1. Casablanca: Data and Models for Multidialectal Arabic Speech Recognition
- Author
-
Talafha, Bashar, Kadaoui, Karima, Magdy, Samar Mohamed, Habiboullah, Mariem, Chafei, Chafei Mohamed, El-Shangiti, Ahmed Oumar, Zayed, Hiba, tourad, Mohamedou cheikh, Alhamouri, Rahaf, Assi, Rwaa, Alraeesi, Aisha, Mohamed, Hour, Alwajih, Fakhraddin, Mohamed, Abdelrahman, Mekki, Abdellah El, Nagoudi, El Moatez Billah, Saadia, Benelhadj Djelloul Mama, Alsayadi, Hamzah A., Al-Dhabyani, Walid, Shatnawi, Sara, Ech-Chammakhy, Yasir, Makouar, Amal, Berrachedi, Yousra, Jarrar, Mustafa, Shehata, Shady, Berrada, Ismail, and Abdul-Mageed, Muhammad
- Subjects
Computer Science - Computation and Language - Abstract
In spite of the recent progress in speech processing, the majority of world languages and dialects remain uncovered. This situation only furthers an already wide technological divide, thereby hindering technological and socioeconomic inclusion. This challenge is largely due to the absence of datasets that can empower diverse speech systems. In this paper, we seek to mitigate this obstacle for a number of Arabic dialects by presenting Casablanca, a large-scale community-driven effort to collect and transcribe a multi-dialectal Arabic dataset. The dataset covers eight dialects: Algerian, Egyptian, Emirati, Jordanian, Mauritanian, Moroccan, Palestinian, and Yemeni, and includes annotations for transcription, gender, dialect, and code-switching. We also develop a number of strong baselines exploiting Casablanca. The project page for Casablanca is accessible at: www.dlnlp.ai/speech/casablanca.
- Published
- 2024