providenew views of the stratigraphy exposed in the erosional front of the western Jezero delta; in particular, showingsections of the delta previously not visible from long distance observations and at much higher resolution.Here, we report its stratigraphy and sedimentology, which provide new constraints on the nature of the fandeposits, and therefore paleoenvironmental implications.
- Published
- 2023
27. THE PETROGENETIC HISTORY OF THE JEZERO CRATER DELTA FRONT FROM MICROSCALE OBSERVATIONS BY THE MARS 2020 PIXL INSTRUMENT
- Author
-
Hurowitz, Joel, Tice, Michael M., Allwood, Abbigail, Cable, Morgan L., Bosak, T., Broz, Adrian, Caravaca, Gwénaël, Clark, Benton, Dehouck, Erwin, Fairén, Alberto, Gomez, F., Grotzinger, John, Gupta, Sanjeev, Johnson, Jeffrey, Kah, Linda, Kalucha, Hemani, Labrie, J., Li, A., Mandon, Lucia, Núñez, Jorge, Pedersen, D., Poulet, François, Randazzo, Nicolas, Scheller, Eva, Schmidt, Mariek E., Shuster, David L., Siebach, Kirsten, Siljeström, Sandra, Simon, Justin I., Tosca, Nicholas, Treiman, Allan, Vanbommel, Scott, Wade, Lawrence, Williford, Kenneth H., Yanchilina, Anastasia, Department of Geosciences [Stony Brook], Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY), Texas A&M University [College Station], Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Department of Earth, Atmospheric and Planetary Sciences [MIT, Cambridge] (EAPS), Massachusetts Institute of Technology (MIT), Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Space Science Institute [Boulder] (SSI), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Division of Geological and Planetary Sciences [Pasadena], California Institute of Technology (CALTECH), Department of Earth Science and Engineering [Imperial College London], Imperial College London, Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), The University of Tennessee [Knoxville], Department of Earth Sciences, Brock University, Department of Earth and Space Sciences, University of Washington, Danish Technical University, Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), University of Alberta, Berkeley Geochronology Center (BGC), Rice University [Houston], RISE Research Institutes of Sweden, NASA Johnson Space Center (JSC), NASA, University of Cambridge [UK] (CAM), Lunar and Planetary Institute [Houston] (LPI), Washington University in Saint Louis (WUSTL), Blue Marble Space Institute of Science (BMSIS), Impossible Sensing Inc., and Lunar and Planetary Institute
- Subjects
Jezero crater ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU]Sciences of the Universe [physics] ,[SDU.STU.ST]Sciences of the Universe [physics]/Earth Sciences/Stratigraphy ,Mars 2020 ,Mars ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Mineralogy ,geochemistry ,delta front - Abstract
International audience; On ~sol 370 of the Perseverance rover mission, the Mars 2020 Science Team completed its investigation of igneous units of the Jezero crater floor [1] and directed Perseverance to drive towards the topographic scarp that marks the interface between the crater floor and Jezero’s western delta. The “Delta Front Campaign” consisted of close-up investigation and sampling of lithologies located there.Here, we report on the major findings relevant to the provenance and diagenetic history of these lithologies deduced from measurements made by the Planetary Instrument for X-ray Lithochemistry (PIXL), a micro-focus X-ray fluorescence (XRF) microscope [2]. Data were collected from two sections at Cape Nukshak and Hawksbill Gap; outcrop and member names are from [3]. Lithologies are described here in order from base to top of each section.
- Published
- 2023
28. From lake deposits to fluvial floods at the eastern delta front of Jezero crater, Mars
- Author
-
Mangold, Nicolas, Gupta, Sanjeev, Caravaca, Gwénaël, Dromart, Gilles, Gasnault, Olivier, Le Mouélic, Stéphane, Quantin-Nataf, Cathy, Horgan, Briony, Bell III, J.F., Beyssac, Olivier, Maurice, Sylvestre, Núñez, Jorge, Shuster, David L., Stack‐Morgan, Katie, Weiss, Benjamin P., Wiens, Roger, Laboratoire de Planétologie et Géosciences [UMR_C 6112] (LPG), Université d'Angers (UA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Department of Earth Science and Engineering [Imperial College London], Imperial College London, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, Arizona State University [Tempe] (ASU), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Berkeley Geochronology Center (BGC), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Department of Earth, Atmospheric and Planetary Sciences [MIT, Cambridge] (EAPS), Massachusetts Institute of Technology (MIT), and Lunar and Planetary Institute
- Subjects
Jezero crater ,delta ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU]Sciences of the Universe [physics] ,Mars 2020 ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Mars ,sedimentology ,stratigraphy ,delta front - Abstract
International audience; The Perseverance rover landed on the floor of Jezero crater on 18 February 2021. The landing site is located ~2.2 km from the SE-facing erosional scarp of the western fan deposits. Images obtained using the Mastcam-Z camera and the Remote Micro-Imager (RMI) of the SuperCam instrument provided the first Mars ground-based observations of this western fan. These images show a deltaic architecture consistent with a paleolake, but at a level ~100 m lower than expected, suggestive of a closed system [1]. Here we report new observations made during the “rapid traverse” in March-April 2022, a period during which the rover traveled fast along the eastern and southeastern side of Jezero fan taking only a few remote sensing observations on the way.
- Published
- 2023
29. Light-toned veins and material in Jezero crater, Mars, as seen in-situ via NASA's Perseverance rover (Mars 2020 mission): stratigraphic distribution and compositional results from the supercam instrument
- Author
-
Nachon, Marion, López-Reyes, Guillermo, Meslin, Pierre-Yves, M. Ollila, Ann, Mandon, Lucia, Clavé, Elise, Forni, Olivier, Maurice, Sylvestre, Wiens, Roger, Gasnault, Olivier, Quantin-Nataf, Cathy, Mangold, Nicolas, Clegg, Samuel, Cousin, Agnès, Lasue, Jérémie, Dehouck, Erwin, Pilleri, Paolo, Team, The Supercam, Bell III, J.F., Horgan, Briony, Núñez, Jorge, Stack‐Morgan, Katie, Tebolt, Michelle, Caravaca, Gwénaël, Gupta, Sanjeev, Calef, Fred J., Crumpler, Larry, Siljeström, Sandra, Russell, Patrick, Williams, Amy, Shuster, David L., Rice, James, Brown, Adrian, Holm-Alwmark, Sanna, Kanine, Oak, Texas A&M University [College Station], Universidad de Valladolid [Valladolid] (UVa), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), Division of Geological and Planetary Sciences [Pasadena], California Institute of Technology (CALTECH), Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géosciences [UMR_C 6112] (LPG), Université d'Angers (UA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Arizona State University [Tempe] (ASU), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Department of Geological Sciences [Austin], Jackson School of Geosciences (JSG), University of Texas at Austin [Austin]-University of Texas at Austin [Austin], Department of Earth Science and Engineering [Imperial College London], Imperial College London, New Mexico Museum of Natural History and Science (NMMNHS), RISE Research Institutes of Sweden, Department of Earth, Planetary and Space Sciences [Los Angeles] (EPSS), University of California [Los Angeles] (UCLA), University of California (UC)-University of California (UC), Department of Geological Sciences [Gainesville] (UF|Geological), University of Florida [Gainesville] (UF), Berkeley Geochronology Center (BGC), School of Earth and Space Exploration [Tempe] (SESE), NASA Headquarters, Plancius Research LLC, University of Copenhagen = Københavns Universitet (UCPH), and Lunar and Planetary Institute
- Subjects
Jezero crater ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU]Sciences of the Universe [physics] ,Mars 2020 ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,sedimentology ,veins ,diagenesis - Abstract
International audience; Within Jezero crater, the Perseverance rover currently explores the lowermost-exposed scarp of the delta (Fig. 1) [1,2]. Here we: (1) present the distribution of light-toned veins currently observed via the rover along its route in Jezero crater; (2) introduce compositional results of veins as analyzed via Perseverance’s SuperCam instrument, and place them into the context of results from the other instruments.
- Published
- 2023
30. GEOMORPHOLOGY AND RELATIVE AGES OF CHANNEL BELT DEPOSITS IN JEZERO'S WESTERN DELTA
- Author
-
Kronyak, Rachel E., Stack‐Morgan, Katie, Sholes, Steven, Sun, Vivian, Gupta, Sanjeev, Shuster, David L., Caravaca, Gwénaël, Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Department of Earth Science and Engineering [Imperial College London], Imperial College London, Berkeley Geochronology Center (BGC), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), and Lunar and Planetary Institute
- Subjects
Jezero crater ,delta ,[SDU.STU.ST]Sciences of the Universe [physics]/Earth Sciences/Stratigraphy ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Mars - Abstract
International audience; Introduction: The western delta [1] in Jezero crater is composed of a sequence which includes finely layered planar strata, truncated curvilinear strata, and blocky deposits [2], interpreted as prodelta deposits, laterally accreting point-bars formed in meandering channels, and coarse-grained fluvial channel belt deposits, respectively [3-5]. The Mars 2020 Perseverance rover is completing its investigation of the lowest strata exposed within the western delta scarp [6], and will soon embark on a traverse across the delta “top,” during which it will encounter these curvilinear strata and “blocky” channel belt deposits.Here we use orbiter images and digital terrain models to map and characterize the ridge-forming blocky deposits of the western delta, reconstructing the time-order of channel belt deposition within the upper delta. We also re-examine the stratigraphic relationship between the ridges and the underlying curvilinear and planar layered deposits, as well as the largest impact craters on the top surface of the delta.
- Published
- 2023
31. SEDIMENTOLOGY AND STRATIGRAPHY OF THE LOWER DELTA SEQUENCE, JEZERO CRATER,MARS
- Author
-
Stack‐Morgan, Katie, Gupta, Sanjeev, Tebolt, Michelle, Caravaca, Gwénaël, Ives, Libby, Russell, Patrick, Shuster, David L., Williams, Amy, Holm-Alwmark, Sanna, Barnes, Robert, Bell, Jim F., Beyssac, Olivier, Brown, Adrian, Flannery, David, Grotzinger, John, Horgan, Briony, Hurowitz, Joel, Kalucha, Hemani, Kanine, Oak, Núñez, Jorge, Randazzo, Nicolas, Seeger, Christina, Simon, Justin I., Tice, Michael M., Williams, Rebecca M.E., Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Department of Earth Science and Engineering [Imperial College London], Imperial College London, University of Texas at Austin [Austin], Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Department of Earth, Planetary and Space Sciences [Los Angeles] (EPSS), University of California [Los Angeles] (UCLA), University of California (UC)-University of California (UC), Berkeley Geochronology Center (BGC), Department of Geological Sciences [Gainesville] (UF|Geological), University of Florida [Gainesville] (UF), University of Copenhagen = Københavns Universitet (UCPH), Arizona State University [Tempe] (ASU), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), NASA Headquarters, Plancius Research LLC, Queensland University of Technology [Brisbane] (QUT), Division of Geological and Planetary Sciences [Pasadena], California Institute of Technology (CALTECH), Purdue University [West Lafayette], Department of Geosciences [Stony Brook], Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), University of Alberta, NASA Johnson Space Center (JSC), NASA, Texas A&M University [College Station], Planetary Science Institute [Tucson] (PSI), and Lunar and Planetary Institute
- Subjects
Jezero crater ,delta ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU]Sciences of the Universe [physics] ,shenandoah formation ,[SDU.STU.ST]Sciences of the Universe [physics]/Earth Sciences/Stratigraphy ,Mars 2020 ,Mars ,stratigraphy ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Sedimentology - Abstract
International audience; In April 2022, the Mars 2020 Perseverance rover arrived at the base of the ancient delta in Jezero crater after completing the first year of its mission exploring and sampling aqueously altered igneous rocks of the present-day crater floor [1]. Perseverance then spent ~200 sols exploring the lower ~25 m of rock exposed within the eastern scarp of the Jezero delta [2], a sedimentary sequence informally named the ‘Shenandoah’ formation. This studydescribes the sedimentology and stratigraphy of the Shenandoah formation explored by Perseverance at two sections—'Cape Nukshak’ and ‘Hawksbill Gap’— including a description, interpretation, and depositional framework for the facies that comprise it.
- Published
- 2023
32. EXPLORING THE JEZERO DELTA FRONT: OVERVIEW OF RESULTS FROM THE MARS 2020 PERSEVERANCE ROVER'S SECOND SCIENCE CAMPAIGN
- Author
-
Williams, Amy, Russell, Patrick, Sun, Vivian Z., Shuster, David L., Stack‐Morgan, Katie, Farley, Kenneth A., del Sesto, Tyler, Kronyak, Rachel E., Bell, Jim F., Beyssac, Olivier, Brown, Adrian J., Caravaca, Gwénaël, Gupta, Sanjeev, Núñez, Jorge, Randazzo, Nicolas, Simon, Justin I., Wadhwa, Meenakshi, Department of Geological Sciences [Gainesville] (UF|Geological), University of Florida [Gainesville] (UF), Department of Earth, Planetary and Space Sciences [Los Angeles] (EPSS), University of California [Los Angeles] (UCLA), University of California (UC)-University of California (UC), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Berkeley Geochronology Center (BGC), Department of Earth and Planetary Science [UC Berkeley] (EPS), University of California [Berkeley] (UC Berkeley), California Institute of Technology (CALTECH), Arizona State University [Tempe] (ASU), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Centre National de la Recherche Scientifique (CNRS), Plancius Research LLC, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Department of Earth Science and Engineering [Imperial College London], Imperial College London, Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), University of Alberta, NASA Johnson Space Center (JSC), NASA, and Lunar and Planetary Institute
- Subjects
jezero crater ,delta ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU]Sciences of the Universe [physics] ,[SDU.STU.ST]Sciences of the Universe [physics]/Earth Sciences/Stratigraphy ,Mars ,mars 2020 ,sedimentology ,stratigraphy ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,delta front campaign - Abstract
International audience; The Perseverance rover landed in Jezero crater on February 18, 2021, with the mission goals to explore the geology, astrobiological potential, and modern environment of the crater floor and delta, and to collect and cache well-documented samples for Mars Sample Return. After completion of the “Crater Floor” science campaign [1], the rover conducted a rapid traverse (sols 379-414) to the Three Forks region of the crater floor adjacent to the delta front. From here, Perseverance’s second “Delta Front” science campaign (DFC) began on Sol 415, April 20, 2022. The DFC has explored two lobes of the delta front, the neighboring crater floor, and their contact zone, focusing on the lowest geologic exposures composing the Jezero delta (largely mapped within the delta “thin layered unit” [2]). As of January 1, 2023, Perseverance has covered 14325 km of traverse distance and collected 15 rock sample cores, 2 regolith samples, 1 atmospheric sample, and 3 witness tubes, employing a sample pair strategy where each unique sample is paired with a companion sample core from the same location, to enable the construction of two different caches [3]. After sample depot construction at Three Forks, the DFC will conclude upon re-ascent of the delta front, and the next “Delta Top” science campaign will start.
- Published
- 2023
33. Climate and topography control the size and flux of sediment produced on steep mountain slopes
- Author
-
Riebe, Clifford S., Sklar, Leonard S., Lukens, Claire E., and Shuster, David L.
- Published
- 2015
34. Interlaboratory comparison of cosmogenic 21Ne in quartz
- Author
-
Vermeesch, Pieter, Balco, Greg, Blard, Pierre-Henri, Dunai, Tibor J., Kober, Florian, Niedermann, Samuel, Shuster, David L., Strasky, Stefan, Stuart, Finlay M., Wieler, Rainer, and Zimmermann, Laurent
- Published
- 2015
- Full Text
- View/download PDF
35. Aqueous alteration processes in Jezero crater, Mars—implications for organic geochemistry
- Author
-
Scheller, Eva L., primary, Razzell Hollis, Joseph, additional, Cardarelli, Emily L., additional, Steele, Andrew, additional, Beegle, Luther W., additional, Bhartia, Rohit, additional, Conrad, Pamela, additional, Uckert, Kyle, additional, Sharma, Sunanda, additional, Ehlmann, Bethany L., additional, Abbey, William J., additional, Asher, Sanford A., additional, Benison, Kathleen C., additional, Berger, Eve L., additional, Beyssac, Olivier, additional, Bleefeld, Benjamin L., additional, Bosak, Tanja, additional, Brown, Adrian J., additional, Burton, Aaron S., additional, Bykov, Sergei V., additional, Cloutis, Ed, additional, Fairén, Alberto G., additional, DeFlores, Lauren, additional, Farley, Kenneth A., additional, Fey, Deidra M., additional, Fornaro, Teresa, additional, Fox, Allison C., additional, Fries, Marc, additional, Hickman-Lewis, Keyron, additional, Hug, William F., additional, Huggett, Joshua E., additional, Imbeah, Samara, additional, Jakubek, Ryan S., additional, Kah, Linda C., additional, Kelemen, Peter, additional, Kennedy, Megan R., additional, Kizovski, Tanya, additional, Lee, Carina, additional, Liu, Yang, additional, Mandon, Lucia, additional, McCubbin, Francis M., additional, Moore, Kelsey R., additional, Nixon, Brian E., additional, Núñez, Jorge I., additional, Rodriguez Sanchez-Vahamonde, Carolina, additional, Roppel, Ryan D., additional, Schulte, Mitchell, additional, Sephton, Mark A., additional, Sharma, Shiv K., additional, Siljeström, Sandra, additional, Shkolyar, Svetlana, additional, Shuster, David L., additional, Simon, Justin I., additional, Smith, Rebecca J., additional, Stack, Kathryn M., additional, Steadman, Kim, additional, Weiss, Benjamin P., additional, Werynski, Alyssa, additional, Williams, Amy J., additional, Wiens, Roger C., additional, Williford, Kenneth H., additional, Winchell, Kathrine, additional, Wogsland, Brittan, additional, Yanchilina, Anastasia, additional, Yingling, Rachel, additional, and Zorzano, Maria-Paz, additional
- Published
- 2022
- Full Text
- View/download PDF
36. Insights into the Sedimentary Record and Processes of the Western Delta of Jezero crater (Mars) as observed by the Mars 2020 rover Perseverance. (Invited)
- Author
-
Caravaca, Gwénaël, Mangold, Nicolas, Gupta, Sanjeev, Stack, Kathryn, Núñez, Jorge, Dromart, Gilles, Kanine, Oak, Tate, Christian, Minitti, Michelle, Sholes, Steven, Tice, Michael M., Nachon, Marion, Siebach, Kirsten, Grotzinger, John, Flannery, David, Simon, Justin I., Horgan, Briony, Le Mouélic, Stéphane, Shuster, David L., Williams, Amy, Russell, Patrick, Farley, Kenneth A., Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géosciences [UMR_C 6112] (LPG), Université d'Angers (UA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Department of Earth Science and Engineering [Imperial College London], Imperial College London, Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Division of Geological and Planetary Sciences [Pasadena], California Institute of Technology (CALTECH), Cornell University [New York], Planetary Geosciences Institute [Knoxville], Department of Earth and Planetary Sciences [Knoxville], The University of Tennessee [Knoxville]-The University of Tennessee [Knoxville], Texas A&M University [College Station], Rice University [Houston], Queensland University of Technology [Brisbane] (QUT), NASA Johnson Space Center (JSC), NASA, Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, Berkeley Geochronology Center (BGC), Department of Earth and Planetary Science [UC Berkeley] (EPS), University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), Department of Geological Sciences [Gainesville] (UF|Geological), University of Florida [Gainesville] (UF), University of California [Los Angeles] (UCLA), University of California (UC), American Geophysical Union, and CARAVACA, Gwénaël
- Subjects
paleoenvironment ,shenandoah formation ,Mars 2020 ,sedimentology ,stratigraphy ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,[SDU] Sciences of the Universe [physics] ,Jezero crater ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU]Sciences of the Universe [physics] ,[SDU.STU.ST]Sciences of the Universe [physics]/Earth Sciences/Stratigraphy ,[SDU.STU] Sciences of the Universe [physics]/Earth Sciences ,[SDU.STU.ST] Sciences of the Universe [physics]/Earth Sciences/Stratigraphy ,[SDU.STU.PL] Sciences of the Universe [physics]/Earth Sciences/Planetology - Abstract
International audience; Since its landing in Jezero crater in February 2021, the western delta of Jezero has been one of the main targets for the Perseverance rover to explore and sample sedimentary rocks that lead us to better understand the environmental evolution of the region, and could host traces of past biosignatures.During the first year, the rover explored the floor of Jezero crater, focusing on aqueously altered igneous rocks. It also provided the opportunity to remotely observe the main delta front and its remnants (e.g., the Kodiak butte). This allowed us to distinguish several beds of sandstones (with local occurrences of boulders up to 30 cm) arranged into bottomsets, foresets and topsets morphologies. This tripartite geometry and steep slopes of foresets are characteristic of a Gilbert-type delta, formed by the deposition of fluvial sediments prograding into a standing body of water, here a paleolake whose level can be constrained by the transition from the foresets to topsets. Massive beds of boulder conglomerates (with boulders up to 1.5 m) have also been observed at or close to the top of many locations along the delta’s front, hinting at a transition to higher energy flows. Collectively, these elements argue for a polyphase complex depositional history of the delta through time.The toe of the current delta front was reached by the rover on Sol 422 (April 2022) when Perseverance arrived at the Enchanted Lake outcrop, at the base of the southeastern end of the promontory informally named Cape Nukshak on the distal end of the delta. The first in-place sedimentary rocks that were observed were a succession of thinly-laminated medium/coarse sandstones and mudstones. Then, Perseverance pursued its route towards the delta and started its ascension at Hawksbill Gap to assess the first half of the lower delta succession. Strata at the base of Hawksbill Gap are mostly composed of fine to coarse-grained rocks ranging from mudstones to granule conglomerates, displaying planar to low-angle cross-stratifications.These fine-grained detrital rocks are likely to have been deposited by fluvial to deltaic processes. There, the rover collected the first sets of paired sedimentary rock samples (coarse sandstone to micro-conglomerate) that will represent the fine- and coarse-grained lower delta succession once returned to Earth.
- Published
- 2022
37. Fine-Scale Sedimentary Architecture of the Jezero Western Delta Front
- Author
-
Gupta, Sanjeev, Bell, Jim F., Caravaca, Gwénaël, Kanine, Oak, Mangold, Nicolas, Stack, Kathryn, Tate, Christian, Tice, Michael M., Williams, Amy, Russell, Patrick, Núñez, Jorge, Dromart, Gilles, Williams, Rebecca M. E., Le Mouélic, Stéphane, Barnes, Robert, Annex, Andrew, Paar, Gerhard, Holm-Alwmark, Sanna, Rice, Melissa S., Rice, James, Horgan, Briony, Grotzinger, John, Maki, Justin, Hickman-Lewis, Keyron, Kah, Linda, Shuster, David L., Simon, Justin I., Minitti, Michelle, Siebach, Kirsten, Gasnault, Olivier, Wiens, Roger, Maurice, Sylvestre, Farley, Kenneth A., Department of Earth Science and Engineering [Imperial College London], Imperial College London, Arizona State University [Tempe] (ASU), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Division of Geological and Planetary Sciences [Pasadena], California Institute of Technology (CALTECH), Laboratoire de Planétologie et Géosciences [UMR_C 6112] (LPG), Université d'Angers (UA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Cornell University [New York], Texas A&M University [College Station], Department of Geological Sciences [Gainesville] (UF|Geological), University of Florida [Gainesville] (UF), Department of Earth, Planetary and Space Sciences [Los Angeles] (EPSS), University of California [Los Angeles] (UCLA), University of California (UC)-University of California (UC), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Planetary Science Institute [Tucson] (PSI), Joanneum Research, University of Copenhagen = Københavns Universitet (UCPH), Geology Department, Western Washington University, Western Washington University (WWU), School of Earth and Space Exploration [Tempe] (SESE), Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, The Natural History Museum [London] (NHM), The University of Tennessee [Knoxville], Berkeley Geochronology Center (BGC), NASA Johnson Space Center (JSC), NASA, Planetary Geosciences Institute [Knoxville], Department of Earth and Planetary Sciences [Knoxville], The University of Tennessee [Knoxville]-The University of Tennessee [Knoxville], Rice University [Houston], and American Geophysical Union
- Subjects
gibert-delta ,Jezero crater ,delta ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU]Sciences of the Universe [physics] ,[SDU.STU.ST]Sciences of the Universe [physics]/Earth Sciences/Stratigraphy ,Mars 2020 ,sedimentology ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,sedimentary architecture - Abstract
International audience; A key exploration target for the Perseverance rover mission is a sedimentary fan deposit at the western margin of Jezero crater, which has been interpretated to be a river delta that built into a lake basin during the Late Noachian-Early Hesperian epochs on Mars (~3.6-3.8 Ga). Images from the Mastcam-Z and SuperCam Remote Micro-Imager instruments provide striking views of the stratigraphy exposed in the fan’s erosional front. Here, we report its stratigraphy and sedimentology, which place constraints on the nature of the fan deposits and their paleoenvironmental implications.Multiple Mastcam-Z mosaics show spectacular views of the stratigraphy of a prominent embayment in the delta scarp that has been informally named Hawksbill Gap, the lower section of which the rover is investigating and sampling. The prominent cliffs of the eastern and western margin of Hawksbill Gap show distinctive stratal geometries with complex stratigraphic relations. The basal succession comprises poorly exposed thinly bedded, planar laminated sandstones that are interpreted as the deposits of low-density turbidity currents. A locally prominent, resistant unit named Rocky Top comprises planar stratified pebbly sandstones also likely to be high-density turbidite deposits. The stratigraphic mid-sections of the scarps are characterized by packages of decameter-scale inclined tabular strata. These tabular beds are locally conglomeratic but predominantly comprise finer-than-conglomerate lithologies, likely pebbly sandstones. Interstratified within these are poorly sorted matrix-supported conglomerates interpreted to be debris flow deposits. The inclined strata are overlain across a sharp truncation surface by generally planar parallel thin-bedded horizontal strata that we interpret as topset beds. Conglomerate beds containing bouldersare located within the overlying topset strata. The stratal patterns are broadly consistent with deposition in a Gilbert-type delta setting with basal strata representing deposition from sediment gravity flows, inclined strata representing foreset beds, and overlying topset beds deposition from fluvial processes in a delta top environment. The boulder conglomerates indicate sediment-transport on the delta top by episodic high-discharge floods.
- Published
- 2022
38. Rapid Glacial Erosion at 1.8 Ma Revealed by ⁴He/He Thermochronometry
- Author
-
Shuster, David L., Ehlers, Todd A., Rusmore, Margaret E., and Farley, Kenneth A.
- Published
- 2005
39. Alteration history of Séítah formation rocks inferred by PIXL x-ray fluorescence, x-ray diffraction, and multispectral imaging on Mars
- Author
-
Tice, Michael M., Hurowitz, Joel A., Allwood, Abigail C., Jones, Michael W. M., Orenstein, Brendan J., Davidoff, Scott, Wright, Austin P., Pedersen, David A. K., Henneke, Jesper, Tosca, Nicholas J., Moore, Kelsey R., Clark, Benton C., McLennan, Scott M., Flannery, David T., Steele, Andrew, Brown, Adrian J., Zorzano, Maria-Paz, Hickman-Lewis, Keyron, Liu, Yang, VanBommel, Scott J., Schmidt, Mariek E., Kizovski, Tanya V., Treiman, Allan H., O'Neil, Lauren, Fairén, Alberto G., Shuster, David L., and Gupta, Sanjeev
- Subjects
Multidisciplinary - Abstract
Collocated crystal sizes and mineral identities are critical for interpreting textural relationships in rocks and testing geological hypotheses, but it has been previously impossible to unambiguously constrain these properties using in situ instruments on Mars rovers. Here, we demonstrate that diffracted and fluoresced x-rays detected by the PIXL instrument (an x-ray fluorescence microscope on the Perseverance rover) provide information about the presence or absence of coherent crystalline domains in various minerals. X-ray analysis and multispectral imaging of rocks from the Séítah formation on the floor of Jezero crater shows that they were emplaced as coarsely crystalline igneous phases. Olivine grains were then partially dissolved and filled by finely crystalline or amorphous secondary silicate, carbonate, sulfate, and chloride/oxychlorine minerals. These results support the hypothesis that Séítah formation rocks represent olivine cumulates altered by fluids far from chemical equilibrium at low water-rock ratios.
- Published
- 2022
40. Sedimentary and stratigraphic observations at the Jezero western delta front using Perseverance cameras: initial constraints on palaeoenvironments
- Author
-
Gupta, Sanjeev, Bell, Jim F., Kanine, Oak, Tate, Christian, Caravaca, Gwénaël, Núñez, Jorge, Mangold, Nicolas, Dromart, Gilles, Le Mouélic, Stéphane, Annex, Andrew, Paar, Gerhard, Holm-Alwmark, Sanna, Rice, Melissa S., Rice, Jim, Horgan, Briony, Grotzinger, John, Maki, Justin, Hickman Lewis, Keyron, Kah, Lindah, Shuster, David L., Simon, Justin I., Gasnault, Olivier, Wiens, Roger, Maurice, Sylvestre, Stack, Kathryn, Farley, Kenneth A., Department of Earth Science and Engineering [Imperial College London], Imperial College London, Arizona State University [Tempe] (ASU), Division of Geological and Planetary Sciences [Pasadena], California Institute of Technology (CALTECH), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Laboratoire de Planétologie et Géosciences [UMR_C 6112] (LPG), Université d'Angers (UA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Joanneum Research, Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Centre de biophysique moléculaire (CBM), Université d'Orléans (UO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), The University of Tennessee [Knoxville], Berkeley Geochronology Center (BGC), Center for Isotope Cosmochemistry and Geochronology, NASA Johnson Space, and Europlanet
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU]Sciences of the Universe [physics] ,[SDU.STU.ST]Sciences of the Universe [physics]/Earth Sciences/Stratigraphy ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences - Abstract
International audience; NASA’s Mars 2020 Perseverance rover mission is seeking signs of ancient life in Jezero crater and is collecting a cache of Martian rock and soil samples for planned return to Earth by a future mission. A key exploration target for the mission is a prominent sedimentary fan deposit at the western margin of Jezero crater that has been interpretated to be a river delta that built into an ancient lake basin during the Late Noachian-Early Hesperian epochs on Mars (~3.6-3.8 Ga) [1, 2]. Long distance observations of a remnant butte (informally named Kodiak) related to the western fan demonstrated that it comprised two distinct Gilbert-type delta units [2, 3].In her approach to the western fan, Perseverance drove alongside the east-facing scarp of the western fan and arrived at a key location called Three Forks - a setting off point for delta exploration - in April 2022. Images from the Mastcam-Z and SuperCam Remote Micro-Imager instrumentsprovide new views of the stratigraphy exposed in the erosional front of the western Jezero delta; in particular, showing sections of the delta previously not visible from long distance observations and at much higher resolution. These observations provide the first direct evidence of delta geometries in the main western fan deposit. Here, we report its stratigraphy and sedimentology, which providenew constraints on the nature of the fan deposits, and therefore paleoenvironmental implications.
- Published
- 2022
41. Geological, multispectral, and meteorological imaging results from the Mars 2020 Perseverance rover in Jezero crater
- Author
-
Bell, James F., primary, Maki, Justin N., additional, Alwmark, Sanna, additional, Ehlmann, Bethany L., additional, Fagents, Sarah A., additional, Grotzinger, John P., additional, Gupta, Sanjeev, additional, Hayes, Alexander, additional, Herkenhoff, Ken E., additional, Horgan, Briony H. N., additional, Johnson, Jeffrey R., additional, Kinch, Kjartan B., additional, Lemmon, Mark T., additional, Madsen, Morten B., additional, Núñez, Jorge I., additional, Paar, Gerhard, additional, Rice, Melissa, additional, Rice, James W., additional, Schmitz, Nicole, additional, Sullivan, Robert, additional, Vaughan, Alicia, additional, Wolff, Mike J., additional, Bechtold, Andreas, additional, Bosak, Tanja, additional, Duflot, Louise E., additional, Fairén, Alberto G., additional, Garczynski, Brad, additional, Jaumann, Ralf, additional, Merusi, Marco, additional, Million, Chase, additional, Ravanis, Eleni, additional, Shuster, David L., additional, Simon, Justin, additional, St. Clair, Michael, additional, Tate, Christian, additional, Walter, Sebastian, additional, Weiss, Benjamin, additional, Bailey, Alyssa M., additional, Bertrand, Tanguy, additional, Beyssac, Olivier, additional, Brown, Adrian J., additional, Caballo-Perucha, Piluca, additional, Caplinger, Michael A., additional, Caudill, Christy M., additional, Cary, Francesca, additional, Cisneros, Ernest, additional, Cloutis, Edward A., additional, Cluff, Nathan, additional, Corlies, Paul, additional, Crawford, Kelsie, additional, Curtis, Sabrina, additional, Deen, Robert, additional, Dixon, Darian, additional, Donaldson, Christopher, additional, Barrington, Megan, additional, Ficht, Michelle, additional, Fleron, Stephanie, additional, Hansen, Michael, additional, Harker, David, additional, Howson, Rachel, additional, Huggett, Joshua, additional, Jacob, Samantha, additional, Jensen, Elsa, additional, Jensen, Ole B., additional, Jodhpurkar, Mohini, additional, Joseph, Jonathan, additional, Juarez, Christian, additional, Kah, Linda C., additional, Kanine, Oak, additional, Kristensen, Jessica, additional, Kubacki, Tex, additional, Lapo, Kristiana, additional, Magee, Angela, additional, Maimone, Michael, additional, Mehall, Greg L., additional, Mehall, Laura, additional, Mollerup, Jess, additional, Viúdez-Moreiras, Daniel, additional, Paris, Kristen, additional, Powell, Kathryn E., additional, Preusker, Frank, additional, Proton, Jon, additional, Rojas, Corrine, additional, Sallurday, Danny, additional, Saxton, Kim, additional, Scheller, Eva, additional, Seeger, Christiana H., additional, Starr, Mason, additional, Stein, Nathan, additional, Turenne, Nathalie, additional, Van Beek, Jason, additional, Winhold, Andrew G., additional, and Yingling, Rachel, additional
- Published
- 2022
- Full Text
- View/download PDF
42. Cosmogenic 3He paleothermometry on post-LGM glacial bedrock within the central European Alps
- Author
-
Gribenski, Natacha, primary, Tremblay, Marissa M., additional, Valla, Pierre G., additional, Balco, Greg, additional, Guralnik, Benny, additional, and Shuster, David L., additional
- Published
- 2022
- Full Text
- View/download PDF
43. Late Cenozoic deepening of Yosemite Valley, USA
- Author
-
Cuffey, Kurt M., primary, Tripathy-Lang, Alka, additional, Fox, Matthew, additional, Stock, Greg M., additional, and Shuster, David L., additional
- Published
- 2022
- Full Text
- View/download PDF
44. Reply to Flowers et al.: Existing thermochronologic data constrain Snowball glacial erosion below the Great Unconformity
- Author
-
McDannell, Kalin T., primary, Keller, C. Brenhin, additional, Guenthner, William R., additional, Zeitler, Peter K., additional, and Shuster, David L., additional
- Published
- 2022
- Full Text
- View/download PDF
45. Persistence and origin of the lunar core dynamo
- Author
-
Suavet, Clément, Weiss, Benjamin P., Cassata, William S., Shuster, David L., Gattacceca, Jérôme, Chan, Lindsey, Garrick-Bethell, Ian, Head, James W., Grove, Timothy L., and Fuller, Michael D.
- Published
- 2013
46. Geological, multispectral, and meteorological imaging results from the Mars 2020 Perseverance rover in Jezero crater
- Author
-
Bell, James F., Maki, Justin N., Alwmark, Sanna, Ehlmann, Bethany L., Fagents, Sarah A., Grotzinger, John P., Gupta, Sanjeev, Hayes, Alexander, Herkenhoff, Ken E., Horgan, Briony H. N., Johnson, Jeffrey R., Kinch, Kjartan B., Lemmon, Mark T., Madsen, Morten B., Nunez, Jorge, Paar, Gerhard, Rice, Melissa, Rice, James W., Schmitz, Nicole, Sullivan, Robert, Vaughan, Alicia, Wolff, Mike J., Bechtold, Andreas, Bosak, Tanja, Duflot, Louise E., Fairen, Alberto G., Garczynski, Brad, Jaumann, Ralf, Merusi, Marco, Million, Chase, Ravanis, Eleni, Shuster, David L., Simon, Justin, St Clair, Michael, Tate, Christian, Walter, Sebastian, Weiss, Benjamin, Bailey, Alyssa M., Bertrand, Tanguy, Beyssac, Olivier, Brown, Adrian J., Caballo-Perucha, Piluca, Caplinger, Michael A., Caudill, Christy M., Cary, Francesca, Cisneros, Ernest, Cloutis, Edward A., Cluff, Nathan, Corlies, Paul, Crawford, Kelsie, Curtis, Sabrina, Deen, Robert, Dixon, Darian, Donaldson, Christopher, Barrington, Megan, Ficht, Michelle, Fleron, Stephanie, Hansen, Michael, Harker, David, Howson, Rachel, Huggett, Joshua, Jacob, Samantha, Jensen, Elsa, Jensen, Ole B., Jodhpurkar, Mohini, Joseph, Jonathan, Juarez, Christian, Kah, Linda C., Kanine, Oak, Kristensen, Jessica, Kubacki, Tex, Lapo, Kristiana, Magee, Angela, Maimone, Michael, Mehall, Greg L., Mehall, Laura, Mollerup, Jess, Viudez-Moreiras, Daniel, Paris, Kristen, Powell, Kathryn E., Preusker, Frank, Proton, Jon, Rojas, Corrine, Sallurday, Danny, Saxton, Kim, Scheller, Eva, Seeger, Christiana H., Starr, Mason, Stein, Nathan, Turenne, Nathalie, Van Beek, Jason, Winhold, Andrew G., Yingling, Rachel, Bell, James F., Maki, Justin N., Alwmark, Sanna, Ehlmann, Bethany L., Fagents, Sarah A., Grotzinger, John P., Gupta, Sanjeev, Hayes, Alexander, Herkenhoff, Ken E., Horgan, Briony H. N., Johnson, Jeffrey R., Kinch, Kjartan B., Lemmon, Mark T., Madsen, Morten B., Nunez, Jorge, Paar, Gerhard, Rice, Melissa, Rice, James W., Schmitz, Nicole, Sullivan, Robert, Vaughan, Alicia, Wolff, Mike J., Bechtold, Andreas, Bosak, Tanja, Duflot, Louise E., Fairen, Alberto G., Garczynski, Brad, Jaumann, Ralf, Merusi, Marco, Million, Chase, Ravanis, Eleni, Shuster, David L., Simon, Justin, St Clair, Michael, Tate, Christian, Walter, Sebastian, Weiss, Benjamin, Bailey, Alyssa M., Bertrand, Tanguy, Beyssac, Olivier, Brown, Adrian J., Caballo-Perucha, Piluca, Caplinger, Michael A., Caudill, Christy M., Cary, Francesca, Cisneros, Ernest, Cloutis, Edward A., Cluff, Nathan, Corlies, Paul, Crawford, Kelsie, Curtis, Sabrina, Deen, Robert, Dixon, Darian, Donaldson, Christopher, Barrington, Megan, Ficht, Michelle, Fleron, Stephanie, Hansen, Michael, Harker, David, Howson, Rachel, Huggett, Joshua, Jacob, Samantha, Jensen, Elsa, Jensen, Ole B., Jodhpurkar, Mohini, Joseph, Jonathan, Juarez, Christian, Kah, Linda C., Kanine, Oak, Kristensen, Jessica, Kubacki, Tex, Lapo, Kristiana, Magee, Angela, Maimone, Michael, Mehall, Greg L., Mehall, Laura, Mollerup, Jess, Viudez-Moreiras, Daniel, Paris, Kristen, Powell, Kathryn E., Preusker, Frank, Proton, Jon, Rojas, Corrine, Sallurday, Danny, Saxton, Kim, Scheller, Eva, Seeger, Christiana H., Starr, Mason, Stein, Nathan, Turenne, Nathalie, Van Beek, Jason, Winhold, Andrew G., and Yingling, Rachel
- Abstract
Perseverance's Mastcam-Z instrument provides high-resolution stereo and multispectral images with a unique combination of spatial resolution, spatial coverage, and wavelength coverage along the rover's traverse in Jezero crater, Mars. Images reveal rocks consistent with an igneous (including volcanic and/or volcaniclastic) and/or impactite origin and limited aqueous alteration, including polygonally fractured rocks with weathered coatings; massive boulder-forming bedrock consisting of mafic silicates, ferric oxides, and/or iron-bearing alteration minerals; and coarsely layered outcrops dominated by olivine. Pyroxene dominates the iron-bearing mineralogy in the finegrained regolith, while olivine dominates the coarse-grained regolith. Solar and atmospheric imaging observations show significant intra- and intersol variations in dust optical depth and water ice clouds, as well as unique examples of boundary layer vortex action from both natural (dust devil) and Ingenuity helicopter-induced dust lifting. High-resolution stereo imaging also provides geologic context for rover operations, other instrument observations, and sample selection, characterization, and confirmation.
- Published
- 2022
47. Compositionally and density stratified igneous terrain in Jezero crater, Mars
- Author
-
Wiens, Roger C., Udry, Arya, Beyssac, Olivier, Quantin-Nataf, Cathy, Mangold, Nicolas, Cousin, Agnès, Mandon, Lucia, Bosak, Tanja, Forni, Olivier, McLennan, Scott M., Sautter, Violaine, Brown, Adrian, Benzerara, Karim, Johnson, Jeffrey R., Mayhew, Lisa, Maurice, Sylvestre, Anderson, Ryan B., Clegg, Samuel M., Crumpler, Larry, Gabriel, Travis S. J., Gasda, Patrick, Hall, James, Horgan, Briony H. N., Kah, Linda, Legett, Carey, Madariaga, Juan Manuel, Meslin, Pierre-Yves, Ollila, Ann M., Poulet, Francois, Royer, Clement, Sharma, Shiv K., Siljeström, Sandra, Simon, Justin I., Acosta-Maeda, Tayro E., Alvarez-Llamas, Cesar, Angel, S. Michael, Arana, Gorka, Beck, Pierre, Bernard, Sylvain, Bertrand, Tanguy, Bousquet, Bruno, Castro, Kepa, Chide, Baptiste, Clavé, Elise, Cloutis, Ed, Connell, Stephanie, Dehouck, Erwin, Dromart, Gilles, Fischer, Woodward, Fouchet, Thierry, Francis, Raymond, Frydenvang, Jens, Gasnault, Olivier, Gibbons, Erin, Gupta, Sanjeev, Hausrath, Elisabeth M., Jacob, Xavier, Kalucha, Hemani, Kelly, Evan, Knutsen, Elise, Lanza, Nina, Laserna, Javier, Lasue, Jeremie, Le Mouélic, Stéphane, Leveille, Richard, Lopez-Reyes, Guillermo, Lorenz, Ralph, Manrique, Jose Antonio, Martinez-Frias, Jesus, McConnochie, Tim, Melikechi, Noureddine, Mimoun, David, Montmessin, Franck, Moros, Javier, Murdoch, Naomi, Pilleri, Paolo, Pilorget, Cedric, Pinet, Patrick, Rapin, William, Rull, Fernando, Schröder, Susanne, Shuster, David L., Smith, Rebecca J., Stott, Alexander E., Tarnas, Jesse, Turenne, Nathalie, Veneranda, Marco, Vogt, David S., Weiss, Benjamin P., Willis, Peter, Stack, Kathryn M., Williford, Kenneth H., Farley, Kenneth A., Wiens, Roger C., Udry, Arya, Beyssac, Olivier, Quantin-Nataf, Cathy, Mangold, Nicolas, Cousin, Agnès, Mandon, Lucia, Bosak, Tanja, Forni, Olivier, McLennan, Scott M., Sautter, Violaine, Brown, Adrian, Benzerara, Karim, Johnson, Jeffrey R., Mayhew, Lisa, Maurice, Sylvestre, Anderson, Ryan B., Clegg, Samuel M., Crumpler, Larry, Gabriel, Travis S. J., Gasda, Patrick, Hall, James, Horgan, Briony H. N., Kah, Linda, Legett, Carey, Madariaga, Juan Manuel, Meslin, Pierre-Yves, Ollila, Ann M., Poulet, Francois, Royer, Clement, Sharma, Shiv K., Siljeström, Sandra, Simon, Justin I., Acosta-Maeda, Tayro E., Alvarez-Llamas, Cesar, Angel, S. Michael, Arana, Gorka, Beck, Pierre, Bernard, Sylvain, Bertrand, Tanguy, Bousquet, Bruno, Castro, Kepa, Chide, Baptiste, Clavé, Elise, Cloutis, Ed, Connell, Stephanie, Dehouck, Erwin, Dromart, Gilles, Fischer, Woodward, Fouchet, Thierry, Francis, Raymond, Frydenvang, Jens, Gasnault, Olivier, Gibbons, Erin, Gupta, Sanjeev, Hausrath, Elisabeth M., Jacob, Xavier, Kalucha, Hemani, Kelly, Evan, Knutsen, Elise, Lanza, Nina, Laserna, Javier, Lasue, Jeremie, Le Mouélic, Stéphane, Leveille, Richard, Lopez-Reyes, Guillermo, Lorenz, Ralph, Manrique, Jose Antonio, Martinez-Frias, Jesus, McConnochie, Tim, Melikechi, Noureddine, Mimoun, David, Montmessin, Franck, Moros, Javier, Murdoch, Naomi, Pilleri, Paolo, Pilorget, Cedric, Pinet, Patrick, Rapin, William, Rull, Fernando, Schröder, Susanne, Shuster, David L., Smith, Rebecca J., Stott, Alexander E., Tarnas, Jesse, Turenne, Nathalie, Veneranda, Marco, Vogt, David S., Weiss, Benjamin P., Willis, Peter, Stack, Kathryn M., Williford, Kenneth H., and Farley, Kenneth A.
- Abstract
Before Perseverance, Jezero crater's floor was variably hypothesized to have a lacustrine, lava, volcanic airfall, or aeolian origin. SuperCam observations in the first 286 Mars days on Mars revealed a volcanic and intrusive terrain with compositional and density stratification. The dominant lithology along the traverse is basaltic, with plagioclase enrichment in stratigraphically higher locations. Stratigraphically lower, layered rocks are richer in normative pyroxene. The lowest observed unit has the highest inferred density and is olivine-rich with coarse (1.5 millimeters) euhedral, relatively unweathered grains, suggesting a cumulate origin. This is the first martian cumulate and shows similarities to martian meteorites, which also express olivine disequilibrium. Alteration materials including carbonates, sulfates, perchlorates, hydrated silicates, and iron oxides are pervasive but low in abundance, suggesting relatively brief lacustrine conditions. Orbital observations link the Jezero floor lithology to the broader Nili-Syrtis region, suggesting that density-driven compositional stratification is a regional characteristic.
- Published
- 2022
48. Cosmogenic 3He paleothermometry on post-LGM glacial bedrock within the central European Alps
- Author
-
Gribenski, Natacha, Tremblay, Marissa M., Valla, Pierre G., Balco, Greg, Guralnik, Benny, Shuster, David L., Gribenski, Natacha, Tremblay, Marissa M., Valla, Pierre G., Balco, Greg, Guralnik, Benny, and Shuster, David L.
- Abstract
Diffusion properties of cosmogenic 3He in quartz at Earth surface temperatures offer the potential to directly reconstruct the evolution of past in situ temperatures from formerly glaciated areas, which is important information for improving our understanding of glacier-climate interactions. In this study, we apply cosmogenic 3He paleothermometry to rock surfaces gradually exposed from the Last Glacial Maximum (LGM) to the Holocene period along two deglaciation profiles in the European Alps (Mont Blanc and Aar massifs). Laboratory experiments conducted on one representative sample per site indicate significant differences in 3He diffusion kinetics between the two sites, with quasi-linear Arrhenius behavior observed in quartz from the Mont Blanc site and complex Arrhenius behavior observed in quartz from the Aar site, which we interpret to indicate the presence of multiple diffusion domains (MDD). Assuming the same diffusion kinetics apply to all quartz samples along each profile, forward model simulations indicate that the cosmogenic 3He abundance in all the investigated samples should be at equilibrium with present-day temperature conditions. However, measured cosmogenic 3He concentrations in samples exposed since before the Holocene indicate an apparent 3He thermal signal significantly colder than today. This observed 3He thermal signal cannot be explained with a realistic post-LGM mean annual temperature evolution in the European Alps at the study sites. One hypothesis is that the diffusion kinetics and MDD model applied may not provide sufficiently accurate, quantitative paleo-temperature estimates in these samples; thus, while a pre-Holocene 3He thermal signal is indeed preserved in the quartz, the helium diffusivity would be lower at Alpine surface temperatures than our diffusion models predict. Alternatively, if the modeled helium diffusion kinetics is accurate, the observ
- Published
- 2022
49. An Ancient Core Dynamo in Asteroid Vesta
- Author
-
Fu, Roger R., Weiss, Benjamin P., Shuster, David L., Gattacceca, Jérôme, Grove, Timothy L., Suavet, Clément, Lima, Eduardo A., Li, Luyao, and Kuan, Aaron T.
- Published
- 2012
- Full Text
- View/download PDF
50. A Long-Lived Lunar Core Dynamo
- Author
-
Shea, Erin K., Weiss, Benjamin P., Cassata, William S., Shuster, David L., Tikoo, Sonia M., Gattacceca, Jérôme, Grove, Timothy L., and Fuller, Michael D.
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.