1. Nano-Photonic Metrics: Fundamentals and Experimental Demonstration
- Author
-
Takuro Ohteki, Shun-ichi Sakai, and Naoya Tate
- Subjects
optical near-fields ,physical security ,anti-counterfeiting ,Applied optics. Photonics ,TA1501-1820 - Abstract
As the popularity of Internet of Things (IoT) increases, there is a considerable demand for the improvement of physical security, owing to the increase in edge devices. However, fabrication and measurement techniques used by attackers are also improving continuously, and hence, it is becoming increasingly difficult to ensure the security of each device using conventional approaches. To counter variable attacks in this context, the concept of nano-photonic metrics has been proposed, which is based on a functional collaboration between existing physical security and near-field optical techniques. In this approach, the optical signals obtained from optical near-field interactions, which are induced between the target with nano-scale structures and the tip of the scanning probe as the reader, are defined as the unique features of each device to be authenticated. When attackers attempt spoofing, they must fabricate not only clones of original nano-scale structures but also the scanning probe; otherwise, they cannot impersonate regular users. Moreover, the estimation of the nano-scale structures of the target and the characteristics of the probe is typically a complex, inverse problem. Therefore, a novel authentication is expected to be performed. In this paper, we report the results of the quantitative evaluations of the performance from the viewpoint of physical security and the experimental verification of the practicality of the proposed approach.
- Published
- 2022
- Full Text
- View/download PDF