50 results on '"Shenoy, Ashish"'
Search Results
2. EgoQR: Efficient QR Code Reading in Egocentric Settings
- Author
-
Moslehpour, Mohsen, Lu, Yichao, Chuang, Pierce, Shenoy, Ashish, Chatterjee, Debojeet, Harpale, Abhay, Jayakumar, Srihari, Bhardwaj, Vikas, Nam, Seonghyeon, and Kumar, Anuj
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
QR codes have become ubiquitous in daily life, enabling rapid information exchange. With the increasing adoption of smart wearable devices, there is a need for efficient, and friction-less QR code reading capabilities from Egocentric point-of-views. However, adapting existing phone-based QR code readers to egocentric images poses significant challenges. Code reading from egocentric images bring unique challenges such as wide field-of-view, code distortion and lack of visual feedback as compared to phones where users can adjust the position and framing. Furthermore, wearable devices impose constraints on resources like compute, power and memory. To address these challenges, we present EgoQR, a novel system for reading QR codes from egocentric images, and is well suited for deployment on wearable devices. Our approach consists of two primary components: detection and decoding, designed to operate on high-resolution images on the device with minimal power consumption and added latency. The detection component efficiently locates potential QR codes within the image, while our enhanced decoding component extracts and interprets the encoded information. We incorporate innovative techniques to handle the specific challenges of egocentric imagery, such as varying perspectives, wider field of view, and motion blur. We evaluate our approach on a dataset of egocentric images, demonstrating 34% improvement in reading the code compared to an existing state of the art QR code readers., Comment: Submitted to ICLR 2025
- Published
- 2024
3. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context
- Author
-
Gemini Team, Georgiev, Petko, Lei, Ving Ian, Burnell, Ryan, Bai, Libin, Gulati, Anmol, Tanzer, Garrett, Vincent, Damien, Pan, Zhufeng, Wang, Shibo, Mariooryad, Soroosh, Ding, Yifan, Geng, Xinyang, Alcober, Fred, Frostig, Roy, Omernick, Mark, Walker, Lexi, Paduraru, Cosmin, Sorokin, Christina, Tacchetti, Andrea, Gaffney, Colin, Daruki, Samira, Sercinoglu, Olcan, Gleicher, Zach, Love, Juliette, Voigtlaender, Paul, Jain, Rohan, Surita, Gabriela, Mohamed, Kareem, Blevins, Rory, Ahn, Junwhan, Zhu, Tao, Kawintiranon, Kornraphop, Firat, Orhan, Gu, Yiming, Zhang, Yujing, Rahtz, Matthew, Faruqui, Manaal, Clay, Natalie, Gilmer, Justin, Co-Reyes, JD, Penchev, Ivo, Zhu, Rui, Morioka, Nobuyuki, Hui, Kevin, Haridasan, Krishna, Campos, Victor, Mahdieh, Mahdis, Guo, Mandy, Hassan, Samer, Kilgour, Kevin, Vezer, Arpi, Cheng, Heng-Tze, de Liedekerke, Raoul, Goyal, Siddharth, Barham, Paul, Strouse, DJ, Noury, Seb, Adler, Jonas, Sundararajan, Mukund, Vikram, Sharad, Lepikhin, Dmitry, Paganini, Michela, Garcia, Xavier, Yang, Fan, Valter, Dasha, Trebacz, Maja, Vodrahalli, Kiran, Asawaroengchai, Chulayuth, Ring, Roman, Kalb, Norbert, Soares, Livio Baldini, Brahma, Siddhartha, Steiner, David, Yu, Tianhe, Mentzer, Fabian, He, Antoine, Gonzalez, Lucas, Xu, Bibo, Kaufman, Raphael Lopez, Shafey, Laurent El, Oh, Junhyuk, Hennigan, Tom, Driessche, George van den, Odoom, Seth, Lucic, Mario, Roelofs, Becca, Lall, Sid, Marathe, Amit, Chan, Betty, Ontanon, Santiago, He, Luheng, Teplyashin, Denis, Lai, Jonathan, Crone, Phil, Damoc, Bogdan, Ho, Lewis, Riedel, Sebastian, Lenc, Karel, Yeh, Chih-Kuan, Chowdhery, Aakanksha, Xu, Yang, Kazemi, Mehran, Amid, Ehsan, Petrushkina, Anastasia, Swersky, Kevin, Khodaei, Ali, Chen, Gowoon, Larkin, Chris, Pinto, Mario, Yan, Geng, Badia, Adria Puigdomenech, Patil, Piyush, Hansen, Steven, Orr, Dave, Arnold, Sebastien M. R., Grimstad, Jordan, Dai, Andrew, Douglas, Sholto, Sinha, Rishika, Yadav, Vikas, Chen, Xi, Gribovskaya, Elena, Austin, Jacob, Zhao, Jeffrey, Patel, Kaushal, Komarek, Paul, Austin, Sophia, Borgeaud, Sebastian, Friso, Linda, Goyal, Abhimanyu, Caine, Ben, Cao, Kris, Chung, Da-Woon, Lamm, Matthew, Barth-Maron, Gabe, Kagohara, Thais, Olszewska, Kate, Chen, Mia, Shivakumar, Kaushik, Agarwal, Rishabh, Godhia, Harshal, Rajwar, Ravi, Snaider, Javier, Dotiwalla, Xerxes, Liu, Yuan, Barua, Aditya, Ungureanu, Victor, Zhang, Yuan, Batsaikhan, Bat-Orgil, Wirth, Mateo, Qin, James, Danihelka, Ivo, Doshi, Tulsee, Chadwick, Martin, Chen, Jilin, Jain, Sanil, Le, Quoc, Kar, Arjun, Gurumurthy, Madhu, Li, Cheng, Sang, Ruoxin, Liu, Fangyu, Lamprou, Lampros, Munoz, Rich, Lintz, Nathan, Mehta, Harsh, Howard, Heidi, Reynolds, Malcolm, Aroyo, Lora, Wang, Quan, Blanco, Lorenzo, Cassirer, Albin, Griffith, Jordan, Das, Dipanjan, Lee, Stephan, Sygnowski, Jakub, Fisher, Zach, Besley, James, Powell, Richard, Ahmed, Zafarali, Paulus, Dominik, Reitter, David, Borsos, Zalan, Joshi, Rishabh, Pope, Aedan, Hand, Steven, Selo, Vittorio, Jain, Vihan, Sethi, Nikhil, Goel, Megha, Makino, Takaki, May, Rhys, Yang, Zhen, Schalkwyk, Johan, Butterfield, Christina, Hauth, Anja, Goldin, Alex, Hawkins, Will, Senter, Evan, Brin, Sergey, Woodman, Oliver, Ritter, Marvin, Noland, Eric, Giang, Minh, Bolina, Vijay, Lee, Lisa, Blyth, Tim, Mackinnon, Ian, Reid, Machel, Sarvana, Obaid, Silver, David, Chen, Alexander, Wang, Lily, Maggiore, Loren, Chang, Oscar, Attaluri, Nithya, Thornton, Gregory, Chiu, Chung-Cheng, Bunyan, Oskar, Levine, Nir, Chung, Timothy, Eltyshev, Evgenii, Si, Xiance, Lillicrap, Timothy, Brady, Demetra, Aggarwal, Vaibhav, Wu, Boxi, Xu, Yuanzhong, McIlroy, Ross, Badola, Kartikeya, Sandhu, Paramjit, Moreira, Erica, Stokowiec, Wojciech, Hemsley, Ross, Li, Dong, Tudor, Alex, Shyam, Pranav, Rahimtoroghi, Elahe, Haykal, Salem, Sprechmann, Pablo, Zhou, Xiang, Mincu, Diana, Li, Yujia, Addanki, Ravi, Krishna, Kalpesh, Wu, Xiao, Frechette, Alexandre, Eyal, Matan, Dafoe, Allan, Lacey, Dave, Whang, Jay, Avrahami, Thi, Zhang, Ye, Taropa, Emanuel, Lin, Hanzhao, Toyama, Daniel, Rutherford, Eliza, Sano, Motoki, Choe, HyunJeong, Tomala, Alex, Safranek-Shrader, Chalence, Kassner, Nora, Pajarskas, Mantas, Harvey, Matt, Sechrist, Sean, Fortunato, Meire, Lyu, Christina, Elsayed, Gamaleldin, Kuang, Chenkai, Lottes, James, Chu, Eric, Jia, Chao, Chen, Chih-Wei, Humphreys, Peter, Baumli, Kate, Tao, Connie, Samuel, Rajkumar, Santos, Cicero Nogueira dos, Andreassen, Anders, Rakićević, Nemanja, Grewe, Dominik, Kumar, Aviral, Winkler, Stephanie, Caton, Jonathan, Brock, Andrew, Dalmia, Sid, Sheahan, Hannah, Barr, Iain, Miao, Yingjie, Natsev, Paul, Devlin, Jacob, Behbahani, Feryal, Prost, Flavien, Sun, Yanhua, Myaskovsky, Artiom, Pillai, Thanumalayan Sankaranarayana, Hurt, Dan, Lazaridou, Angeliki, Xiong, Xi, Zheng, Ce, Pardo, Fabio, Li, Xiaowei, Horgan, Dan, Stanton, Joe, Ambar, Moran, Xia, Fei, Lince, Alejandro, Wang, Mingqiu, Mustafa, Basil, Webson, Albert, Lee, Hyo, Anil, Rohan, Wicke, Martin, Dozat, Timothy, Sinha, Abhishek, Piqueras, Enrique, Dabir, Elahe, Upadhyay, Shyam, Boral, Anudhyan, Hendricks, Lisa Anne, Fry, Corey, Djolonga, Josip, Su, Yi, Walker, Jake, Labanowski, Jane, Huang, Ronny, Misra, Vedant, Chen, Jeremy, Skerry-Ryan, RJ, Singh, Avi, Rijhwani, Shruti, Yu, Dian, Castro-Ros, Alex, Changpinyo, Beer, Datta, Romina, Bagri, Sumit, Hrafnkelsson, Arnar Mar, Maggioni, Marcello, Zheng, Daniel, Sulsky, Yury, Hou, Shaobo, Paine, Tom Le, Yang, Antoine, Riesa, Jason, Rogozinska, Dominika, Marcus, Dror, Badawy, Dalia El, Zhang, Qiao, Wang, Luyu, Miller, Helen, Greer, Jeremy, Sjos, Lars Lowe, Nova, Azade, Zen, Heiga, Chaabouni, Rahma, Rosca, Mihaela, Jiang, Jiepu, Chen, Charlie, Liu, Ruibo, Sainath, Tara, Krikun, Maxim, Polozov, Alex, Lespiau, Jean-Baptiste, Newlan, Josh, Cankara, Zeyncep, Kwak, Soo, Xu, Yunhan, Chen, Phil, Coenen, Andy, Meyer, Clemens, Tsihlas, Katerina, Ma, Ada, Gottweis, Juraj, Xing, Jinwei, Gu, Chenjie, Miao, Jin, Frank, Christian, Cankara, Zeynep, Ganapathy, Sanjay, Dasgupta, Ishita, Hughes-Fitt, Steph, Chen, Heng, Reid, David, Rong, Keran, Fan, Hongmin, van Amersfoort, Joost, Zhuang, Vincent, Cohen, Aaron, Gu, Shixiang Shane, Mohananey, Anhad, Ilic, Anastasija, Tobin, Taylor, Wieting, John, Bortsova, Anna, Thacker, Phoebe, Wang, Emma, Caveness, Emily, Chiu, Justin, Sezener, Eren, Kaskasoli, Alex, Baker, Steven, Millican, Katie, Elhawaty, Mohamed, Aisopos, Kostas, Lebsack, Carl, Byrd, Nathan, Dai, Hanjun, Jia, Wenhao, Wiethoff, Matthew, Davoodi, Elnaz, Weston, Albert, Yagati, Lakshman, Ahuja, Arun, Gao, Isabel, Pundak, Golan, Zhang, Susan, Azzam, Michael, Sim, Khe Chai, Caelles, Sergi, Keeling, James, Sharma, Abhanshu, Swing, Andy, Li, YaGuang, Liu, Chenxi, Bostock, Carrie Grimes, Bansal, Yamini, Nado, Zachary, Anand, Ankesh, Lipschultz, Josh, Karmarkar, Abhijit, Proleev, Lev, Ittycheriah, Abe, Yeganeh, Soheil Hassas, Polovets, George, Faust, Aleksandra, Sun, Jiao, Rrustemi, Alban, Li, Pen, Shivanna, Rakesh, Liu, Jeremiah, Welty, Chris, Lebron, Federico, Baddepudi, Anirudh, Krause, Sebastian, Parisotto, Emilio, Soricut, Radu, Xu, Zheng, Bloxwich, Dawn, Johnson, Melvin, Neyshabur, Behnam, Mao-Jones, Justin, Wang, Renshen, Ramasesh, Vinay, Abbas, Zaheer, Guez, Arthur, Segal, Constant, Nguyen, Duc Dung, Svensson, James, Hou, Le, York, Sarah, Milan, Kieran, Bridgers, Sophie, Gworek, Wiktor, Tagliasacchi, Marco, Lee-Thorp, James, Chang, Michael, Guseynov, Alexey, Hartman, Ale Jakse, Kwong, Michael, Zhao, Ruizhe, Kashem, Sheleem, Cole, Elizabeth, Miech, Antoine, Tanburn, Richard, Phuong, Mary, Pavetic, Filip, Cevey, Sebastien, Comanescu, Ramona, Ives, Richard, Yang, Sherry, Du, Cosmo, Li, Bo, Zhang, Zizhao, Iinuma, Mariko, Hu, Clara Huiyi, Roy, Aurko, Bijwadia, Shaan, Zhu, Zhenkai, Martins, Danilo, Saputro, Rachel, Gergely, Anita, Zheng, Steven, Jia, Dawei, Antonoglou, Ioannis, Sadovsky, Adam, Gu, Shane, Bi, Yingying, Andreev, Alek, Samangooei, Sina, Khan, Mina, Kocisky, Tomas, Filos, Angelos, Kumar, Chintu, Bishop, Colton, Yu, Adams, Hodkinson, Sarah, Mittal, Sid, Shah, Premal, Moufarek, Alexandre, Cheng, Yong, Bloniarz, Adam, Lee, Jaehoon, Pejman, Pedram, Michel, Paul, Spencer, Stephen, Feinberg, Vladimir, Xiong, Xuehan, Savinov, Nikolay, Smith, Charlotte, Shakeri, Siamak, Tran, Dustin, Chesus, Mary, Bohnet, Bernd, Tucker, George, von Glehn, Tamara, Muir, Carrie, Mao, Yiran, Kazawa, Hideto, Slone, Ambrose, Soparkar, Kedar, Shrivastava, Disha, Cobon-Kerr, James, Sharman, Michael, Pavagadhi, Jay, Araya, Carlos, Misiunas, Karolis, Ghelani, Nimesh, Laskin, Michael, Barker, David, Li, Qiujia, Briukhov, Anton, Houlsby, Neil, Glaese, Mia, Lakshminarayanan, Balaji, Schucher, Nathan, Tang, Yunhao, Collins, Eli, Lim, Hyeontaek, Feng, Fangxiaoyu, Recasens, Adria, Lai, Guangda, Magni, Alberto, De Cao, Nicola, Siddhant, Aditya, Ashwood, Zoe, Orbay, Jordi, Dehghani, Mostafa, Brennan, Jenny, He, Yifan, Xu, Kelvin, Gao, Yang, Saroufim, Carl, Molloy, James, Wu, Xinyi, Arnold, Seb, Chang, Solomon, Schrittwieser, Julian, Buchatskaya, Elena, Radpour, Soroush, Polacek, Martin, Giordano, Skye, Bapna, Ankur, Tokumine, Simon, Hellendoorn, Vincent, Sottiaux, Thibault, Cogan, Sarah, Severyn, Aliaksei, Saleh, Mohammad, Thakoor, Shantanu, Shefey, Laurent, Qiao, Siyuan, Gaba, Meenu, Chang, Shuo-yiin, Swanson, Craig, Zhang, Biao, Lee, Benjamin, Rubenstein, Paul Kishan, Song, Gan, Kwiatkowski, Tom, Koop, Anna, Kannan, Ajay, Kao, David, Schuh, Parker, Stjerngren, Axel, Ghiasi, Golnaz, Gibson, Gena, Vilnis, Luke, Yuan, Ye, Ferreira, Felipe Tiengo, Kamath, Aishwarya, Klimenko, Ted, Franko, Ken, Xiao, Kefan, Bhattacharya, Indro, Patel, Miteyan, Wang, Rui, Morris, Alex, Strudel, Robin, Sharma, Vivek, Choy, Peter, Hashemi, Sayed Hadi, Landon, Jessica, Finkelstein, Mara, Jhakra, Priya, Frye, Justin, Barnes, Megan, Mauger, Matthew, Daun, Dennis, Baatarsukh, Khuslen, Tung, Matthew, Farhan, Wael, Michalewski, Henryk, Viola, Fabio, Quitry, Felix de Chaumont, Lan, Charline Le, Hudson, Tom, Wang, Qingze, Fischer, Felix, Zheng, Ivy, White, Elspeth, Dragan, Anca, Alayrac, Jean-baptiste, Ni, Eric, Pritzel, Alexander, Iwanicki, Adam, Isard, Michael, Bulanova, Anna, Zilka, Lukas, Dyer, Ethan, Sachan, Devendra, Srinivasan, Srivatsan, Muckenhirn, Hannah, Cai, Honglong, Mandhane, Amol, Tariq, Mukarram, Rae, Jack W., Wang, Gary, Ayoub, Kareem, FitzGerald, Nicholas, Zhao, Yao, Han, Woohyun, Alberti, Chris, Garrette, Dan, Krishnakumar, Kashyap, Gimenez, Mai, Levskaya, Anselm, Sohn, Daniel, Matak, Josip, Iturrate, Inaki, Chang, Michael B., Xiang, Jackie, Cao, Yuan, Ranka, Nishant, Brown, Geoff, Hutter, Adrian, Mirrokni, Vahab, Chen, Nanxin, Yao, Kaisheng, Egyed, Zoltan, Galilee, Francois, Liechty, Tyler, Kallakuri, Praveen, Palmer, Evan, Ghemawat, Sanjay, Liu, Jasmine, Tao, David, Thornton, Chloe, Green, Tim, Jasarevic, Mimi, Lin, Sharon, Cotruta, Victor, Tan, Yi-Xuan, Fiedel, Noah, Yu, Hongkun, Chi, Ed, Neitz, Alexander, Heitkaemper, Jens, Sinha, Anu, Zhou, Denny, Sun, Yi, Kaed, Charbel, Hulse, Brice, Mishra, Swaroop, Georgaki, Maria, Kudugunta, Sneha, Farabet, Clement, Shafran, Izhak, Vlasic, Daniel, Tsitsulin, Anton, Ananthanarayanan, Rajagopal, Carin, Alen, Su, Guolong, Sun, Pei, V, Shashank, Carvajal, Gabriel, Broder, Josef, Comsa, Iulia, Repina, Alena, Wong, William, Chen, Warren Weilun, Hawkins, Peter, Filonov, Egor, Loher, Lucia, Hirnschall, Christoph, Wang, Weiyi, Ye, Jingchen, Burns, Andrea, Cate, Hardie, Wright, Diana Gage, Piccinini, Federico, Zhang, Lei, Lin, Chu-Cheng, Gog, Ionel, Kulizhskaya, Yana, Sreevatsa, Ashwin, Song, Shuang, Cobo, Luis C., Iyer, Anand, Tekur, Chetan, Garrido, Guillermo, Xiao, Zhuyun, Kemp, Rupert, Zheng, Huaixiu Steven, Li, Hui, Agarwal, Ananth, Ngani, Christel, Goshvadi, Kati, Santamaria-Fernandez, Rebeca, Fica, Wojciech, Chen, Xinyun, Gorgolewski, Chris, Sun, Sean, Garg, Roopal, Ye, Xinyu, Eslami, S. M. Ali, Hua, Nan, Simon, Jon, Joshi, Pratik, Kim, Yelin, Tenney, Ian, Potluri, Sahitya, Thiet, Lam Nguyen, Yuan, Quan, Luisier, Florian, Chronopoulou, Alexandra, Scellato, Salvatore, Srinivasan, Praveen, Chen, Minmin, Koverkathu, Vinod, Dalibard, Valentin, Xu, Yaming, Saeta, Brennan, Anderson, Keith, Sellam, Thibault, Fernando, Nick, Huot, Fantine, Jung, Junehyuk, Varadarajan, Mani, Quinn, Michael, Raul, Amit, Le, Maigo, Habalov, Ruslan, Clark, Jon, Jalan, Komal, Bullard, Kalesha, Singhal, Achintya, Luong, Thang, Wang, Boyu, Rajayogam, Sujeevan, Eisenschlos, Julian, Jia, Johnson, Finchelstein, Daniel, Yakubovich, Alex, Balle, Daniel, Fink, Michael, Agarwal, Sameer, Li, Jing, Dvijotham, Dj, Pal, Shalini, Kang, Kai, Konzelmann, Jaclyn, Beattie, Jennifer, Dousse, Olivier, Wu, Diane, Crocker, Remi, Elkind, Chen, Jonnalagadda, Siddhartha Reddy, Lee, Jong, Holtmann-Rice, Dan, Kallarackal, Krystal, Liu, Rosanne, Vnukov, Denis, Vats, Neera, Invernizzi, Luca, Jafari, Mohsen, Zhou, Huanjie, Taylor, Lilly, Prendki, Jennifer, Wu, Marcus, Eccles, Tom, Liu, Tianqi, Kopparapu, Kavya, Beaufays, Francoise, Angermueller, Christof, Marzoca, Andreea, Sarcar, Shourya, Dib, Hilal, Stanway, Jeff, Perbet, Frank, Trdin, Nejc, Sterneck, Rachel, Khorlin, Andrey, Li, Dinghua, Wu, Xihui, Goenka, Sonam, Madras, David, Goldshtein, Sasha, Gierke, Willi, Zhou, Tong, Liu, Yaxin, Liang, Yannie, White, Anais, Li, Yunjie, Singh, Shreya, Bahargam, Sanaz, Epstein, Mark, Basu, Sujoy, Lao, Li, Ozturel, Adnan, Crous, Carl, Zhai, Alex, Lu, Han, Tung, Zora, Gaur, Neeraj, Walton, Alanna, Dixon, Lucas, Zhang, Ming, Globerson, Amir, Uy, Grant, Bolt, Andrew, Wiles, Olivia, Nasr, Milad, Shumailov, Ilia, Selvi, Marco, Piccinno, Francesco, Aguilar, Ricardo, McCarthy, Sara, Khalman, Misha, Shukla, Mrinal, Galic, Vlado, Carpenter, John, Villela, Kevin, Zhang, Haibin, Richardson, Harry, Martens, James, Bosnjak, Matko, Belle, Shreyas Rammohan, Seibert, Jeff, Alnahlawi, Mahmoud, McWilliams, Brian, Singh, Sankalp, Louis, Annie, Ding, Wen, Popovici, Dan, Simicich, Lenin, Knight, Laura, Mehta, Pulkit, Gupta, Nishesh, Shi, Chongyang, Fatehi, Saaber, Mitrovic, Jovana, Grills, Alex, Pagadora, Joseph, Munkhdalai, Tsendsuren, Petrova, Dessie, Eisenbud, Danielle, Zhang, Zhishuai, Yates, Damion, Mittal, Bhavishya, Tripuraneni, Nilesh, Assael, Yannis, Brovelli, Thomas, Jain, Prateek, Velimirovic, Mihajlo, Akbulut, Canfer, Mu, Jiaqi, Macherey, Wolfgang, Kumar, Ravin, Xu, Jun, Qureshi, Haroon, Comanici, Gheorghe, Wiesner, Jeremy, Gong, Zhitao, Ruddock, Anton, Bauer, Matthias, Felt, Nick, GP, Anirudh, Arnab, Anurag, Zelle, Dustin, Rothfuss, Jonas, Rosgen, Bill, Shenoy, Ashish, Seybold, Bryan, Li, Xinjian, Mudigonda, Jayaram, Erdogan, Goker, Xia, Jiawei, Simsa, Jiri, Michi, Andrea, Yao, Yi, Yew, Christopher, Kan, Steven, Caswell, Isaac, Radebaugh, Carey, Elisseeff, Andre, Valenzuela, Pedro, McKinney, Kay, Paterson, Kim, Cui, Albert, Latorre-Chimoto, Eri, Kim, Solomon, Zeng, William, Durden, Ken, Ponnapalli, Priya, Sosea, Tiberiu, Choquette-Choo, Christopher A., Manyika, James, Robenek, Brona, Vashisht, Harsha, Pereira, Sebastien, Lam, Hoi, Velic, Marko, Owusu-Afriyie, Denese, Lee, Katherine, Bolukbasi, Tolga, Parrish, Alicia, Lu, Shawn, Park, Jane, Venkatraman, Balaji, Talbert, Alice, Rosique, Lambert, Cheng, Yuchung, Sozanschi, Andrei, Paszke, Adam, Kumar, Praveen, Austin, Jessica, Li, Lu, Salama, Khalid, Perz, Bartek, Kim, Wooyeol, Dukkipati, Nandita, Baryshnikov, Anthony, Kaplanis, Christos, Sheng, XiangHai, Chervonyi, Yuri, Unlu, Caglar, Casas, Diego de Las, Askham, Harry, Tunyasuvunakool, Kathryn, Gimeno, Felix, Poder, Siim, Kwak, Chester, Miecnikowski, Matt, Dimitriev, Alek, Parisi, Aaron, Liu, Dangyi, Tsai, Tomy, Shevlane, Toby, Kouridi, Christina, Garmon, Drew, Goedeckemeyer, Adrian, Brown, Adam R., Vijayakumar, Anitha, Elqursh, Ali, Jazayeri, Sadegh, Huang, Jin, Carthy, Sara Mc, Hoover, Jay, Kim, Lucy, Kumar, Sandeep, Chen, Wei, Biles, Courtney, Bingham, Garrett, Rosen, Evan, Wang, Lisa, Tan, Qijun, Engel, David, Pongetti, Francesco, de Cesare, Dario, Hwang, Dongseong, Yu, Lily, Pullman, Jennifer, Narayanan, Srini, Levin, Kyle, Gopal, Siddharth, Li, Megan, Aharoni, Asaf, Trinh, Trieu, Lo, Jessica, Casagrande, Norman, Vij, Roopali, Matthey, Loic, Ramadhana, Bramandia, Matthews, Austin, Carey, CJ, Johnson, Matthew, Goranova, Kremena, Shah, Rohin, Ashraf, Shereen, Dasgupta, Kingshuk, Larsen, Rasmus, Wang, Yicheng, Vuyyuru, Manish Reddy, Jiang, Chong, Ijazi, Joana, Osawa, Kazuki, Smith, Celine, Boppana, Ramya Sree, Bilal, Taylan, Koizumi, Yuma, Xu, Ying, Altun, Yasemin, Shabat, Nir, Bariach, Ben, Korchemniy, Alex, Choo, Kiam, Ronneberger, Olaf, Iwuanyanwu, Chimezie, Zhao, Shubin, Soergel, David, Hsieh, Cho-Jui, Cai, Irene, Iqbal, Shariq, Sundermeyer, Martin, Chen, Zhe, Bursztein, Elie, Malaviya, Chaitanya, Biadsy, Fadi, Shroff, Prakash, Dhillon, Inderjit, Latkar, Tejasi, Dyer, Chris, Forbes, Hannah, Nicosia, Massimo, Nikolaev, Vitaly, Greene, Somer, Georgiev, Marin, Wang, Pidong, Martin, Nina, Sedghi, Hanie, Zhang, John, Banzal, Praseem, Fritz, Doug, Rao, Vikram, Wang, Xuezhi, Zhang, Jiageng, Patraucean, Viorica, Du, Dayou, Mordatch, Igor, Jurin, Ivan, Liu, Lewis, Dubey, Ayush, Mohan, Abhi, Nowakowski, Janek, Ion, Vlad-Doru, Wei, Nan, Tojo, Reiko, Raad, Maria Abi, Hudson, Drew A., Keshava, Vaishakh, Agrawal, Shubham, Ramirez, Kevin, Wu, Zhichun, Nguyen, Hoang, Liu, Ji, Sewak, Madhavi, Petrini, Bryce, Choi, DongHyun, Philips, Ivan, Wang, Ziyue, Bica, Ioana, Garg, Ankush, Wilkiewicz, Jarek, Agrawal, Priyanka, Guo, Danhao, Xue, Emily, Shaik, Naseer, Leach, Andrew, Khan, Sadh MNM, Wiesinger, Julia, Jerome, Sammy, Chakladar, Abhishek, Wang, Alek Wenjiao, Ornduff, Tina, Abu, Folake, Ghaffarkhah, Alireza, Wainwright, Marcus, Cortes, Mario, Liu, Frederick, Maynez, Joshua, Terzis, Andreas, Samangouei, Pouya, Mansour, Riham, Kępa, Tomasz, Aubet, François-Xavier, Algymr, Anton, Banica, Dan, Weisz, Agoston, Orban, Andras, Senges, Alexandre, Andrejczuk, Ewa, Geller, Mark, Santo, Niccolo Dal, Anklin, Valentin, Merey, Majd Al, Baeuml, Martin, Strohman, Trevor, Bai, Junwen, Petrov, Slav, Wu, Yonghui, Hassabis, Demis, Kavukcuoglu, Koray, Dean, Jeff, and Vinyals, Oriol
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence - Abstract
In this report, we introduce the Gemini 1.5 family of models, representing the next generation of highly compute-efficient multimodal models capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. The family includes two new models: (1) an updated Gemini 1.5 Pro, which exceeds the February version on the great majority of capabilities and benchmarks; (2) Gemini 1.5 Flash, a more lightweight variant designed for efficiency with minimal regression in quality. Gemini 1.5 models achieve near-perfect recall on long-context retrieval tasks across modalities, improve the state-of-the-art in long-document QA, long-video QA and long-context ASR, and match or surpass Gemini 1.0 Ultra's state-of-the-art performance across a broad set of benchmarks. Studying the limits of Gemini 1.5's long-context ability, we find continued improvement in next-token prediction and near-perfect retrieval (>99%) up to at least 10M tokens, a generational leap over existing models such as Claude 3.0 (200k) and GPT-4 Turbo (128k). Finally, we highlight real-world use cases, such as Gemini 1.5 collaborating with professionals on completing their tasks achieving 26 to 75% time savings across 10 different job categories, as well as surprising new capabilities of large language models at the frontier; when given a grammar manual for Kalamang, a language with fewer than 200 speakers worldwide, the model learns to translate English to Kalamang at a similar level to a person who learned from the same content.
- Published
- 2024
4. Lumos : Empowering Multimodal LLMs with Scene Text Recognition
- Author
-
Shenoy, Ashish, Lu, Yichao, Jayakumar, Srihari, Chatterjee, Debojeet, Moslehpour, Mohsen, Chuang, Pierce, Harpale, Abhay, Bhardwaj, Vikas, Xu, Di, Zhao, Shicong, Zhao, Longfang, Ramchandani, Ankit, Dong, Xin Luna, and Kumar, Anuj
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Computation and Language ,Computer Science - Machine Learning - Abstract
We introduce Lumos, the first end-to-end multimodal question-answering system with text understanding capabilities. At the core of Lumos is a Scene Text Recognition (STR) component that extracts text from first person point-of-view images, the output of which is used to augment input to a Multimodal Large Language Model (MM-LLM). While building Lumos, we encountered numerous challenges related to STR quality, overall latency, and model inference. In this paper, we delve into those challenges, and discuss the system architecture, design choices, and modeling techniques employed to overcome these obstacles. We also provide a comprehensive evaluation for each component, showcasing high quality and efficiency., Comment: Accepted to KDD 2024 (ADS Track)
- Published
- 2024
5. Gemini: A Family of Highly Capable Multimodal Models
- Author
-
Gemini Team, Anil, Rohan, Borgeaud, Sebastian, Alayrac, Jean-Baptiste, Yu, Jiahui, Soricut, Radu, Schalkwyk, Johan, Dai, Andrew M., Hauth, Anja, Millican, Katie, Silver, David, Johnson, Melvin, Antonoglou, Ioannis, Schrittwieser, Julian, Glaese, Amelia, Chen, Jilin, Pitler, Emily, Lillicrap, Timothy, Lazaridou, Angeliki, Firat, Orhan, Molloy, James, Isard, Michael, Barham, Paul R., Hennigan, Tom, Lee, Benjamin, Viola, Fabio, Reynolds, Malcolm, Xu, Yuanzhong, Doherty, Ryan, Collins, Eli, Meyer, Clemens, Rutherford, Eliza, Moreira, Erica, Ayoub, Kareem, Goel, Megha, Krawczyk, Jack, Du, Cosmo, Chi, Ed, Cheng, Heng-Tze, Ni, Eric, Shah, Purvi, Kane, Patrick, Chan, Betty, Faruqui, Manaal, Severyn, Aliaksei, Lin, Hanzhao, Li, YaGuang, Cheng, Yong, Ittycheriah, Abe, Mahdieh, Mahdis, Chen, Mia, Sun, Pei, Tran, Dustin, Bagri, Sumit, Lakshminarayanan, Balaji, Liu, Jeremiah, Orban, Andras, Güra, Fabian, Zhou, Hao, Song, Xinying, Boffy, Aurelien, Ganapathy, Harish, Zheng, Steven, Choe, HyunJeong, Weisz, Ágoston, Zhu, Tao, Lu, Yifeng, Gopal, Siddharth, Kahn, Jarrod, Kula, Maciej, Pitman, Jeff, Shah, Rushin, Taropa, Emanuel, Merey, Majd Al, Baeuml, Martin, Chen, Zhifeng, Shafey, Laurent El, Zhang, Yujing, Sercinoglu, Olcan, Tucker, George, Piqueras, Enrique, Krikun, Maxim, Barr, Iain, Savinov, Nikolay, Danihelka, Ivo, Roelofs, Becca, White, Anaïs, Andreassen, Anders, von Glehn, Tamara, Yagati, Lakshman, Kazemi, Mehran, Gonzalez, Lucas, Khalman, Misha, Sygnowski, Jakub, Frechette, Alexandre, Smith, Charlotte, Culp, Laura, Proleev, Lev, Luan, Yi, Chen, Xi, Lottes, James, Schucher, Nathan, Lebron, Federico, Rrustemi, Alban, Clay, Natalie, Crone, Phil, Kocisky, Tomas, Zhao, Jeffrey, Perz, Bartek, Yu, Dian, Howard, Heidi, Bloniarz, Adam, Rae, Jack W., Lu, Han, Sifre, Laurent, Maggioni, Marcello, Alcober, Fred, Garrette, Dan, Barnes, Megan, Thakoor, Shantanu, Austin, Jacob, Barth-Maron, Gabriel, Wong, William, Joshi, Rishabh, Chaabouni, Rahma, Fatiha, Deeni, Ahuja, Arun, Tomar, Gaurav Singh, Senter, Evan, Chadwick, Martin, Kornakov, Ilya, Attaluri, Nithya, Iturrate, Iñaki, Liu, Ruibo, Li, Yunxuan, Cogan, Sarah, Chen, Jeremy, Jia, Chao, Gu, Chenjie, Zhang, Qiao, Grimstad, Jordan, Hartman, Ale Jakse, Garcia, Xavier, Pillai, Thanumalayan Sankaranarayana, Devlin, Jacob, Laskin, Michael, Casas, Diego de Las, Valter, Dasha, Tao, Connie, Blanco, Lorenzo, Badia, Adrià Puigdomènech, Reitter, David, Chen, Mianna, Brennan, Jenny, Rivera, Clara, Brin, Sergey, Iqbal, Shariq, Surita, Gabriela, Labanowski, Jane, Rao, Abhi, Winkler, Stephanie, Parisotto, Emilio, Gu, Yiming, Olszewska, Kate, Addanki, Ravi, Miech, Antoine, Louis, Annie, Teplyashin, Denis, Brown, Geoff, Catt, Elliot, Balaguer, Jan, Xiang, Jackie, Wang, Pidong, Ashwood, Zoe, Briukhov, Anton, Webson, Albert, Ganapathy, Sanjay, Sanghavi, Smit, Kannan, Ajay, Chang, Ming-Wei, Stjerngren, Axel, Djolonga, Josip, Sun, Yuting, Bapna, Ankur, Aitchison, Matthew, Pejman, Pedram, Michalewski, Henryk, Yu, Tianhe, Wang, Cindy, Love, Juliette, Ahn, Junwhan, Bloxwich, Dawn, Han, Kehang, Humphreys, Peter, Sellam, Thibault, Bradbury, James, Godbole, Varun, Samangooei, Sina, Damoc, Bogdan, Kaskasoli, Alex, Arnold, Sébastien M. R., Vasudevan, Vijay, Agrawal, Shubham, Riesa, Jason, Lepikhin, Dmitry, Tanburn, Richard, Srinivasan, Srivatsan, Lim, Hyeontaek, Hodkinson, Sarah, Shyam, Pranav, Ferret, Johan, Hand, Steven, Garg, Ankush, Paine, Tom Le, Li, Jian, Li, Yujia, Giang, Minh, Neitz, Alexander, Abbas, Zaheer, York, Sarah, Reid, Machel, Cole, Elizabeth, Chowdhery, Aakanksha, Das, Dipanjan, Rogozińska, Dominika, Nikolaev, Vitaliy, Sprechmann, Pablo, Nado, Zachary, Zilka, Lukas, Prost, Flavien, He, Luheng, Monteiro, Marianne, Mishra, Gaurav, Welty, Chris, Newlan, Josh, Jia, Dawei, Allamanis, Miltiadis, Hu, Clara Huiyi, de Liedekerke, Raoul, Gilmer, Justin, Saroufim, Carl, Rijhwani, Shruti, Hou, Shaobo, Shrivastava, Disha, Baddepudi, Anirudh, Goldin, Alex, Ozturel, Adnan, Cassirer, Albin, Xu, Yunhan, Sohn, Daniel, Sachan, Devendra, Amplayo, Reinald Kim, Swanson, Craig, Petrova, Dessie, Narayan, Shashi, Guez, Arthur, Brahma, Siddhartha, Landon, Jessica, Patel, Miteyan, Zhao, Ruizhe, Villela, Kevin, Wang, Luyu, Jia, Wenhao, Rahtz, Matthew, Giménez, Mai, Yeung, Legg, Keeling, James, Georgiev, Petko, Mincu, Diana, Wu, Boxi, Haykal, Salem, Saputro, Rachel, Vodrahalli, Kiran, Qin, James, Cankara, Zeynep, Sharma, Abhanshu, Fernando, Nick, Hawkins, Will, Neyshabur, Behnam, Kim, Solomon, Hutter, Adrian, Agrawal, Priyanka, Castro-Ros, Alex, Driessche, George van den, Wang, Tao, Yang, Fan, Chang, Shuo-yiin, Komarek, Paul, McIlroy, Ross, Lučić, Mario, Zhang, Guodong, Farhan, Wael, Sharman, Michael, Natsev, Paul, Michel, Paul, Bansal, Yamini, Qiao, Siyuan, Cao, Kris, Shakeri, Siamak, Butterfield, Christina, Chung, Justin, Rubenstein, Paul Kishan, Agrawal, Shivani, Mensch, Arthur, Soparkar, Kedar, Lenc, Karel, Chung, Timothy, Pope, Aedan, Maggiore, Loren, Kay, Jackie, Jhakra, Priya, Wang, Shibo, Maynez, Joshua, Phuong, Mary, Tobin, Taylor, Tacchetti, Andrea, Trebacz, Maja, Robinson, Kevin, Katariya, Yash, Riedel, Sebastian, Bailey, Paige, Xiao, Kefan, Ghelani, Nimesh, Aroyo, Lora, Slone, Ambrose, Houlsby, Neil, Xiong, Xuehan, Yang, Zhen, Gribovskaya, Elena, Adler, Jonas, Wirth, Mateo, Lee, Lisa, Li, Music, Kagohara, Thais, Pavagadhi, Jay, Bridgers, Sophie, Bortsova, Anna, Ghemawat, Sanjay, Ahmed, Zafarali, Liu, Tianqi, Powell, Richard, Bolina, Vijay, Iinuma, Mariko, Zablotskaia, Polina, Besley, James, Chung, Da-Woon, Dozat, Timothy, Comanescu, Ramona, Si, Xiance, Greer, Jeremy, Su, Guolong, Polacek, Martin, Kaufman, Raphaël Lopez, Tokumine, Simon, Hu, Hexiang, Buchatskaya, Elena, Miao, Yingjie, Elhawaty, Mohamed, Siddhant, Aditya, Tomasev, Nenad, Xing, Jinwei, Greer, Christina, Miller, Helen, Ashraf, Shereen, Roy, Aurko, Zhang, Zizhao, Ma, Ada, Filos, Angelos, Besta, Milos, Blevins, Rory, Klimenko, Ted, Yeh, Chih-Kuan, Changpinyo, Soravit, Mu, Jiaqi, Chang, Oscar, Pajarskas, Mantas, Muir, Carrie, Cohen, Vered, Lan, Charline Le, Haridasan, Krishna, Marathe, Amit, Hansen, Steven, Douglas, Sholto, Samuel, Rajkumar, Wang, Mingqiu, Austin, Sophia, Lan, Chang, Jiang, Jiepu, Chiu, Justin, Lorenzo, Jaime Alonso, Sjösund, Lars Lowe, Cevey, Sébastien, Gleicher, Zach, Avrahami, Thi, Boral, Anudhyan, Srinivasan, Hansa, Selo, Vittorio, May, Rhys, Aisopos, Konstantinos, Hussenot, Léonard, Soares, Livio Baldini, Baumli, Kate, Chang, Michael B., Recasens, Adrià, Caine, Ben, Pritzel, Alexander, Pavetic, Filip, Pardo, Fabio, Gergely, Anita, Frye, Justin, Ramasesh, Vinay, Horgan, Dan, Badola, Kartikeya, Kassner, Nora, Roy, Subhrajit, Dyer, Ethan, Campos, Víctor Campos, Tomala, Alex, Tang, Yunhao, Badawy, Dalia El, White, Elspeth, Mustafa, Basil, Lang, Oran, Jindal, Abhishek, Vikram, Sharad, Gong, Zhitao, Caelles, Sergi, Hemsley, Ross, Thornton, Gregory, Feng, Fangxiaoyu, Stokowiec, Wojciech, Zheng, Ce, Thacker, Phoebe, Ünlü, Çağlar, Zhang, Zhishuai, Saleh, Mohammad, Svensson, James, Bileschi, Max, Patil, Piyush, Anand, Ankesh, Ring, Roman, Tsihlas, Katerina, Vezer, Arpi, Selvi, Marco, Shevlane, Toby, Rodriguez, Mikel, Kwiatkowski, Tom, Daruki, Samira, Rong, Keran, Dafoe, Allan, FitzGerald, Nicholas, Gu-Lemberg, Keren, Khan, Mina, Hendricks, Lisa Anne, Pellat, Marie, Feinberg, Vladimir, Cobon-Kerr, James, Sainath, Tara, Rauh, Maribeth, Hashemi, Sayed Hadi, Ives, Richard, Hasson, Yana, Noland, Eric, Cao, Yuan, Byrd, Nathan, Hou, Le, Wang, Qingze, Sottiaux, Thibault, Paganini, Michela, Lespiau, Jean-Baptiste, Moufarek, Alexandre, Hassan, Samer, Shivakumar, Kaushik, van Amersfoort, Joost, Mandhane, Amol, Joshi, Pratik, Goyal, Anirudh, Tung, Matthew, Brock, Andrew, Sheahan, Hannah, Misra, Vedant, Li, Cheng, Rakićević, Nemanja, Dehghani, Mostafa, Liu, Fangyu, Mittal, Sid, Oh, Junhyuk, Noury, Seb, Sezener, Eren, Huot, Fantine, Lamm, Matthew, De Cao, Nicola, Chen, Charlie, Mudgal, Sidharth, Stella, Romina, Brooks, Kevin, Vasudevan, Gautam, Liu, Chenxi, Chain, Mainak, Melinkeri, Nivedita, Cohen, Aaron, Wang, Venus, Seymore, Kristie, Zubkov, Sergey, Goel, Rahul, Yue, Summer, Krishnakumaran, Sai, Albert, Brian, Hurley, Nate, Sano, Motoki, Mohananey, Anhad, Joughin, Jonah, Filonov, Egor, Kępa, Tomasz, Eldawy, Yomna, Lim, Jiawern, Rishi, Rahul, Badiezadegan, Shirin, Bos, Taylor, Chang, Jerry, Jain, Sanil, Padmanabhan, Sri Gayatri Sundara, Puttagunta, Subha, Krishna, Kalpesh, Baker, Leslie, Kalb, Norbert, Bedapudi, Vamsi, Kurzrok, Adam, Lei, Shuntong, Yu, Anthony, Litvin, Oren, Zhou, Xiang, Wu, Zhichun, Sobell, Sam, Siciliano, Andrea, Papir, Alan, Neale, Robby, Bragagnolo, Jonas, Toor, Tej, Chen, Tina, Anklin, Valentin, Wang, Feiran, Feng, Richie, Gholami, Milad, Ling, Kevin, Liu, Lijuan, Walter, Jules, Moghaddam, Hamid, Kishore, Arun, Adamek, Jakub, Mercado, Tyler, Mallinson, Jonathan, Wandekar, Siddhinita, Cagle, Stephen, Ofek, Eran, Garrido, Guillermo, Lombriser, Clemens, Mukha, Maksim, Sun, Botu, Mohammad, Hafeezul Rahman, Matak, Josip, Qian, Yadi, Peswani, Vikas, Janus, Pawel, Yuan, Quan, Schelin, Leif, David, Oana, Garg, Ankur, He, Yifan, Duzhyi, Oleksii, Älgmyr, Anton, Lottaz, Timothée, Li, Qi, Yadav, Vikas, Xu, Luyao, Chinien, Alex, Shivanna, Rakesh, Chuklin, Aleksandr, Li, Josie, Spadine, Carrie, Wolfe, Travis, Mohamed, Kareem, Das, Subhabrata, Dai, Zihang, He, Kyle, von Dincklage, Daniel, Upadhyay, Shyam, Maurya, Akanksha, Chi, Luyan, Krause, Sebastian, Salama, Khalid, Rabinovitch, Pam G, M, Pavan Kumar Reddy, Selvan, Aarush, Dektiarev, Mikhail, Ghiasi, Golnaz, Guven, Erdem, Gupta, Himanshu, Liu, Boyi, Sharma, Deepak, Shtacher, Idan Heimlich, Paul, Shachi, Akerlund, Oscar, Aubet, François-Xavier, Huang, Terry, Zhu, Chen, Zhu, Eric, Teixeira, Elico, Fritze, Matthew, Bertolini, Francesco, Marinescu, Liana-Eleonora, Bölle, Martin, Paulus, Dominik, Gupta, Khyatti, Latkar, Tejasi, Chang, Max, Sanders, Jason, Wilson, Roopa, Wu, Xuewei, Tan, Yi-Xuan, Thiet, Lam Nguyen, Doshi, Tulsee, Lall, Sid, Mishra, Swaroop, Chen, Wanming, Luong, Thang, Benjamin, Seth, Lee, Jasmine, Andrejczuk, Ewa, Rabiej, Dominik, Ranjan, Vipul, Styrc, Krzysztof, Yin, Pengcheng, Simon, Jon, Harriott, Malcolm Rose, Bansal, Mudit, Robsky, Alexei, Bacon, Geoff, Greene, David, Mirylenka, Daniil, Zhou, Chen, Sarvana, Obaid, Goyal, Abhimanyu, Andermatt, Samuel, Siegler, Patrick, Horn, Ben, Israel, Assaf, Pongetti, Francesco, Chen, Chih-Wei "Louis", Selvatici, Marco, Silva, Pedro, Wang, Kathie, Tolins, Jackson, Guu, Kelvin, Yogev, Roey, Cai, Xiaochen, Agostini, Alessandro, Shah, Maulik, Nguyen, Hung, Donnaile, Noah Ó, Pereira, Sébastien, Friso, Linda, Stambler, Adam, Kuang, Chenkai, Romanikhin, Yan, Geller, Mark, Yan, ZJ, Jang, Kane, Lee, Cheng-Chun, Fica, Wojciech, Malmi, Eric, Tan, Qijun, Banica, Dan, Balle, Daniel, Pham, Ryan, Huang, Yanping, Avram, Diana, Shi, Hongzhi, Singh, Jasjot, Hidey, Chris, Ahuja, Niharika, Saxena, Pranab, Dooley, Dan, Potharaju, Srividya Pranavi, O'Neill, Eileen, Gokulchandran, Anand, Foley, Ryan, Zhao, Kai, Dusenberry, Mike, Liu, Yuan, Mehta, Pulkit, Kotikalapudi, Ragha, Safranek-Shrader, Chalence, Goodman, Andrew, Kessinger, Joshua, Globen, Eran, Kolhar, Prateek, Gorgolewski, Chris, Ibrahim, Ali, Song, Yang, Eichenbaum, Ali, Brovelli, Thomas, Potluri, Sahitya, Lahoti, Preethi, Baetu, Cip, Ghorbani, Ali, Chen, Charles, Crawford, Andy, Pal, Shalini, Sridhar, Mukund, Gurita, Petru, Mujika, Asier, Petrovski, Igor, Cedoz, Pierre-Louis, Li, Chenmei, Chen, Shiyuan, Santo, Niccolò Dal, Goyal, Siddharth, Punjabi, Jitesh, Kappaganthu, Karthik, Kwak, Chester, LV, Pallavi, Velury, Sarmishta, Choudhury, Himadri, Hall, Jamie, Shah, Premal, Figueira, Ricardo, Thomas, Matt, Lu, Minjie, Zhou, Ting, Kumar, Chintu, Jurdi, Thomas, Chikkerur, Sharat, Ma, Yenai, Yu, Adams, Kwak, Soo, Ähdel, Victor, Rajayogam, Sujeevan, Choma, Travis, Liu, Fei, Barua, Aditya, Ji, Colin, Park, Ji Ho, Hellendoorn, Vincent, Bailey, Alex, Bilal, Taylan, Zhou, Huanjie, Khatir, Mehrdad, Sutton, Charles, Rzadkowski, Wojciech, Macintosh, Fiona, Shagin, Konstantin, Medina, Paul, Liang, Chen, Zhou, Jinjing, Shah, Pararth, Bi, Yingying, Dankovics, Attila, Banga, Shipra, Lehmann, Sabine, Bredesen, Marissa, Lin, Zifan, Hoffmann, John Eric, Lai, Jonathan, Chung, Raynald, Yang, Kai, Balani, Nihal, Bražinskas, Arthur, Sozanschi, Andrei, Hayes, Matthew, Alcalde, Héctor Fernández, Makarov, Peter, Chen, Will, Stella, Antonio, Snijders, Liselotte, Mandl, Michael, Kärrman, Ante, Nowak, Paweł, Wu, Xinyi, Dyck, Alex, Vaidyanathan, Krishnan, R, Raghavender, Mallet, Jessica, Rudominer, Mitch, Johnston, Eric, Mittal, Sushil, Udathu, Akhil, Christensen, Janara, Verma, Vishal, Irving, Zach, Santucci, Andreas, Elsayed, Gamaleldin, Davoodi, Elnaz, Georgiev, Marin, Tenney, Ian, Hua, Nan, Cideron, Geoffrey, Leurent, Edouard, Alnahlawi, Mahmoud, Georgescu, Ionut, Wei, Nan, Zheng, Ivy, Scandinaro, Dylan, Jiang, Heinrich, Snoek, Jasper, Sundararajan, Mukund, Wang, Xuezhi, Ontiveros, Zack, Karo, Itay, Cole, Jeremy, Rajashekhar, Vinu, Tumeh, Lara, Ben-David, Eyal, Jain, Rishub, Uesato, Jonathan, Datta, Romina, Bunyan, Oskar, Wu, Shimu, Zhang, John, Stanczyk, Piotr, Zhang, Ye, Steiner, David, Naskar, Subhajit, Azzam, Michael, Johnson, Matthew, Paszke, Adam, Chiu, Chung-Cheng, Elias, Jaume Sanchez, Mohiuddin, Afroz, Muhammad, Faizan, Miao, Jin, Lee, Andrew, Vieillard, Nino, Park, Jane, Zhang, Jiageng, Stanway, Jeff, Garmon, Drew, Karmarkar, Abhijit, Dong, Zhe, Lee, Jong, Kumar, Aviral, Zhou, Luowei, Evens, Jonathan, Isaac, William, Irving, Geoffrey, Loper, Edward, Fink, Michael, Arkatkar, Isha, Chen, Nanxin, Shafran, Izhak, Petrychenko, Ivan, Chen, Zhe, Jia, Johnson, Levskaya, Anselm, Zhu, Zhenkai, Grabowski, Peter, Mao, Yu, Magni, Alberto, Yao, Kaisheng, Snaider, Javier, Casagrande, Norman, Palmer, Evan, Suganthan, Paul, Castaño, Alfonso, Giannoumis, Irene, Kim, Wooyeol, Rybiński, Mikołaj, Sreevatsa, Ashwin, Prendki, Jennifer, Soergel, David, Goedeckemeyer, Adrian, Gierke, Willi, Jafari, Mohsen, Gaba, Meenu, Wiesner, Jeremy, Wright, Diana Gage, Wei, Yawen, Vashisht, Harsha, Kulizhskaya, Yana, Hoover, Jay, Le, Maigo, Li, Lu, Iwuanyanwu, Chimezie, Liu, Lu, Ramirez, Kevin, Khorlin, Andrey, Cui, Albert, LIN, Tian, Wu, Marcus, Aguilar, Ricardo, Pallo, Keith, Chakladar, Abhishek, Perng, Ginger, Abellan, Elena Allica, Zhang, Mingyang, Dasgupta, Ishita, Kushman, Nate, Penchev, Ivo, Repina, Alena, Wu, Xihui, van der Weide, Tom, Ponnapalli, Priya, Kaplan, Caroline, Simsa, Jiri, Li, Shuangfeng, Dousse, Olivier, Piper, Jeff, Ie, Nathan, Pasumarthi, Rama, Lintz, Nathan, Vijayakumar, Anitha, Andor, Daniel, Valenzuela, Pedro, Lui, Minnie, Paduraru, Cosmin, Peng, Daiyi, Lee, Katherine, Zhang, Shuyuan, Greene, Somer, Nguyen, Duc Dung, Kurylowicz, Paula, Hardin, Cassidy, Dixon, Lucas, Janzer, Lili, Choo, Kiam, Feng, Ziqiang, Zhang, Biao, Singhal, Achintya, Du, Dayou, McKinnon, Dan, Antropova, Natasha, Bolukbasi, Tolga, Keller, Orgad, Reid, David, Finchelstein, Daniel, Raad, Maria Abi, Crocker, Remi, Hawkins, Peter, Dadashi, Robert, Gaffney, Colin, Franko, Ken, Bulanova, Anna, Leblond, Rémi, Chung, Shirley, Askham, Harry, Cobo, Luis C., Xu, Kelvin, Fischer, Felix, Xu, Jun, Sorokin, Christina, Alberti, Chris, Lin, Chu-Cheng, Evans, Colin, Dimitriev, Alek, Forbes, Hannah, Banarse, Dylan, Tung, Zora, Omernick, Mark, Bishop, Colton, Sterneck, Rachel, Jain, Rohan, Xia, Jiawei, Amid, Ehsan, Piccinno, Francesco, Wang, Xingyu, Banzal, Praseem, Mankowitz, Daniel J., Polozov, Alex, Krakovna, Victoria, Brown, Sasha, Bateni, MohammadHossein, Duan, Dennis, Firoiu, Vlad, Thotakuri, Meghana, Natan, Tom, Geist, Matthieu, Girgin, Ser tan, Li, Hui, Ye, Jiayu, Roval, Ofir, Tojo, Reiko, Kwong, Michael, Lee-Thorp, James, Yew, Christopher, Sinopalnikov, Danila, Ramos, Sabela, Mellor, John, Sharma, Abhishek, Wu, Kathy, Miller, David, Sonnerat, Nicolas, Vnukov, Denis, Greig, Rory, Beattie, Jennifer, Caveness, Emily, Bai, Libin, Eisenschlos, Julian, Korchemniy, Alex, Tsai, Tomy, Jasarevic, Mimi, Kong, Weize, Dao, Phuong, Zheng, Zeyu, Liu, Frederick, Zhu, Rui, Teh, Tian Huey, Sanmiya, Jason, Gladchenko, Evgeny, Trdin, Nejc, Toyama, Daniel, Rosen, Evan, Tavakkol, Sasan, Xue, Linting, Elkind, Chen, Woodman, Oliver, Carpenter, John, Papamakarios, George, Kemp, Rupert, Kafle, Sushant, Grunina, Tanya, Sinha, Rishika, Talbert, Alice, Wu, Diane, Owusu-Afriyie, Denese, Thornton, Chloe, Pont-Tuset, Jordi, Narayana, Pradyumna, Li, Jing, Fatehi, Saaber, Wieting, John, Ajmeri, Omar, Uria, Benigno, Ko, Yeongil, Knight, Laura, Héliou, Amélie, Niu, Ning, Gu, Shane, Pang, Chenxi, Li, Yeqing, Levine, Nir, Stolovich, Ariel, Santamaria-Fernandez, Rebeca, Goenka, Sonam, Yustalim, Wenny, Strudel, Robin, Elqursh, Ali, Deck, Charlie, Lee, Hyo, Li, Zonglin, Levin, Kyle, Hoffmann, Raphael, Holtmann-Rice, Dan, Bachem, Olivier, Arora, Sho, Koh, Christy, Yeganeh, Soheil Hassas, Põder, Siim, Tariq, Mukarram, Sun, Yanhua, Ionita, Lucian, Seyedhosseini, Mojtaba, Tafti, Pouya, Liu, Zhiyu, Gulati, Anmol, Liu, Jasmine, Ye, Xinyu, Chrzaszcz, Bart, Wang, Lily, Sethi, Nikhil, Li, Tianrun, Brown, Ben, Singh, Shreya, Fan, Wei, Parisi, Aaron, Stanton, Joe, Koverkathu, Vinod, Choquette-Choo, Christopher A., Li, Yunjie, Lu, TJ, Shroff, Prakash, Varadarajan, Mani, Bahargam, Sanaz, Willoughby, Rob, Gaddy, David, Desjardins, Guillaume, Cornero, Marco, Robenek, Brona, Mittal, Bhavishya, Albrecht, Ben, Shenoy, Ashish, Moiseev, Fedor, Jacobsson, Henrik, Ghaffarkhah, Alireza, Rivière, Morgane, Walton, Alanna, Crepy, Clément, Parrish, Alicia, Zhou, Zongwei, Farabet, Clement, Radebaugh, Carey, Srinivasan, Praveen, van der Salm, Claudia, Fidjeland, Andreas, Scellato, Salvatore, Latorre-Chimoto, Eri, Klimczak-Plucińska, Hanna, Bridson, David, de Cesare, Dario, Hudson, Tom, Mendolicchio, Piermaria, Walker, Lexi, Morris, Alex, Mauger, Matthew, Guseynov, Alexey, Reid, Alison, Odoom, Seth, Loher, Lucia, Cotruta, Victor, Yenugula, Madhavi, Grewe, Dominik, Petrushkina, Anastasia, Duerig, Tom, Sanchez, Antonio, Yadlowsky, Steve, Shen, Amy, Globerson, Amir, Webb, Lynette, Dua, Sahil, Li, Dong, Bhupatiraju, Surya, Hurt, Dan, Qureshi, Haroon, Agarwal, Ananth, Shani, Tomer, Eyal, Matan, Khare, Anuj, Belle, Shreyas Rammohan, Wang, Lei, Tekur, Chetan, Kale, Mihir Sanjay, Wei, Jinliang, Sang, Ruoxin, Saeta, Brennan, Liechty, Tyler, Sun, Yi, Zhao, Yao, Lee, Stephan, Nayak, Pandu, Fritz, Doug, Vuyyuru, Manish Reddy, Aslanides, John, Vyas, Nidhi, Wicke, Martin, Ma, Xiao, Eltyshev, Evgenii, Martin, Nina, Cate, Hardie, Manyika, James, Amiri, Keyvan, Kim, Yelin, Xiong, Xi, Kang, Kai, Luisier, Florian, Tripuraneni, Nilesh, Madras, David, Guo, Mandy, Waters, Austin, Wang, Oliver, Ainslie, Joshua, Baldridge, Jason, Zhang, Han, Pruthi, Garima, Bauer, Jakob, Yang, Feng, Mansour, Riham, Gelman, Jason, Xu, Yang, Polovets, George, Liu, Ji, Cai, Honglong, Chen, Warren, Sheng, XiangHai, Xue, Emily, Ozair, Sherjil, Angermueller, Christof, Li, Xiaowei, Sinha, Anoop, Wang, Weiren, Wiesinger, Julia, Koukoumidis, Emmanouil, Tian, Yuan, Iyer, Anand, Gurumurthy, Madhu, Goldenson, Mark, Shah, Parashar, Blake, MK, Yu, Hongkun, Urbanowicz, Anthony, Palomaki, Jennimaria, Fernando, Chrisantha, Durden, Ken, Mehta, Harsh, Momchev, Nikola, Rahimtoroghi, Elahe, Georgaki, Maria, Raul, Amit, Ruder, Sebastian, Redshaw, Morgan, Lee, Jinhyuk, Zhou, Denny, Jalan, Komal, Li, Dinghua, Hechtman, Blake, Schuh, Parker, Nasr, Milad, Milan, Kieran, Mikulik, Vladimir, Franco, Juliana, Green, Tim, Nguyen, Nam, Kelley, Joe, Mahendru, Aroma, Hu, Andrea, Howland, Joshua, Vargas, Ben, Hui, Jeffrey, Bansal, Kshitij, Rao, Vikram, Ghiya, Rakesh, Wang, Emma, Ye, Ke, Sarr, Jean Michel, Preston, Melanie Moranski, Elish, Madeleine, Li, Steve, Kaku, Aakash, Gupta, Jigar, Pasupat, Ice, Juan, Da-Cheng, Someswar, Milan, M., Tejvi, Chen, Xinyun, Amini, Aida, Fabrikant, Alex, Chu, Eric, Dong, Xuanyi, Muthal, Amruta, Buthpitiya, Senaka, Jauhari, Sarthak, Khandelwal, Urvashi, Hitron, Ayal, Ren, Jie, Rinaldi, Larissa, Drath, Shahar, Dabush, Avigail, Jiang, Nan-Jiang, Godhia, Harshal, Sachs, Uli, Chen, Anthony, Fan, Yicheng, Taitelbaum, Hagai, Noga, Hila, Dai, Zhuyun, Wang, James, Hamer, Jenny, Ferng, Chun-Sung, Elkind, Chenel, Atias, Aviel, Lee, Paulina, Listík, Vít, Carlen, Mathias, van de Kerkhof, Jan, Pikus, Marcin, Zaher, Krunoslav, Müller, Paul, Zykova, Sasha, Stefanec, Richard, Gatsko, Vitaly, Hirnschall, Christoph, Sethi, Ashwin, Xu, Xingyu Federico, Ahuja, Chetan, Tsai, Beth, Stefanoiu, Anca, Feng, Bo, Dhandhania, Keshav, Katyal, Manish, Gupta, Akshay, Parulekar, Atharva, Pitta, Divya, Zhao, Jing, Bhatia, Vivaan, Bhavnani, Yashodha, Alhadlaq, Omar, Li, Xiaolin, Danenberg, Peter, Tu, Dennis, Pine, Alex, Filippova, Vera, Ghosh, Abhipso, Limonchik, Ben, Urala, Bhargava, Lanka, Chaitanya Krishna, Clive, Derik, Li, Edward, Wu, Hao, Hongtongsak, Kevin, Li, Ianna, Thakkar, Kalind, Omarov, Kuanysh, Majmundar, Kushal, Alverson, Michael, Kucharski, Michael, Patel, Mohak, Jain, Mudit, Zabelin, Maksim, Pelagatti, Paolo, Kohli, Rohan, Kumar, Saurabh, Kim, Joseph, Sankar, Swetha, Shah, Vineet, Ramachandruni, Lakshmi, Zeng, Xiangkai, Bariach, Ben, Weidinger, Laura, Vu, Tu, Andreev, Alek, He, Antoine, Hui, Kevin, Kashem, Sheleem, Subramanya, Amar, Hsiao, Sissie, Hassabis, Demis, Kavukcuoglu, Koray, Sadovsky, Adam, Le, Quoc, Strohman, Trevor, Wu, Yonghui, Petrov, Slav, Dean, Jeffrey, and Vinyals, Oriol
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence ,Computer Science - Computer Vision and Pattern Recognition - Abstract
This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultra model advances the state of the art in 30 of 32 of these benchmarks - notably being the first model to achieve human-expert performance on the well-studied exam benchmark MMLU, and improving the state of the art in every one of the 20 multimodal benchmarks we examined. We believe that the new capabilities of the Gemini family in cross-modal reasoning and language understanding will enable a wide variety of use cases. We discuss our approach toward post-training and deploying Gemini models responsibly to users through services including Gemini, Gemini Advanced, Google AI Studio, and Cloud Vertex AI.
- Published
- 2023
6. Does survey mode matter? Comparing in-person and phone agricultural surveys in India.
- Author
-
Anderson, Ellen, Singh, Rupika, Stein, Daniel, Lybbert, Travis, and Shenoy, Ashish
- Subjects
Agriculture ,Data collection ,Measurement error ,Phone survey ,Survey mode - Abstract
Ubiquitous mobile phone ownership makes phone surveying an attractive method of low-cost data collection. We explore differences between in-person and phone survey measures of agricultural production collected for an impact evaluation in India. Phone responses have greater mean and variance, a difference that persists even within a subset of respondents that answered the same question over both modes. Treatment effect estimation remains stable across survey mode, but estimates are less precise when using phone data. These patterns are informative for cost and sample size considerations in study design and for aggregating evidence across study sites or time periods.
- Published
- 2024
7. Exploring Linguistic Similarity and Zero-Shot Learning for Multilingual Translation of Dravidian Languages
- Author
-
Ebadulla, Danish, Raman, Rahul, Natarajan, S., Shetty, Hridhay Kiran, and Shenoy, Ashish Harish
- Subjects
Computer Science - Computation and Language ,Computer Science - Computer Vision and Pattern Recognition - Abstract
Current research in zero-shot translation is plagued by several issues such as high compute requirements, increased training time and off target translations. Proposed remedies often come at the cost of additional data or compute requirements. Pivot based neural machine translation is preferred over a single-encoder model for most settings despite the increased training and evaluation time. In this work, we overcome the shortcomings of zero-shot translation by taking advantage of transliteration and linguistic similarity. We build a single encoder-decoder neural machine translation system for Dravidian-Dravidian multilingual translation and perform zero-shot translation. We compare the data vs zero-shot accuracy tradeoff and evaluate the performance of our vanilla method against the current state of the art pivot based method. We also test the theory that morphologically rich languages require large vocabularies by restricting the vocabulary using an optimal transport based technique. Our model manages to achieves scores within 3 BLEU of large-scale pivot-based models when it is trained on 50\% of the language directions.
- Published
- 2023
8. Implementer Desirability Bias in Program Evaluation
- Author
-
Shenoy, Ashish and Lybbert, Travis J.
- Subjects
program evaluation ,crop ,India - Abstract
Development interventions are commonly piloted by organizations with strong community ties. Reminding beneficiaries that a pilot is being evaluated may prompt them to take costly actions that reflect favorably on the implementer. We test for this form of desirability bias in an evaluation of an unsuccessful agricultural extension pilot that ultimately drove treated farmers away from the target crops. Making the evaluation salient during endline data collection led participants to neutralize this negative treatment effect by altering input purchases and cultivation patterns. Participants’ desire to support implementers can help explain why promising pilot results frequently fail to replicate at scale.
- Published
- 2023
9. Now It Sounds Like You: Learning Personalized Vocabulary On Device
- Author
-
Wang, Sid, Shenoy, Ashish, Chuang, Pierce, and Nguyen, John
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence - Abstract
In recent years, Federated Learning (FL) has shown significant advancements in its ability to perform various natural language processing (NLP) tasks. This work focuses on applying personalized FL for on-device language modeling. Due to limitations of memory and latency, these models cannot support the complexity of sub-word tokenization or beam search decoding, resulting in the decision to deploy a closed-vocabulary language model. However, closed-vocabulary models are unable to handle out-of-vocabulary (OOV) words belonging to specific users. To address this issue, We propose a novel technique called "OOV expansion" that improves OOV coverage and increases model accuracy while minimizing the impact on memory and latency. This method introduces a personalized "OOV adapter" that effectively transfers knowledge from a central model and learns word embedding for personalized vocabulary. OOV expansion significantly outperforms standard FL personalization methods on a set of common FL benchmarks., Comment: Federated Learning, Personalization, On-device NLP, Accepted at AAAI Spring Symposium 2024
- Published
- 2023
10. Green Federated Learning
- Author
-
Yousefpour, Ashkan, Guo, Shen, Shenoy, Ashish, Ghosh, Sayan, Stock, Pierre, Maeng, Kiwan, Krüger, Schalk-Willem, Rabbat, Michael, Wu, Carole-Jean, and Mironov, Ilya
- Subjects
Computer Science - Machine Learning - Abstract
The rapid progress of AI is fueled by increasingly large and computationally intensive machine learning models and datasets. As a consequence, the amount of compute used in training state-of-the-art models is exponentially increasing (doubling every 10 months between 2015 and 2022), resulting in a large carbon footprint. Federated Learning (FL) - a collaborative machine learning technique for training a centralized model using data of decentralized entities - can also be resource-intensive and have a significant carbon footprint, particularly when deployed at scale. Unlike centralized AI that can reliably tap into renewables at strategically placed data centers, cross-device FL may leverage as many as hundreds of millions of globally distributed end-user devices with diverse energy sources. Green AI is a novel and important research area where carbon footprint is regarded as an evaluation criterion for AI, alongside accuracy, convergence speed, and other metrics. In this paper, we propose the concept of Green FL, which involves optimizing FL parameters and making design choices to minimize carbon emissions consistent with competitive performance and training time. The contributions of this work are two-fold. First, we adopt a data-driven approach to quantify the carbon emissions of FL by directly measuring real-world at-scale FL tasks running on millions of phones. Second, we present challenges, guidelines, and lessons learned from studying the trade-off between energy efficiency, performance, and time-to-train in a production FL system. Our findings offer valuable insights into how FL can reduce its carbon footprint, and they provide a foundation for future research in the area of Green AI.
- Published
- 2023
11. Migration and resilience during a global crisis
- Author
-
Barker, Nathan, Davis, C Austin, López-Peña, Paula, Mitchell, Harrison, Mobarak, Ahmed Mushfiq, Naguib, Karim, Reimão, Maira Emy, Shenoy, Ashish, and Vernot, Corey
- Subjects
Basic Behavioral and Social Science ,Behavioral and Social Science ,Clinical Research ,Economics - Abstract
This study explores the relationship between migration and household resilience during a global crisis that eliminated the option to migrate. We link prior data from four populations in Bangladesh and Nepal to new phone surveys conducted during the early months of the COVID-19 pandemic. While earnings fell universally, pandemic-induced declines were 14%–25% greater among previously migration-dependent households and urban migrant workers, with household remittance losses far exceeding official statistics. Heightened economic exposure during the pandemic erased prior gains achieved by transnational migrants and caused fourfold greater prevalence of food insecurity among domestic subsistence migrants. Economic distress spilled over onto non-migrants in high-migration villages and labor markets. We show that migration contributed to economic contagion independent of its role in disease transmission. Losing the option to migrate differentially increased the vulnerability of migration-dependent households during a crisis.
- Published
- 2023
12. Prediction of the outcome of a Twenty-20 Cricket Match : A Machine Learning Approach
- Author
-
Shenoy, Ashish V, Singhvi, Arjun, Racha, Shruthi, and Tunuguntla, Srinivas
- Subjects
Computer Science - Machine Learning - Abstract
Twenty20 cricket, sometimes written Twenty-20, and often abbreviated to T20, is a short form of cricket. In a Twenty20 game the two teams of 11 players have a single innings each, which is restricted to a maximum of 20 overs. This version of cricket is especially unpredictable and is one of the reasons it has gained popularity over recent times. However, in this paper we try four different machine learning approaches for predicting the results of T20 Cricket Matches. Specifically we take in to account: previous performance statistics of the players involved in the competing teams, ratings of players obtained from reputed cricket statistics websites, clustering the players' with similar performance statistics and propose a novel method using an ELO based approach to rate players. We compare the performances of each of these feature engineering approaches by using different ML algorithms, including logistic regression, support vector machines, bayes network, decision tree, random forest., Comment: Machine Learning Applications, Sports, Cricket Outcome Prediction
- Published
- 2022
13. COVID‐19 through the lens of seasonal agriculture in South Asia
- Author
-
Kharel, Arjun, Mobarak, Ahmed Mushfiq, Shenoy, Ashish, and Vernot, Corey
- Subjects
Economics ,Applied Economics ,Good Health and Well Being ,Zero Hunger ,agriculture ,COVID-19 ,health ,nutrition ,seasonality ,South Asia ,Agricultural Economics & Policy ,Applied economics - Abstract
75% of the world's poor reside in rural areas where the local economy is tied to agriculture. We interpret new panel data on COVID-19 from Nepal and Bangladesh in relation to agricultural seasonality. Conditions in April–June 2020 were comparable to a typical lean season even though the pandemic arrived at harvest time. Income losses stem from both depressed local employment as well as lower migration and remittances. We also document indirect adverse health impacts on nutrition and mental health. Findings are specific to the nature of economic activity at harvest, and effective pandemic policy must evolve with the agricultural season.
- Published
- 2023
14. Prompt Tuning GPT-2 language model for parameter-efficient domain adaptation of ASR systems
- Author
-
Dingliwal, Saket, Shenoy, Ashish, Bodapati, Sravan, Gandhe, Ankur, Gadde, Ravi Teja, and Kirchhoff, Katrin
- Subjects
Computer Science - Computation and Language ,Computer Science - Machine Learning - Abstract
Automatic Speech Recognition (ASR) systems have found their use in numerous industrial applications in very diverse domains creating a need to adapt to new domains with small memory and deployment overhead. In this work, we introduce domain-prompts, a methodology that involves training a small number of domain embedding parameters to prime a Transformer-based Language Model (LM) to a particular domain. Using this domain-adapted LM for rescoring ASR hypotheses can achieve 7-13% WER reduction for a new domain with just 1000 unlabeled textual domain-specific sentences. This improvement is comparable or even better than fully fine-tuned models even though just 0.02% of the parameters of the base LM are updated. Additionally, our method is deployment-friendly as the learnt domain embeddings are prefixed to the input to the model rather than changing the base model architecture. Therefore, our method is an ideal choice for on-the-fly adaptation of LMs used in ASR systems to progressively scale it to new domains., Comment: Accepted at InterSpeech 2022
- Published
- 2021
15. Prompt-tuning in ASR systems for efficient domain-adaptation
- Author
-
Dingliwal, Saket, Shenoy, Ashish, Bodapati, Sravan, Gandhe, Ankur, Gadde, Ravi Teja, and Kirchhoff, Katrin
- Subjects
Computer Science - Computation and Language - Abstract
Automatic Speech Recognition (ASR) systems have found their use in numerous industrial applications in very diverse domains. Since domain-specific systems perform better than their generic counterparts on in-domain evaluation, the need for memory and compute-efficient domain adaptation is obvious. Particularly, adapting parameter-heavy transformer-based language models used for rescoring ASR hypothesis is challenging. In this work, we overcome the problem using prompt-tuning, a methodology that trains a small number of domain token embedding parameters to prime a transformer-based LM to a particular domain. With just a handful of extra parameters per domain, we achieve much better perplexity scores over the baseline of using an unadapted LM. Despite being parameter-efficient, these improvements are comparable to those of fully-fine-tuned models with hundreds of millions of parameters. We replicate our findings in perplexity numbers to Word Error Rate in a domain-specific ASR system for one such domain., Comment: WeCNLP 2021 camera-ready
- Published
- 2021
16. Remember the context! ASR slot error correction through memorization
- Author
-
Bekal, Dhanush, Shenoy, Ashish, Sunkara, Monica, Bodapati, Sravan, and Kirchhoff, Katrin
- Subjects
Electrical Engineering and Systems Science - Audio and Speech Processing ,Computer Science - Sound - Abstract
Accurate recognition of slot values such as domain specific words or named entities by automatic speech recognition (ASR) systems forms the core of the Goal-oriented Dialogue Systems. Although it is a critical step with direct impact on downstream tasks such as language understanding, many domain agnostic ASR systems tend to perform poorly on domain specific or long tail words. They are often supplemented with slot error correcting systems but it is often hard for any neural model to directly output such rare entity words. To address this problem, we propose k-nearest neighbor (k-NN) search that outputs domain-specific entities from an explicit datastore. We improve error correction rate by conveniently augmenting a pretrained joint phoneme and text based transformer sequence to sequence model with k-NN search during inference. We evaluate our proposed approach on five different domains containing long tail slot entities such as full names, airports, street names, cities, states. Our best performing error correction model shows a relative improvement of 7.4% in word error rate (WER) on rare word entities over the baseline and also achieves a relative WER improvement of 9.8% on an out of vocabulary (OOV) test set., Comment: 8 pages, 3 figures, 4 tables, Accepted to ASRU 2021
- Published
- 2021
17. ASR Adaptation for E-commerce Chatbots using Cross-Utterance Context and Multi-Task Language Modeling
- Author
-
Shenoy, Ashish, Bodapati, Sravan, and Kirchhoff, Katrin
- Subjects
Electrical Engineering and Systems Science - Audio and Speech Processing ,Computer Science - Computation and Language ,Computer Science - Machine Learning ,Computer Science - Sound - Abstract
Automatic Speech Recognition (ASR) robustness toward slot entities are critical in e-commerce voice assistants that involve monetary transactions and purchases. Along with effective domain adaptation, it is intuitive that cross utterance contextual cues play an important role in disambiguating domain specific content words from speech. In this paper, we investigate various techniques to improve contextualization, content word robustness and domain adaptation of a Transformer-XL neural language model (NLM) to rescore ASR N-best hypotheses. To improve contextualization, we utilize turn level dialogue acts along with cross utterance context carry over. Additionally, to adapt our domain-general NLM towards e-commerce on-the-fly, we use embeddings derived from a finetuned masked LM on in-domain data. Finally, to improve robustness towards in-domain content words, we propose a multi-task model that can jointly perform content word detection and language modeling tasks. Compared to a non-contextual LSTM LM baseline, our best performing NLM rescorer results in a content WER reduction of 19.2% on e-commerce audio test set and a slot labeling F1 improvement of 6.4%., Comment: Accepted at ACL-IJCNLP 2021 Workshop on e-Commerce and NLP (ECNLP)
- Published
- 2021
- Full Text
- View/download PDF
18. Adapting Long Context NLM for ASR Rescoring in Conversational Agents
- Author
-
Shenoy, Ashish, Bodapati, Sravan, Sunkara, Monica, Ronanki, Srikanth, and Kirchhoff, Katrin
- Subjects
Computer Science - Computation and Language ,Computer Science - Machine Learning ,Computer Science - Sound - Abstract
Neural Language Models (NLM), when trained and evaluated with context spanning multiple utterances, have been shown to consistently outperform both conventional n-gram language models and NLMs that use limited context. In this paper, we investigate various techniques to incorporate turn based context history into both recurrent (LSTM) and Transformer-XL based NLMs. For recurrent based NLMs, we explore context carry over mechanism and feature based augmentation, where we incorporate other forms of contextual information such as bot response and system dialogue acts as classified by a Natural Language Understanding (NLU) model. To mitigate the sharp nearby, fuzzy far away problem with contextual NLM, we propose the use of attention layer over lexical metadata to improve feature based augmentation. Additionally, we adapt our contextual NLM towards user provided on-the-fly speech patterns by leveraging encodings from a large pre-trained masked language model and performing fusion with a Transformer-XL based NLM. We test our proposed models using N-best rescoring of ASR hypotheses of task-oriented dialogues and also evaluate on downstream NLU tasks such as intent classification and slot labeling. The best performing model shows a relative WER between 1.6% and 9.1% and a slot labeling F1 score improvement of 4% over non-contextual baselines., Comment: Accepted to Interspeech 2021. arXiv admin note: text overlap with arXiv:2103.10325
- Published
- 2021
- Full Text
- View/download PDF
19. Contextual Biasing of Language Models for Speech Recognition in Goal-Oriented Conversational Agents
- Author
-
Shenoy, Ashish, Bodapati, Sravan, and Kirchhoff, Katrin
- Subjects
Computer Science - Computation and Language - Abstract
Goal-oriented conversational interfaces are designed to accomplish specific tasks and typically have interactions that tend to span multiple turns adhering to a pre-defined structure and a goal. However, conventional neural language models (NLM) in Automatic Speech Recognition (ASR) systems are mostly trained sentence-wise with limited context. In this paper, we explore different ways to incorporate context into a LSTM based NLM in order to model long range dependencies and improve speech recognition. Specifically, we use context carry over across multiple turns and use lexical contextual cues such as system dialog act from Natural Language Understanding (NLU) models and the user provided structure of the chatbot. We also propose a new architecture that utilizes context embeddings derived from BERT on sample utterances provided during inference time. Our experiments show a word error rate (WER) relative reduction of 7% over non-contextual utterance-level NLM rescorers on goal-oriented audio datasets., Comment: Updated version with extensions are uploaded here arXiv:2104.11070
- Published
- 2021
20. Falling living standards during the COVID-19 crisis: Quantitative evidence from nine developing countries.
- Author
-
Egger, Dennis, Miguel, Edward, Warren, Shana S, Shenoy, Ashish, Collins, Elliott, Karlan, Dean, Parkerson, Doug, Mobarak, A Mushfiq, Fink, Günther, Udry, Christopher, Walker, Michael, Haushofer, Johannes, Larreboure, Magdalena, Athey, Susan, Lopez-Pena, Paula, Benhachmi, Salim, Humphreys, Macartan, Lowe, Layna, Meriggi, Niccoló F, Wabwire, Andrew, Davis, C Austin, Pape, Utz Johann, Graff, Tilman, Voors, Maarten, Nekesa, Carolyn, and Vernot, Corey
- Subjects
Humans ,Family Characteristics ,Seasons ,Domestic Violence ,Government Programs ,Developing Countries ,Agriculture ,Adult ,Child ,Employment ,Income ,Africa ,Colombia ,Asia ,Female ,Male ,Economic Recession ,Pandemics ,Surveys and Questionnaires ,COVID-19 ,SARS-CoV-2 ,Food Insecurity ,Basic Behavioral and Social Science ,Behavioral and Social Science - Abstract
Despite numerous journalistic accounts, systematic quantitative evidence on economic conditions during the ongoing COVID-19 pandemic remains scarce for most low- and middle-income countries, partly due to limitations of official economic statistics in environments with large informal sectors and subsistence agriculture. We assemble evidence from over 30,000 respondents in 16 original household surveys from nine countries in Africa (Burkina Faso, Ghana, Kenya, Rwanda, Sierra Leone), Asia (Bangladesh, Nepal, Philippines), and Latin America (Colombia). We document declines in employment and income in all settings beginning March 2020. The share of households experiencing an income drop ranges from 8 to 87% (median, 68%). Household coping strategies and government assistance were insufficient to sustain precrisis living standards, resulting in widespread food insecurity and dire economic conditions even 3 months into the crisis. We discuss promising policy responses and speculate about the risk of persistent adverse effects, especially among children and other vulnerable groups.
- Published
- 2021
21. Got (clean) milk? Organization, incentives, and management in Indian dairy cooperatives
- Author
-
Rao, Manaswini and Shenoy, Ashish
- Published
- 2023
- Full Text
- View/download PDF
22. The economic potential for area‐yield crop insurance: An application to maize in Ghana.
- Author
-
Shenoy, Ashish and Korb, Mira
- Subjects
- *
CROP insurance , *AGRICULTURAL insurance , *ECOLOGICAL zones , *INFORMATION asymmetry , *ACTUARIAL risk - Abstract
Rainfall index insurance can enable farm households to manage production risk, but demand in developing countries remains low at market prices, in part because the insurance trigger may not correlate well with individual farm losses. Area‐yield crop insurance, which links payouts to average yield in a geographic zone, attempts to increase demand by more accurately targeting insurance payouts to production shortfalls. However, shifting from an exogenous weather‐based to an endogenous yield‐based index introduces concerns of asymmetric information, which can lead to market failures that constrain supply from providers. These features are inversely related: larger insurance zones inhibit index manipulation, but average yield is less informative about any individual plot. We quantify this tradeoff for maize in Ghana using a spatial yield model calibrated to match observed production. Insurers must demarcate zones of no more than 5000 farmers for area‐yield insurance to outperform weather insurance. The framework presented in this paper allows assessment of the relationship between index performance and asymmetric information in new crop insurance products. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
23. Now It Sounds Like You: Learning Personalized Vocabulary On Device
- Author
-
Shenoy, Ashish, primary, Wang, Sid, additional, Chuang, Pierce, additional, and Nguyen, John, additional
- Published
- 2024
- Full Text
- View/download PDF
24. Striving to revive pulses in India with extension, input subsidies, and output price supports
- Author
-
Lybbert, Travis J., Shenoy, Ashish, Bourdier, Tomoé, Kieran, Caitlin, Lybbert, Travis J., Shenoy, Ashish, Bourdier, Tomoé, and Kieran, Caitlin
- Abstract
Pulse production in India has stagnated relative to staple grains and cash crops, raising concerns about rural protein consumption. We experimentally evaluate an effort to increase local pulse production in Bihar. This intervention consisted of 2 years of input subsidies and extension to facilitate learning, followed by the creation of marketing organizations and a year of output price support to raise profitability. Farmers respond to price signals by expanding inputs when subsidized and increasing pulse sales under price supports. However, we see no evidence that the program shifted equilibrium production portfolios as pulses return to pre-intervention levels after the support ends. Results indicate that short-term learning by doing cannot overcome long-run barriers to local pulse production, even when farmers have a viable outlet to sell their surplus output.
- Published
- 2024
25. Three Essays on Agricultural Land and Labor Markets
- Author
-
Arteaga, Julian, Carter, Michael1, Shenoy, Ashish, Arteaga, Julian, Arteaga, Julian, Carter, Michael1, Shenoy, Ashish, and Arteaga, Julian
- Abstract
This dissertation is composed of three essays that study aspects related to the way in which agricultural land and labor markets operate, with a special emphasis on the particularities of agricultural input markets in developing countries. The first chapter investigates how government restrictions on land markets impact the agricultural sector, and assesses whether such restrictions can curb distortions that stem from the presence of market power. To do so, I develop a general-equilibrium production model in which large landholders exert market power in both land and labor markets, and where there are limits on land accumulation. Restrictions reduce the inefficiencies arising from market power, but also hinder productive reallocation, with the net effect on productivity depending on initial levels of land concentration. I empirically test the model’s predictions by estimating how a law imposing municipality-specific limits on landholdings in Colombia affected productivity, land concentration, and agricultural labor markets. To estimate the impact of the law, I combine a collection of rich micro-level data sources which include a newly built dataset on municipal agricultural productivity. Exploiting plausibly exogenous variation in restriction stringency across bordering municipalities, I find that imposing restrictions caused a permanent reduction in productivity and only modest reductions in overall land inequality. However, restrictions also increased both agricultural workers’ earnings and the employment share in agriculture, suggesting they were beneficial to landless wage laborers by reducing labor market power.The second chapter (co-authored with Nicolás de Roux, Margarita Gáfaro, Ana María Ibáñez, and Heitor Pellegrina) studies the effect of weather shocks on rural land sales and the farm size distribution. Using a unique administrative dataset with transaction-level information and a land registry covering most of Colombia’s farmland, it shows that extreme t
- Published
- 2024
26. Risk, Complexity, and the Demand for Agricultural Insurance: Evidence from a Lab Experiment in Ghana
- Author
-
Shenoy, Ashish, primary, Chakraborty, Anujit, additional, Gallenstein, Richard, additional, Flatnes, Jon Einar, additional, and Korb, Mira, additional
- Published
- 2024
- Full Text
- View/download PDF
27. Implementer Desirability Bias in Program Evaluation
- Author
-
Shenoy, Ashish, primary and Lybbert, Travis J., additional
- Published
- 2024
- Full Text
- View/download PDF
28. Does survey mode matter? Comparing in-person and phone agricultural surveys in India
- Author
-
Anderson, Ellen, primary, Lybbert, Travis J., additional, Shenoy, Ashish, additional, Singh, Rupika, additional, and Stein, Daniel, additional
- Published
- 2023
- Full Text
- View/download PDF
29. Migration and the labour market impacts of COVID-19
- Author
-
Barker, Nathan, primary, Davis, C. Austin, additional, López-Peña, Paula, additional, Mitchell, Harrison, additional, Mobarak, A. Mushfiq, additional, Naguib, Karim, additional, Reimão, Maira Emy, additional, Shenoy, Ashish, additional, and Vernot, Corey, additional
- Published
- 2020
- Full Text
- View/download PDF
30. Striving to revive pulses in India with extension, input subsidies, and output price supports†.
- Author
-
Lybbert, Travis J., Shenoy, Ashish, Bourdier, Tomoé, and Kieran, Caitlin
- Subjects
PRICES ,LEARNING by doing (Economics) ,SUBSIDIES ,CASH crops ,PRICE increases ,UNIVERSITY extension - Abstract
Pulse production in India has stagnated relative to staple grains and cash crops, raising concerns about rural protein consumption. We experimentally evaluate an effort to increase local pulse production in Bihar. This intervention consisted of 2 years of input subsidies and extension to facilitate learning, followed by the creation of marketing organizations and a year of output price support to raise profitability. Farmers respond to price signals by expanding inputs when subsidized and increasing pulse sales under price supports. However, we see no evidence that the program shifted equilibrium production portfolios as pulses return to pre‐intervention levels after the support ends. Results indicate that short‐term learning by doing cannot overcome long‐run barriers to local pulse production, even when farmers have a viable outlet to sell their surplus output. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
31. Migration and resilience during a global crisis
- Author
-
Barker, Nathan, primary, Davis, C. Austin, additional, López-Peña, Paula, additional, Mitchell, Harrison, additional, Mobarak, Ahmed Mushfiq, additional, Naguib, Karim, additional, Reimão, Maira Emy, additional, Shenoy, Ashish, additional, and Vernot, Corey, additional
- Published
- 2023
- Full Text
- View/download PDF
32. Essays on the Political Economy of Economic Development
- Author
-
Morrill, Curtis, Singhal, Monica1, Shenoy, Ashish, Morrill, Curtis, Morrill, Curtis, Singhal, Monica1, Shenoy, Ashish, and Morrill, Curtis
- Abstract
Democratic institutions are intended to hold politicians accountable to voters. By expanding input into the policy-making process, democratic elections may broaden the coalition of citizens benefiting from state policy. When institutions are sufficiently strong, democracy may promote economic development in ways that are less likely to happen when the poorest citizens are disenfranchised. When institutions are in more nascent states, democratic systems are often captured by economic elites, undermining this potential for poverty alleviation. Often, poverty itself is used as leverage to lock poorer voters into transactional relationships with the state, undermining political incentives to invest in more substantive programmatic policy. This dissertation examines precisely these dynamic tensions between poverty, institutions, and political accountability. In the chapters that follow, I test the ways that democratization, decentralization, and public funding mechanisms can help improve - or sometimes undermine - political accountability and subsequent economic development outcomes. I begin by studying the introduction of democratic elections - perhaps the most important institution thought to hold politicians accountable to citizens. My first dissertation chapter examines interactions between nascent political parties and newly enfranchised voters following Indonesia's democratization, leveraging the unique staggering of democratic appointments across districts for identification. By tracking outcomes across local governments, event study estimates compare the allocation of resources with and without an elected politician in office, at the same point in time, within the same broader institutional context. When elected district heads take office, night light growth is 2.6 percentage points greater across villages supporting the winning political party - an effect that's driven by districts with stronger media presence and political competition in the baseline. These eff
- Published
- 2023
33. COVID‐19 through the lens of seasonal agriculture in South Asia
- Author
-
Kharel, Arjun, primary, Mobarak, Ahmed Mushfiq, additional, Shenoy, Ashish, additional, and Vernot, Corey, additional
- Published
- 2023
- Full Text
- View/download PDF
34. Dynamic Profiling and Optimization Methodologies for Sensor Networks
- Author
-
Gordon-Ross, Ann, primary, Munir, Arslan, additional, Lysecky, Susan, additional, Lysecky, Roman, additional, Shenoy, Ashish, additional, and Hiner, Jeff, additional
- Published
- 2017
- Full Text
- View/download PDF
35. Domain Prompts: Towards memory and compute efficient domain adaptation of ASR systems
- Author
-
Dingliwal, Saket, primary, Shenoy, Ashish, additional, Bodapati, Sravan, additional, Gandhe, Ankur, additional, Gadde, Ravi Teja, additional, and Kirchhoff, Katrin, additional
- Published
- 2022
- Full Text
- View/download PDF
36. Prediction of the outcome of a Twenty-20 Cricket Match
- Author
-
Shenoy, Ashish V, Singhvi, Arjun, Racha, Shruthi, and Tunuguntla, Srinivas
- Subjects
FOS: Computer and information sciences ,Machine Learning (cs.LG) - Abstract
Twenty20 cricket, sometimes written Twenty-20, and often abbreviated to T20, is a short form of cricket. In a Twenty20 game the two teams of 11 players have a single innings each, which is restricted to a maximum of 20 overs. This version of cricket is especially unpredictable and is one of the reasons it has gained popularity over recent times. However, in this paper we try four different approaches for predicting the results of T20 Cricket Matches. Specifically we take in to account: previous performance statistics of the players involved in the competing teams, ratings of players obtained from reputed cricket statistics websites, clustering the players' with similar performance statistics and using an ELO based approach to rate players. We compare the performances of each of these approaches by using logistic regression, support vector machines, bayes network, decision tree, random forest.
- Published
- 2022
- Full Text
- View/download PDF
37. Remember the Context! ASR Slot Error Correction Through Memorization
- Author
-
Bekal, Dhanush, primary, Shenoy, Ashish, additional, Sunkara, Monica, additional, Bodapati, Sravan, additional, and Kirchhoff, Katrin, additional
- Published
- 2021
- Full Text
- View/download PDF
38. Risk Preferences over Correlated and Uncorrelated Risks: Insights on Demand for Index Insurance from a Lab Experiment in Ghana
- Author
-
Shenoy, Ashish, Gallenstein, Richard, and Flatnes, Jon Einar
- Subjects
Research Methods/Statistical Methods ,International Development ,Institutional and Behavioral Economics - Abstract
Presentation 20500
- Published
- 2021
- Full Text
- View/download PDF
39. Adapting Long Context NLM for ASR Rescoring in Conversational Agents
- Author
-
Shenoy, Ashish, primary, Bodapati, Sravan, additional, Sunkara, Monica, additional, Ronanki, Srikanth, additional, and Kirchhoff, Katrin, additional
- Published
- 2021
- Full Text
- View/download PDF
40. Replication Data for: Falling Living Standards during the COVID-19 Crisis: Quantitative Evidence from Nine Developing Countries
- Author
-
Egger, Dennis, Miguel, Edward, Warren, Shana S., Shenoy, Ashish, Collins, Elliott, Karlan, Dean, Parkerson, Doug, Mobarak, A.M., Fink, Günther, Udry, Christopher, Walker, Michael, Haushofer, Johannes, Larreboure, Magdalena, Athey, Susan, Lopez-Pena, Paula, Benhachmi, Salim, Humphreys, Macartan, Lowe, Layna, Meriggi, Niccoló F., Wabwire, Andrew, Davis, C.A., Pape, Utz Johann, Graff, Tilman, Voors, Maarten, Nekesa, Carolyn, Vernot, Corey, Egger, Dennis, Miguel, Edward, Warren, Shana S., Shenoy, Ashish, Collins, Elliott, Karlan, Dean, Parkerson, Doug, Mobarak, A.M., Fink, Günther, Udry, Christopher, Walker, Michael, Haushofer, Johannes, Larreboure, Magdalena, Athey, Susan, Lopez-Pena, Paula, Benhachmi, Salim, Humphreys, Macartan, Lowe, Layna, Meriggi, Niccoló F., Wabwire, Andrew, Davis, C.A., Pape, Utz Johann, Graff, Tilman, Voors, Maarten, Nekesa, Carolyn, and Vernot, Corey
- Published
- 2021
41. ASR Adaptation for E-commerce Chatbots using Cross-Utterance Context and Multi-Task Language Modeling
- Author
-
Shenoy, Ashish, primary, Bodapati, Sravan, additional, and Kirchhoff, Katrin, additional
- Published
- 2021
- Full Text
- View/download PDF
42. Migration and the labour market impacts of COVID-19
- Author
-
Barker, Nathan, Davis, C. Austin, López-Peña, Paula, Mitchell, Harrison, Mobarak, Ahmed Mushfiq, Naguib, Karim, Reimão, Maira Emy, Shenoy, Ashish, and Vernot, Corey
- Subjects
Bangladesh ,Nepal ,ddc:330 ,J61 ,COVID-19 ,I32 ,migration ,panel ,O15 - Abstract
Using detailed microdata, we document how migration-dependent households are especially vulnerable during the COVID-19 pandemic. We create pre- and post-COVID panel datasets for three populations in Bangladesh and Nepal, leveraging experimental and observational variation in prior migration dependence. We report 25 per cent greater declines in earnings and fourfold greater prevalence of food insecurity among migrant households since March. Causes include lower migration rates, less remittance income per migrant, isolation in origin communities, and greater health risks. We compile a large set of secondary data to demonstrate the extent of vulnerability worldwide and conclude with recommendations for policy targeted at migrants.
- Published
- 2020
43. A Framed Experiment on Preferences over Correlated Risk
- Author
-
Shenoy, Ashish, primary
- Published
- 2020
- Full Text
- View/download PDF
44. HUMAN FACTORS ENGINEERING DESIGN OF A MOBILE APPLICATIONS TO PROVIDE INFORMAL CAREGIVERS WITH INDIVIDUALIZED APPROACHES FOR MANAGING ALZHEIMER’S DISEASE-ASSOCIATED BEHAVIORAL SYMPTOMS: A MACHINE LEARNING APPROACH
- Author
-
Werner, Nicole E., primary, Gilmore-Bykovskyi, Andrea, additional, Chen, Tianning, additional, Pardell, Connor, additional, Shenoy, Ashish V., additional, Zenker, Rachel, additional, and Kind, Amy J., additional
- Published
- 2017
- Full Text
- View/download PDF
45. [P2-519]: HUMAN FACTORS ENGINEERING DESIGN OF A MOBILE APPLICATION TO PROVIDE INFORMAL CAREGIVERS WITH INDIVIDUALIZED APPROACHES FOR MANAGING ALZHEIMER's DISEASE-ASSOCIATED BEHAVIORAL SYMPTOMS: A MACHINE LEARNING APPROACH
- Author
-
Werner, Nicole E., primary, Gilmore-Bykovskyi, Andrea, additional, Chen, Tianning, additional, Pardell, Connor, additional, Shenoy, Ashish V., additional, Zenker, Rachel, additional, and Kind, Amy J., additional
- Published
- 2017
- Full Text
- View/download PDF
46. Essays in development economics
- Author
-
Abhijit Banerjee, Esther. Duflo and Robert M. Townsend., Massachusetts Institute of Technology. Department of Economics., Shenoy, Ashish, Breza, Emily, Chandrasekhar, Arun G, Abhijit Banerjee, Esther. Duflo and Robert M. Townsend., Massachusetts Institute of Technology. Department of Economics., Shenoy, Ashish, Breza, Emily, and Chandrasekhar, Arun G
- Abstract
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Economics, 2016., Cataloged from PDF version of thesis. Chapter two co-authored with Emily Breza and Arun Chandrasekhar., Includes bibliographical references., This dissertation examines three current topics related to development economics. In the first chapter I investigate spatial variation in earnings and the cost of internal migration in Thailand. The second chapter explore the unintended consequences of low accountability that accompany large technological investments in the Indian dairy sector. In the third chapter I develop a model of mutual insurance where agents can only partially observe each other's earnings. In the first chapter I estimate the perceived cost of internal migration and associated labor supply elasticity in Thailand using the revealed-preference location decisions of workers. I develop a multiperiod model of the location decision where observed earnings are an imperfect proxy for the net present value of a migration. I use global commodity prices to construct instruments that identify permanent and transitory components of local earnings. Reduced-form evidence suggests that workers are sensitive to the share of the permanent component in an earnings innovation. Given this, I estimate a structural model of migration to recover cost parameters, exploiting variation in net present value induced by the instruments. Over a range of discount rates, I estimate the average cost of migration to an individual to lie between 0.3 and 1.1 times annual earnings. Fixed costs of moving (which include both financial and psychic costs) account for 60 percent of this, with the remaining 40 percent varying by distance. Furthermore, variation in idiosyncratic preferences is more than double the spatial variation in earnings. Using the parameter estimates of the model, I find that migration contributes 8.6 percentage points to local labor supply elasticity, split almost evenly between workers entering a province and fewer locals exiting. The model suggests that 20% of long-term earnings differentials over space can be attributed to perceived moving costs. In the second chapter (co-authored with Emily Breza and Arun Ch, by Ashish Shenoy., Ph. D.
- Published
- 2016
47. Got (Good) Milk? Part II - Cleanliness and Collective Action in Indian Dairies
- Author
-
Shenoy, Ashish, primary, Mukhopadhyay, Tithee, additional, Breza, Emily, additional, and Rao, Manaswini, additional
- Published
- 2015
- Full Text
- View/download PDF
48. Application-Specific Customization of Dynamic Profiling Mechanisms for Sensor Networks
- Author
-
Ding, Lu, primary, Lizarraga, Adrian, additional, Shenoy, Ashish, additional, Gordon-Ross, Ann, additional, Lysecky, Susan, additional, and Lysecky, Roman, additional
- Published
- 2015
- Full Text
- View/download PDF
49. Evaluation of Dynamic Profiling Methodologies for Optimization of Sensor Networks
- Author
-
Shenoy, Ashish, primary, Hiner, Jeff, additional, Lysecky, Susan, additional, Lysecky, Roman, additional, and Gordon-Ross, Ann, additional
- Published
- 2010
- Full Text
- View/download PDF
50. Transaction-Level Modeling for Sensor Networks Using SystemC
- Author
-
Hiner, Jeff, primary, Shenoy, Ashish, additional, Lysecky, Roman, additional, Lysecky, Susan, additional, and Ross, Ann Gordon, additional
- Published
- 2010
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.