1. Apaf-1 is an evolutionarily conserved DNA sensor that switches the cell fate between apoptosis and inflammation
- Author
-
Jie Ruan, Xuxia Wei, Suizhi Li, Zijian Ye, Linyi Hu, Ru Zhuang, Yange Cao, Shaozhou Wang, Shengpeng Wu, Dezhi Peng, Shangwu Chen, Shaochun Yuan, and Anlong Xu
- Subjects
Cytology ,QH573-671 - Abstract
Abstract Apoptotic protease activating factor 1 (Apaf-1) was traditionally defined as a scaffold protein in mammalian cells for assembling a caspase activation platform known as the ‘apoptosome’ after its binding to cytochrome c. Although Apaf-1 structurally resembles animal NOD-like receptor (NLR) and plant resistance (R) proteins, whether it is directly involved in innate immunity is still largely unknown. Here, we found that Apaf-1-like molecules from lancelets, fruit flies, mice, and humans have conserved DNA sensing functionality. Mechanistically, mammalian Apaf-1 recruits receptor-interacting protein 2 (RIP2, also known as RIPK2) via its WD40 repeat domain and promotes RIP2 oligomerization to initiate NF-κB-driven inflammation upon cytoplasmic DNA recognition. Furthermore, DNA binding of Apaf-1 determines cell fate by switching the cellular processes between intrinsic stimuli-activated apoptosis and inflammation. These findings suggest that Apaf-1 is an evolutionarily conserved DNA sensor and may serve as a cell fate checkpoint, which determines whether cells initiate inflammation or undergo apoptosis by distinct ligand binding.
- Published
- 2025
- Full Text
- View/download PDF