1. Spin filtering with insulating altermagnets
- Author
-
Samanta, Kartik, Shao, Ding-Fu, and Tsymbal, Evgeny Y.
- Subjects
Condensed Matter - Materials Science ,Condensed Matter - Mesoscale and Nanoscale Physics ,Physics - Applied Physics - Abstract
Altermagnetic (AM) materials have recently attracted significant interest due to the non-relativistic momentum-dependent spin splitting of their electronic band structure which may be useful for antiferromagnetic (AFM) spintronics. So far, however, most research studies have been focused on AM metals which can be utilized in spintronic devices, such as AFM tunnel junctions (AFMTJs). At the same time, AM insulators have remained largely unexplored in the realm of AFM spintronics. Here, we propose to employ AM insulators (AMIs) as efficient spin-filter materials. By analyzing the complex band structure of rutile-type altermagnets $MF_2$ ($M$ = $Fe, Co, Ni$), we demonstrate that the evanescent states in these AMIs exhibit spin- and momentum-dependent decay rates resulting in a substantial momentum-dependent spin polarization of the tunneling current. Using a model of spin-filter tunneling across a spin-dependent potential barrier, we estimate the TMR effect in spin-filter magnetic tunnel junctions (SF-MTJs) that include two magnetically decoupled $MF_2$ (001) barrier layers. We predict a sizable spin-filter TMR ratio of about 150-170% in SF-MTJs based on AMIs $CoF_2$ and $NiF_2$ if the Fermi energy is tuned to be close to the valence band maximum. Our results demonstrate that AMIs provide a viable alternative to conventional ferromagnetic or ferrimagnetic spin-filter materials, potentially advancing the development of next-generation AFM spintronic devices., Comment: 7 pages, 5 figures
- Published
- 2024