Igor Pajovic, Carles Aranda, Mikel Bengoa Paulis, Eleonora Flacio, Romeo Bellini, Maya Guéguen, Cipriano Foxi, Katja Kalan, Xiao‐Guang Chen, Mustafa M. Akıner, Hélène Barre‐Cardi, Julien Renaud, Xiaohong Zhou, Thierry Gaude, Bulent Alten, Roger Eritja, Laurence Després, Nataša Turić, Goran Vignjević, Shinji Kasai, Dušan Petrić, Gonzalo M. Vazquez-Prokopec, Stéphanie Sherpa, Intan H. Ishak, Fabrizio Montarsi, Enkelejda Velo, Rosa Termine, Michael G. B. Blum, Frederic Laporte, Laboratoire d'Ecologie Alpine (LECA), Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Université Joseph Fourier - Grenoble 1 (UJF)-Université Grenoble Alpes (UGA), Centre d'Immunologie de Marseille - Luminy (CIML), Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), CNRS, University Joseph Fourier, Centre National de la Recherche Scientifique (CNRS), Reproduction et développement des plantes (RDP), École normale supérieure - Lyon (ENS Lyon)-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Hacettepe University = Hacettepe Üniversitesi, Institute of Agrifood Research and Technology (IRTA), Serv. Control Mosquits, Consell Comarcal Baix Llobregat, National Institute of Infectious Diseases of Tokyo, University of Montenegro (UCG), University of Novi Sad, Department of Control of Infectious Diseases [Tirana], Laboratory of Medical Entomology [Tirana], Institute of Public Health [Albania]-Institute of Public Health [Albania], Laboratoire de Biologie des Populations d'Altitude, Laboratoire d'Ecologie Alpine (LECA ), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), National Institute of Infectious Diseases [Tokyo], Producció Animal, Sanitat Animal, Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Grenoble - UMR 5525 (TIMC-IMAG), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), École normale supérieure de Lyon (ENS de Lyon)-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), and Institut de Recerca i Tecnologia Agroalimentàries = Institute of Agrifood Research and Technology (IRTA)
Invasive species can encounter environments different from their source populations, which may trigger rapid adaptive changes after introduction (niche shift hypothesis). To test this hypothesis, we investigated whether postintroduction evolution is correlated with contrasting environmental conditions between the European invasive and source ranges in the Asian tiger mosquito Aedes albopictus. The comparison of environmental niches occupied in European and source population ranges revealed more than 96% overlap between invasive and source niches, supporting niche conservatism. However, we found evidence for postintroduction genetic evolution by reanalyzing a published ddRADseq genomic dataset from 90 European invasive populations using genotype–environment association (GEA) methods and generalized dissimilarity modeling (GDM). Three loci, among which a putative heat‐shock protein, exhibited significant allelic turnover along the gradient of winter precipitation that could be associated with ongoing range expansion. Wing morphometric traits weakly correlated with environmental gradients within Europe, but wing size differed between invasive and source populations located in different climatic areas. Niche similarities between source and invasive ranges might have facilitated the establishment of populations. Nonetheless, we found evidence for environmental‐induced adaptive changes after introduction. The ability to rapidly evolve observed in invasive populations (genetic shift) together with a large proportion of unfilled potential suitable areas (80%) pave the way to further spread of Ae. albopictus in Europe., Invasive species can encounter environments different from their source populations, which may trigger rapid adaptive changes after introduction. Combining niche distribution modeling, genotype–environment associations and generalized dissimilarity modeling, we found evidence for environmental‐induced adaptive changes in the Asian tiger mosquito Aedes albopictus after its introduction in Europe. The ability to rapidly evolve observed in invasive populations together with a large proportion of unfilled potential suitable areas pave the way to further spread of Ae. albopictus in Europe.