1. TWICE IS ENOUGH FOR DANGEROUS EIGENVALUES.
- Author
-
HORNING, ANDREW and YUJI NAKATSUKASA
- Subjects
- *
EIGENVALUES , *EIGENVECTORS , *KRYLOV subspace , *MATRICES (Mathematics) - Abstract
We analyze the stability of a class of eigensolvers that target interior eigenvalues with rational filters. We show that subspace iteration with a rational filter is robust even when an eigenvalue is near a filter's pole. These dangerous eigenvalues contribute to large round-off errors in the first iteration but are self-correcting in later iterations. For matrices with orthogonal eigenvectors (e.g., real-symmetric or complex Hermitian), two iterations are enough to reduce round-off errors to the order of the unit round-off. In contrast, Krylov methods accelerated by rational filters with fixed poles typically fail to converge to unit round-off accuracy when an eigenvalue is close to a pole. In the context of Arnoldi with shift-and-invert enhancement, we demonstrate a simple restart strategy that recovers full precision in the target eigenpairs. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF