35 results on '"Shallow water models"'
Search Results
2. Optimal control approach for moving bottom detection in one‐dimensional shallow waters by surface measurements.
- Author
-
Lecaros, R., López‐Ríos, J., Montecinos, G. I., and Zuazua, E.
- Subjects
- *
FINITE volume method , *COMPUTATIONAL physics , *WATER depth , *WATER waves , *FREE surfaces - Abstract
We consider the Boussinesq‐Peregrine (BP) system as described by Lannes [Lannes, D. (2013). The water waves problem: mathematical analysis and asymptotics (Vol. 188). American Mathematical Soc.], within the shallow water regime, and study the inverse problem of determining the time and space variations of the channel bottom profile, from measurements of the wave profile and its velocity on the free surface. A well‐posedness result within a Sobolev framework for (BP), considering a time dependent bottom, is presented. Then, the inverse problem is reformulated as a nonlinear PDE‐constrained optimization one. An existence result of the minimum, under constraints on the admissible set of bottoms, is presented. Moreover, an implementation of the gradient descent approach, via the adjoint method, is considered. For solving numerically both, the forward (BP) and its adjoint system, we derive a universal and low‐dissipation scheme, which contains non‐conservative products. The scheme is based on the FORCE‐ α$$ \alpha $$ method proposed in [Toro, E. F., Saggiorato, B., Tokareva, S., and Hidalgo, A. (2020). Low‐dissipation centred schemes for hyperbolic equations in conservative and non‐conservative form. Journal of Computational Physics, 416, 109545]. Finally, we implement this methodology to recover three different bottom profiles; a smooth bottom, a discontinuous one, and a continuous profile with a large gradient. We compare with two classical discretizations for (BP) and the adjoint system. These results corroborate the effectiveness of the proposed methodology to recover bottom profiles. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
3. Persistence and asymptotic analysis of solutions of nonlinear wave equations.
- Author
-
Freire, Igor Leite
- Abstract
We consider persistence properties of solutions for a generalised wave equation including vibration in elastic rods and shallow water models, such as the BBM, the Dai’s, the Camassa–Holm, and the Dullin–Gottwald–Holm equations, as well as some recent shallow water equations with Coriolis effect. We establish unique continuation results and exhibit asymptotic profiles for the solutions of the general class considered. From these results we prove the non-existence of non-trivial spatially compactly supported solutions for the equation. As an aftermath, we study the equations earlier mentioned in light of our results for the general class. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
4. Flux Globalization Based Well-Balanced Path-Conservative Central-Upwind Schemes for Shallow Water Models.
- Author
-
Cao, Yangyang, Kurganov, Alexander, Liu, Yongle, and Xin, Ruixiao
- Abstract
We extend recently proposed flux globalization based well-balanced path-conservative central-upwind schemes to several shallow water models including the Saint-Vevant system with and without the Manning friction term and rotating shallow water equations. We focus on development of the well-balanced schemes capable of exactly preserving quite complicated steady-state solutions the studied systems admit when the bottom topography is discontinuous. In such cases, nonconservative product terms naturally appear and they require a special treatment. To this end, we incorporate the nonconservative product terms into the global fluxes using the path-conservative technique implemented within a framework of simple—yet highly accurate and robust—Riemann-problem-solver-free central-upwind schemes. This results in new flux globalization based central-upwind schemes, which are more accurate than their existing counterparts. The advantages of the proposed schemes are demonstrated on a number of numerical examples. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
5. Dissimilarity Mesh Size Assessment for Two Dimensional Flood Routing Model
- Author
-
Azad, W. H., Mohd Sidek, Lariyah, Basri, H., Hassan, A. J., Biswas, Asit K., Series Editor, Tortajada, Cecilia, Series Editor, Altinbilek, Dogan, Editorial Board Member, González-Gómez, Francisco, Editorial Board Member, Gopalakrishnan, Chennat, Editorial Board Member, Horne, James, Editorial Board Member, Molden, David J., Editorial Board Member, Varis, Olli, Editorial Board Member, Wang, Hao, Editorial Board Member, Mohd Sidek, Lariyah, editor, Salih, Gasim Hayder Ahmed, editor, and Boosroh, Mohd Hariffin, editor
- Published
- 2020
- Full Text
- View/download PDF
6. Numerical Investigation of a Flash Flood Process that Occurred in Zhongdu River, Sichuan, China
- Author
-
Qingyuan Yang, Tonghuan Liu, Jingjing Zhai, and Xiekang Wang
- Subjects
flash flood ,sediment transport ,shallow water models ,zhongdu flood ,numerical simulation ,Science - Abstract
In 2018, a flash flood occurred in the Zhongdu river, which lies in Yibin, Sichuan province of China. The flood caused many casualties and significant damage to people living nearby. Due to the difficulty in predicting where and when flash floods will happen, it is nearly impossible to set up monitors in advance to detect the floods in detail. Field investigations are usually carried out to study the flood propagation and disaster-causing mechanism after the flood’s happening. The field studies take the relic left by the flash flood to deduce the peak level, peak discharge, bed erosion, etc. and further revel the mechanism between water and sediment transport during the flash flood This kind of relic-based study will generate bigger errors in regions with great bed deformation. In this study, we come up with numerical simulations to investigate the flash flood that happened in the Zhongdu river. The simulations are based on two-dimensional shallow water models coupled with sediment transport and bed deformation models. Based on the real water level and discharge profile measured by a hydrometric station nearby, the numerical simulation reproduced the flash flood in the valley. The results show the flood coverage, water level variation, and velocity distribution during the flood. The simulation offers great help in studying the damage-causing process. Furthermore, simulations without considering sediment transport are also carried out to study the impact of bed erosion and sedimentation. The study proved that, without considering bed deformation, the flood may be greatly underestimated, and the sediment lying in the valley has great impact on flood power.
- Published
- 2021
- Full Text
- View/download PDF
7. Comparison of different numerical schemes for 1D conservation laws.
- Author
-
Nwaigwe, Chinedu and Mungkasi, Sudi
- Subjects
- *
CONSERVATION laws (Physics) , *FINITE volume method - Abstract
The importance of numerical flux solvers (NFS) in constructing conservative methods is well known, but it is not always clear which solvers more suitable for given conservation laws. To elucidate this, we compare some NFS for some conservation laws. The finite volume method is adopted as the base scheme and the selected models include linear, nonlinear and also a system of conservation laws. The NFS are the HLL, the Lax-Friedrich's, Modified Lax- Friedrich's and the Rusanov's schemes. We first perform experimental order of convergence to ascertain that the base scheme is correctly implemented. The methods are then compared for the models. The results show that the HLL is a very superior method compared to the other methods. In particular, only the HLL is able to compute physically correct solution of the Buckley-Leverett model. On the other hand, the Lax-Friedrich's solvers demonstrated to be the most inferior of all the methods. Our conclusion is that, for practical cases, the Lax- Friedrich solver should be avoided, especially when the analytical flux is nonlinear. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
8. Shallow water numerical models for the 1947 gisborne and 2011 Tohoku-Oki tsunamis with kinematic seismic generation.
- Author
-
Le Gal, Marine, Violeau, Damien, Ata, Riadh, and Wang, Xiaoming
- Subjects
- *
WATER depth , *TSUNAMIS , *SEA floor deformation , *SEISMOLOGY , *NUMERICAL analysis - Abstract
Traditionally, the initialization of seismically generated tsunamis is done by setting the initial free surface deformation as identical to the final deformation of the sea floor. However, numerous effects are neglected through this method, in particular the dynamics of the sea floor deformation. Here, two temporal parameters characterizing the sea floor deformation are defined: the rise time t r (vertical motion) and the rupture velocity V p (horizontal motion). These parameters have already been theoretically introduced by Hammack (1973) and Todorovska and Trifunac (2001), respectively. For a simplified and schematic motion of the sea floor using simultaneously both parameters, a theoretical linear analysis developed in Le Gal et al. (2017) showed a resonance phenomenon for which the amplitude of the generated wave becomes significantly larger than the amplitude of the sea floor deformation. This phenomenon concerns deformation with small rise times and rupture velocities close to the linear long wave velocity g h . The aim of the present study is to investigate the influence of a kinematic deformation, using both parameters, during historical tsunamis with numerical nonlinear shallow water simulations. This work corroborates Le Gal et al.’s theoretical schematic analysis. For this purpose, two events are studied: the March 1947 New Zealand and the 2011 Japan tsunamis. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
9. Dynamics of an idealized fluid model for investigating convective-scale data assimilation
- Author
-
Thomas Kent, Onno Bokhove, and Steven Tobias
- Subjects
shallow water models ,data assimilation ,numerical weather prediction ,convection dynamics ,discontinuous Galerkin finite element method ,Oceanography ,GC1-1581 ,Meteorology. Climatology ,QC851-999 - Abstract
An idealized fluid model of convective-scale numerical weather prediction, intended for use in inexpensive data assimilation experiments, is described here and its distinctive dynamics are investigated. The model modifies the rotating shallow water equations to include some simplified dynamics of cumulus convection and associated precipitation, extending and improving the model of Würsch and Craig. Changes to this original model are the removal of ad hoc diffusive terms and the addition of Coriolis rotation terms, leading to a so-called 1.5-dimensional model. Despite the non-trivial modifications to the parent equations, it is shown that this shallow water type model remains hyperbolic in character and can be integrated accordingly using a discontinuous Galerkin finite element method for nonconservative hyperbolic systems of partial differential equations. Combined with methods to ensure well-balancedness and non-negativity, the resulting numerical solver is novel, efficient and robust. Classical numerical experiments in the shallow water theory, such as the Rossby geostrophic adjustment and flow over topography, are reproduced for the standard shallow water model and used to highlight the modified dynamics of the new model. In particular, it exhibits important aspects of convective-scale dynamics relating to the disruption of large-scale balance and is able to simulate other features related to convecting and precipitating weather systems. Our analysis here and preliminary results suggest that the model is well suited for efficiently and robustly investigating data assimilation schemes in an idealized ‘convective-scale’ forecast assimilation framework.
- Published
- 2017
- Full Text
- View/download PDF
10. A study of reduced-order 4DVAR with a finite element shallow water model.
- Author
-
Altaf, M. U., Ambrozic, M., McCabe, M. F., and Hoteit, I.
- Subjects
WATER depth ,FOUR-dimensional imaging ,ORTHOGONAL decompositions - Abstract
Four-dimensional variational data assimilation (4DVAR) is frequently used to improve model forecasting skills. This method improves a model consistency with available data by minimizing a cost function measuring the model-data misfit with respect to some model inputs and parameters. Associated with this type of method, however, are difficulties related to the coding of the adjoint model, which is needed to compute the gradient of the 4DVAR cost function. Proper orthogonal decomposition (POD) is a model reduction method that can be used to approximate the gradient calculation in 4DVAR. In this work, two ways of using POD in 4DVAR are presented, namely model-reduced 4DVAR and reduced adjoint 4DVAR (RA-4DVAR). Both techniques employ POD to obtain a reduced-order approximation of the forward linear tangent operator. The difference between the two methods lies in the treatment of the forward model. Model-reduced 4DVAR performs minimization entirely in the POD-reduced space, thereby achieving very low computational costs, but sacrificing accuracy of the end result. On the other hand, the RA-4DVAR uses POD to approximate only the adjoint model. The main contribution of this study is a comparative performance analysis of these 4DVAR methodologies on a nonlinear finite element shallow water model. The sensitivity of the methods to perturbations in observations and the number of observation points is examined. The results from twin experiments suggest that the RA-4DVAR method is easy to implement and computationally efficient and provides a robust approach for achieving reasonable results in the context of variational data assimilation. Copyright © 2015 John Wiley & Sons, Ltd. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
11. Asymptotic shallow water models with non smooth topographies.
- Author
-
Cathala, Mathieu
- Abstract
We present new models to describe shallow water flows over non smooth topographies. The water waves problem is formulated as a system of two equations on surface quantities in which the topography is involved in a Dirichlet-Neumann operator. Starting from this formulation and using the joint analyticity of this operator with respect to the surface and the bottom parametrizations, we derive a nonlocal shallow water model which only includes smoothing contributions of the bottom. Under additional small amplitude assumptions, Boussinesq-type systems are also derived. Using these alternative shallow water models as references, we finally present numerical tests to assess the precision of the classical shallow water approximations over rough bottoms. In the case of a polygonal bottom, we show numerically that our new model is consistent with the approach developed by Nachbin. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
12. A PCA spatial pattern based artificial neural network downscaling model for urban flood hazard assessment
- Author
-
Julie Carreau, Vincent Guinot, Hydrosciences Montpellier (HSM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Littoral, Environment: MOdels and Numerics (LEMON), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Hydrosciences Montpellier (HSM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Littoral, Environnement : Méthodes et Outils Numériques (LEMON), and Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Subjects
Hazard (logic) ,010504 meteorology & atmospheric sciences ,0207 environmental engineering ,Principal component analysis ,02 engineering and technology ,Flow variables for hazard assessment ,01 natural sciences ,Multisite statistical downscaling ,Physics::Geophysics ,[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] ,Statistics ,[SPI.GCIV.RISQ]Engineering Sciences [physics]/Civil Engineering/Risques ,[SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology ,020701 environmental engineering ,Physics::Atmospheric and Oceanic Physics ,Artificial Neural Networks ,0105 earth and related environmental sciences ,Water Science and Technology ,Porosity models ,Principal Component Analysis ,Flood myth ,Artificial neural network ,Artificial neural networks ,Statistical model ,6. Clean water ,[STAT]Statistics [stat] ,Shallow water models ,Spatial ecology ,Environmental science ,Indicator value ,Downscaling ,Downscaling at multiple locations - Abstract
We present two statistical models for downscaling flood hazard indicators derived from upscaled shallow water simulations. These downscaling models are based on the decomposition of hazard indicators into linear combinations of spatial patterns obtained from a Principal Component Analysis (PCA). Artificial Neural Networks (ANNs) are used to model the relationship between low resolution (LR) and high resolution (HR) information drawn from hazard indicators. In both statistical models, the PCA features, i.e. the linear weights of the spatial patterns, of the LR hazard indicator are taken as inputs to the ANNs. In the first model, there is one ANN per HR cell where the hazard indicator is to be estimated and the output of the ANN is the hazard indicator value at that cell. In the second model, there is a single ANN for the whole HR mesh whose outputs are the PCA features of the HR hazard indicator. An estimate of the hazard indicator is obtained by combining the ANN’s outputs with the HR spatial patterns. The two statistical downscaling models are evaluated and compared at estimating the water depth and the norm of the unit discharge, two common hazard indicators, on simulations from five synthetic urban configurations and one field-test case. Analyses are carried out in terms of relative absolute errors of the statistical downscaling model with respect to the LR hazard indicator. They show that (i) both statistical downscaling models provide estimates that are more accurate than the LR hazard indicator in most cases and (ii) the second downscaling model yields consistently lower errors for both hazard indicators for all flow scenarios on all configurations considered. The statistical models are three orders of magnitude faster than HR flow simulations. Used in conjunction with upscaled flood models such as porosity models, they appear as a promising operational alternative to direct flood hazard assessment from HR flow simulations.
- Published
- 2021
- Full Text
- View/download PDF
13. A PCA spatial pattern based downscaling approach for urban flood risk assessment
- Author
-
Carreau, Julie, Guinot, V., Hydrosciences Montpellier (HSM), Institut de Recherche pour le Développement (IRD)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Littoral, Environnement : Méthodes et Outils Numériques (LEMON), Inria Sophia Antipolis - Méditerranée (CRISAM), and Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Subjects
Porosity models ,[STAT]Statistics [stat] ,Principal Component Analysis ,Flow variables for risk assessment ,[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] ,Shallow water models ,Physics::Atmospheric and Oceanic Physics ,Artificial Neural Networks ,Downscaling at multiple locations - Abstract
With CPU times reduced by two to three orders of magnitude compared to shallow water models, porosity models are considered as efficient tools for the modelling of urban floods on the scale of a conurbation. However, they provide only upscaled hydraulic fields that yield unreliable estimates of the flood risk in terms of financial losses and hazard to human lives. Downscaling of the porosity model simulation outputs is thus necessary. The present work puts forward a downscaling approach based on the decomposition of microscopic hydraulic fields into linear combinations of spatial patterns. The coefficients of the linear combinations are predicted with an Artificial Neural Network (ANN) whose input is derived from macroscopic hydraulic fields. Principal Component Analysis is used both to decompose the microscopic fields into linear combinations of spatial patterns and to project the macroscopic fields into lower dimensional features that are fed to the ANN. This global downscaling approach, which reconstruct the whole microscopic field at once, is compared with a local downscaling approach that relies on a similar setup except that each cell of the microscopic field is estimated separately by a dedicated ANN and that there are as many ANNs as cells. The two downscaling approaches are evaluated and compared at estimating the water depth and the norm of the unit discharge on five synthetic urban configurations and one field-test case. The analyses in terms of absolute errors show that the global approach not only provides a valid downscaling scheme but outperforms, in almost all instances, the local approach.
- Published
- 2020
14. Modelling the fate and transport of negatively buoyant storm–river water in small multi-basin lakes
- Author
-
Rueda, Francisco J. and MacIntyre, Sally
- Subjects
- *
BUOYANT ascent (Hydrodynamics) , *PLUMES (Fluid dynamics) , *MATHEMATICAL models of hydrodynamics , *STORMS , *LAKES , *RIVERS , *WATER temperature , *THERMAL diffusivity - Abstract
Abstract: The dynamics of negatively buoyant river plumes in a small multi-basin kettle lake with steep bathymetry (Toolik Lake, AK) are simulated using a Cartesian hydrodynamic model based on the solution of the three-dimensional shallow water equations. To validate the model, model predictions are compared with results from previous analytical and laboratory studies and with field observations. The grid resolution adopted for the Toolik Lake model is 0.5m (=Δz) in the vertical and 20m (=Δx) in the horizontal, so that the ratio of the bottom slope S 0 to Δz/Δx is lower than 4 in 99% of the computational domain. With that resolution, the model represents correctly the rate of mixing between lake and river water and the speed of propagation of downslope gravity currents. The model provides accurate predictions of the temperature structure (RMSE=0.25°C) and of eddy diffusivities at the depths of the intrusions of incoming water. Measurements and modelling show similar fractions and depth distribution of river water on a cross-basin transect, which suggests that the mixing dynamics of the plume as it transits between basins are well resolved. Thus, the stage is set to quantify the ecological consequences of storm events in small lakes with several interconnected basins using coupled biological measurements and 3D modelling. [Copyright &y& Elsevier]
- Published
- 2010
- Full Text
- View/download PDF
15. Large scale computing at Rijkswaterstaat
- Author
-
Vollebregt, E.A.H., Roest, M.R.T., and Lander, J.W.M.
- Subjects
- *
SIMULATION methods & models , *HARBORS , *OPTIMUM ship routing - Abstract
The Dutch Rijkswaterstaat uses simulation models extensively in carrying out its various tasks, among which are the protection of the country from flooding and the management of shipping routes and ports. Different applications of the models lead to large scale computations. Furthermore the continuing increase in level of detail of the simulations demands more and more computing power.In the past few years, Rijkswaterstaat/RIKZ, Delft University of Technology and VORtech Computing have developed and implemented techniques to make these large scale simulations possible. First the 3D shallow water model TRIWAQ has been parallelized. Then this parallel version has been extended to allow for different forms of domain decomposition. Finally also various on-line couplings with different models have been established.In this paper we give an overview of these developments and of our approach towards parallel computing that enabled us to carry out all of these developments in a single conceptual framework. [Copyright &y& Elsevier]
- Published
- 2003
- Full Text
- View/download PDF
16. A Hamiltonian structure of the Isobe-Kakinuma model for water waves
- Author
-
Vincent Duchêne, Tatsuo Iguchi, Institut de Recherche Mathématique de Rennes (IRMAR), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Department of Mathematics (KEIO UNIVERSITY), JSPS KAKENHI Grant Number JP17K18742 and JP17H02856, Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
- Subjects
76B07, 35Q35, 37K05 ,Hamiltonian structure ,01 natural sciences ,010305 fluids & plasmas ,symbols.namesake ,Mathematics - Analysis of PDEs ,0103 physical sciences ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,Physics::Atmospheric and Oceanic Physics ,Mathematical physics ,Physics ,Partial differential equation ,Applied Mathematics ,010102 general mathematics ,Water waves ,Computational Mathematics ,Waves and shallow water ,Modeling and Simulation ,Shallow water models ,symbols ,Hamiltonian (quantum mechanics) ,Analysis ,Lagrangian ,Analysis of PDEs (math.AP) - Abstract
We consider the Isobe-Kakinuma model for water waves, which is obtained as the system of Euler-Lagrange equations for a Lagrangian approximating Luke's Lagrangian for water waves. We show that the Isobe-Kakinuma model also enjoys a Hamiltonian structure analogous to the one exhibited by V. E. Zakharov on the full water wave problem and, moreover, that the Hamiltonian of the Isobe-Kakinuma model is a higher order shallow water approximation to the one of the full water wave problem., arXiv admin note: text overlap with arXiv:1803.09236
- Published
- 2019
- Full Text
- View/download PDF
17. On the geometry of extended self-similar solutions of the airy shallow water equations
- Author
-
Camassa, R, Falqui, G, Ortenzi, G, Pedroni, M, Camassa, R, Falqui, G, Ortenzi, G, and Pedroni, M
- Abstract
Self-similar solutions of the so called Airy equations, equivalent to the dispersionless nonlinear Schrödinger equation written in Madelung coordinates, are found and studied from the point of view of complete integrability and of their role in the recurrence relation from a bi-Hamiltonian structure for the equations. This class of solutions reduces the PDEs to a finite ODE system which admits several conserved quantities, which allow to construct explicit solutions by quadratures and provide the bi-Hamiltonian formulation for the reduced ODEs.
- Published
- 2019
18. Frontières libres: Contributions à des problèmes viscoplastiques et d’estimation de paramètres
- Author
-
Vigneaux, Paul, Unité de Mathématiques Pures et Appliquées (UMPA-ENSL), École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS), Numerical Medicine (NUMED), École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS)-Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), École Normale Supérieure de Lyon, and François Bouchut
- Subjects
Shallow Water models ,Viscoplastic flows ,écoulements viscoplastiques ,Médecine Numérique ,HPC High-Performance Computing ,Bayesian inference methods ,Numerical Medicine ,Parameter estimation ,modèles de Saint-Venant ,Méthodes Bayesiennes ,[MATH]Mathematics [math] ,Calcul parallèle ,estimation de paramètres - Abstract
This memoire, based on the works done at the ENS de Lyon (2008-2017), is made of two parts.The first one is concerned by several aspects of the numerical simulation of viscoplastic fluids, thanks to duality methods (augmented Lagrangian and Bermúdez-Moreno). On the one hand, works on the design of well - balanced finite volume numerical schemes for prototypes of Shallow Water Bingham models (i.e. integrated in the vertical direction) are described. The 1D case is summarized while the 2D framework, which constitutes an original contribution of this document, is given in more details. In particular, we finish by an illustration of a viscoplastic avalanche in the Taconnaz avalanche path (Chamonix, Mont-Blanc). On the other hand, we give a synthesis on the work on the full 2D incompressible Bingham equations (i.e. not integrated like in the previous case) and its comparison with physical experiments in an expansion-contraction geometry.In the second part, we give an overview of the work done within the INRIA Numed Team, concerning the development of Bayesian methods for the parameters estimation of PDEs based models. More precisely, this work is based on SAEM methods which are intensively used in Medicine and Biology. The computational cost, associated to the numerous evaluations of the PDE model, being prohibitive, we proposed: (i) the implementation of a fixed metamodel (computed offline), based on an autorefined (structured tree) interpolation grid. And (ii) a kriged metamodel which is refined online during the SAEM iterations.; Ce mémoire, basé sur l'activité réalisée à l'ENS de Lyon, est structuré en deux parties.Dans la première, nous traitons de divers aspects de la simulation numérique de fluides viscoplastiques, grâce à des méthodes de dualité (Lagrangien Augmenté et Bermúdez-Moreno). D'une part, les travaux sur le développement de schémas numériques volumes-finis "bien équilibrés" pour des équations de type Saint-Venant Bingham (intégration sur la verticale) sont décrits. Le cas 1D est synthétisé alors que le cadre bidimensionnel, qui constitue une contribution originale de ce document, est présenté plus en détails. En particulier, nous finissons par une illustration d'avalanche viscoplastique dans le couloir de Taconnaz (Massif du Mont-Blanc). D'autre part, nous donnons un résumé du travail de simulation sur les équations de Bingham incompressible 2D complètes (i.e. non intégrées, par opposition au cas précédent) et la comparaison avec des expériences physiques dans une géométrie de type expansion-contraction.Dans la seconde partie, nous donnons un survol des activités réalisées au sein de l'équipe INRIA Numed, concernant le développement de méthodes bayesiennes pour l'estimation de paramètres de modèles à base d'EDP. Plus précisément, ce travail concerne les méthodes SAEM qui sont très utilisées dans le domaine biomédical. Etant donné le coût prohibitif associé aux nombreuses évaluations du modèle EDP, nous avons proposé, d'une part, une implémentation de métamodèle fixe à base de grille d'interpolation autoraffinée (de type structuré arborescent) et, d'autre part, une méthode de métamodèle évolutif (construit par krigeage) se raffinant au cours des itérations du SAEM, elles mêmes.
- Published
- 2017
19. Dynamique interne au front d'écoulements à surface libre. Application aux laves torrentielles
- Author
-
Freydier, Perrine, Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), Université Grenoble Alpes, and Guillaume Chambon
- Subjects
[PHYS.PHYS.PHYS-FLU-DYN]Physics [physics]/Physics [physics]/Fluid Dynamics [physics.flu-dyn] ,Free surface flows ,Écoulement à surface libre ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Mechanics of the fluids [physics.class-ph] ,Modèle Saint Venant ,Viscoplastic ,Conveyor belt channel ,Laves torentielles ,Debris flows ,Lubrication ,Shallow water models ,Lubrification ,Canal à fond mobile ,Viscoplastique - Abstract
A depth-averaged model based on the thin-layer assumption, called Saint-Venant (Shallow-Water), is classically used to simulate the propagation and the spreading of debris and mud flows. It is based on several approximations concerning the shape of the velocity profile in non-uniform zones. We propose to test these hypotheses, examining a strongly non-uniform zone, the front of free-surface viscoplastic flows and the velocity field within this zone. By improving our knowledge about the internal dynamics in the front zone, we seek to improve the thin-layer models. This thesis therefore focuses on the study of the internal dynamics within the front of viscoplatic free-surface flows.We used the moving conveyor belt to generate stationary flows. We carried out a technical work on this set-up, and specific analysis of images obtained from the high-speed camera, in order to be able to measure velocity fields with a high resolution. The study of a Newtonian fluid was also carried out in order to validate the lubrication model and the experimental device.We compared experimental results to theoretical solutions of two thin-layer models taking into account the Herschel-Bulkley rheology: the classical model of lubrication, which is at the base of Saint-Venant model, and a consistent first-order model specifically developed in this thesis.The first-order model is equal to the zero-order model (lubrication), plus corrective terms derived from the normal stresses and inertia terms.In this study, for the purpose of comparison with our experimental results, we are interested in travelling-wave solutions. We are able to solve the shape of the front without using a depth-averaged model.Far from the front, experimental velocity profiles clearly display the characteristic 2-layer structure predicted by the lubrication solution, with constant values close to the free-surface (plug) and a sheared layer underneath. Closer to surge tip, the shape of experimental longitudinal velocity profilesthen begins to differ from the theoretical prediction. The 2-layer structure tends to disappear, and the profiles display shear across the whole depth ofthe flow. In this tip region, surface velocity also appears to increase faster than its theoretical counterpart. Surface velocity predicted by the first-order model increase more drastically in the tip region, in better agreement with the measurements than the lubrication model. The first-order model predicts a sheared velocity profile when approaching the front, as observed experimentally.The consistent first-order model then provides better predictions about internal dynamics than lubrication model. A depth-integrated model like Saint-Venant, based on consistent first-order developments is then calculated, as a first step before being integrated into an operational simulation tool.; Le modèle de couche mince intégré sur l'épaisseur, Saint-Venant, utilisé classiquement pour simuler la propagation de laves torrentielles et coulées boueuses, repose sur plusieurs approximations concernant la forme des profils de vitesse en zones non-uniformes. Il est pourtant nécessaire d'utiliser ce type de modélisation, comme outil d'aide à la gestion des risques liés aux laves torrentielles. Nous proposons d'éprouver ses hypothèses, en observant une zone fortement non-uniforme, le front de coulées à surface libre et le champ de vitesse à l'intérieur de cette zone.En améliorant notre connaissance de l'évolution de la forme des profils de vitesse (de la dynamique interne) au front de coulées, nous cherchons à améliorer les modèles de couche mince. Cette thèse porte donc sur l'étude de la dynamique interne au front d'écoulements à surface libre de fluides newtoniens et viscoplastiques.Nous avons utilisé le dispositif du canal à fond mobile qui permet de générer des coulées stationnaires dans le référentiel de l'observateur au moyen d'un fond mobile remontant vers l'amont. Nous avons réalisé un travail technique sur ce canal et sur l'analyse des images pour pouvoir mesurer les champs de vitesse à haute résolution spatiale aux fronts de coulées à surface libre de fluides viscoplastiques. L'étude des fluides newtoniens a aussi été réalisée afin de valider les modèles et éprouver le dispositif expérimental.Nous avons comparé les résultats expérimentaux aux solutions théoriques de deux modèles de couche mince adaptés à la rhéologie de Herschel-Bulkley : le modèle classique de la lubrification, à la base du modèle de Saint-Venant et un modèle consistant à l'ordre 1 développé dans cette thèse. Le modèle consistant d'ordre 1 est la somme du modèle à l'ordre 0 (la lubrification) et de termes correctifs qui proviennent des contraintes normales et des termes d'inertie. Dans le cadre de notre configuration du fond mobile remontant vers l'amont, il est possible de déduire la forme du front en cherchant une solution de type onde progressive, sans passer par un modèle intégré dans l'épaisseur.Pour les fluides viscoplastiques, la structure classique du profil de vitesse, avec une zone cisaillée surmontée d'un plug non cisaillé est bien reconnaissable sur nos profils de vitesse en zone uniforme, et en zone faiblement variée. Mais à l'approche du front, cependant, la vitesse de surface augmente, les profils de vitesse expérimentaux deviennent cisaillés sur toute l'épaisseur, conduisant à la disparition du plug à proximité de la ligne de front.Le modèle de lubrification prédit l’existence d'un plug dans le front jusqu'à la ligne de contact, ce qui n'est pas observé expérimentalement. La vitesse de surface du modèle de lubrification augmente à l'approche du front, mais est largement sous-estimée par rapport à la vitesse de surface mesurée. Les vitesses de surface prédites par le modèle d'ordre 1 augmentent plus drastiquement au front, en meilleur accord avec les mesures que le modèle de lubrification. Pour certaines configurations expérimentales l'accord est même très bon. Remarquablement, le cisaillement des profils de vitesse à l'approche du front, observé expérimentalement, est aussi prédit par le modèle d'ordre 1.Les profils de vitesse présentent donc une évolution au front de coulées viscoplastiques en contradiction avec les hypothèses du modèle de Saint-Venant. Le modèle consistant d'ordre 1 permet d'améliorer les prédictions. Un modèle intégré dans l'épaisseur de type Saint-Venant basé sur les développements consistants d'ordre 1 est alors calculé, car il constitue l'étape nécessaire avant d'être intégré dans un outil de simulation opérationnel.
- Published
- 2017
20. A PCA spatial pattern based artificial neural network downscaling model for urban flood hazard assessment.
- Author
-
Carreau, J. and Guinot, V.
- Subjects
- *
FLOOD warning systems , *ARTIFICIAL neural networks , *RISK assessment , *DOWNSCALING (Climatology) , *PRINCIPAL components analysis , *FLOW simulations - Abstract
• Statistical downscaling framework for a fast and accurate estimation of high resolution flood hazard indicators. • High dimensional estimates obtained as a linear combination of spatial patterns computed by principal components analysis. • Linear weights of spatial patterns are estimated by an artificial neural network based on low resolution flood hazard indicator information. • Evaluation and comparison on simulated hydraulic fields over five synthetic configurations and one field scale test. • Analyses of the relative error with respect to low resolution hazard indicator show that the downscaling estimates are more accurate. We present two statistical models for downscaling flood hazard indicators derived from upscaled shallow water simulations. These downscaling models are based on the decomposition of hazard indicators into linear combinations of spatial patterns obtained from a Principal Component Analysis (PCA). Artificial Neural Networks (ANNs) are used to model the relationship between low resolution (LR) and high resolution (HR) information drawn from hazard indicators. In both statistical models, the PCA features, i.e. the linear weights of the spatial patterns, of the LR hazard indicator are taken as inputs to the ANNs. In the first model, there is one ANN per HR cell where the hazard indicator is to be estimated and the output of the ANN is the hazard indicator value at that cell. In the second model, there is a single ANN for the whole HR mesh whose outputs are the PCA features of the HR hazard indicator. An estimate of the hazard indicator is obtained by combining the ANN's outputs with the HR spatial patterns. The two statistical downscaling models are evaluated and compared at estimating the water depth and the norm of the unit discharge, two common hazard indicators, on simulations from five synthetic urban configurations and one field-test case. Analyses are carried out in terms of relative absolute errors of the statistical downscaling model with respect to the LR hazard indicator. They show that (i) both statistical downscaling models provide estimates that are more accurate than the LR hazard indicator in most cases and (ii) the second downscaling model yields consistently lower errors for both hazard indicators for all flow scenarios on all configurations considered. The statistical models are three orders of magnitude faster than HR flow simulations. Used in conjunction with upscaled flood models such as porosity models, they appear as a promising operational alternative to direct flood hazard assessment from HR flow simulations. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
21. Frontières libres
- Author
-
Vigneaux, Paul and Vigneaux, Paul
- Subjects
Shallow Water models ,Viscoplastic flows ,écoulements viscoplastiques ,Médecine Numérique ,HPC High-Performance Computing ,Bayesian inference methods ,Numerical Medicine ,Parameter estimation ,modèles de Saint-Venant ,Méthodes Bayesiennes ,[MATH] Mathematics [math] ,Calcul parallèle ,estimation de paramètres - Abstract
This memoire, based on the works done at the ENS de Lyon (2008-2017), is made of two parts.The first one is concerned by several aspects of the numerical simulation of viscoplastic fluids, thanks to duality methods (augmented Lagrangian and Bermúdez-Moreno). On the one hand, works on the design of well - balanced finite volume numerical schemes for prototypes of Shallow Water Bingham models (i.e. integrated in the vertical direction) are described. The 1D case is summarized while the 2D framework, which constitutes an original contribution of this document, is given in more details. In particular, we finish by an illustration of a viscoplastic avalanche in the Taconnaz avalanche path (Chamonix, Mont-Blanc). On the other hand, we give a synthesis on the work on the full 2D incompressible Bingham equations (i.e. not integrated like in the previous case) and its comparison with physical experiments in an expansion-contraction geometry.In the second part, we give an overview of the work done within the INRIA Numed Team, concerning the development of Bayesian methods for the parameters estimation of PDEs based models. More precisely, this work is based on SAEM methods which are intensively used in Medicine and Biology. The computational cost, associated to the numerous evaluations of the PDE model, being prohibitive, we proposed: (i) the implementation of a fixed metamodel (computed offline), based on an autorefined (structured tree) interpolation grid. And (ii) a kriged metamodel which is refined online during the SAEM iterations., Ce mémoire, basé sur l'activité réalisée à l'ENS de Lyon, est structuré en deux parties.Dans la première, nous traitons de divers aspects de la simulation numérique de fluides viscoplastiques, grâce à des méthodes de dualité (Lagrangien Augmenté et Bermúdez-Moreno). D'une part, les travaux sur le développement de schémas numériques volumes-finis "bien équilibrés" pour des équations de type Saint-Venant Bingham (intégration sur la verticale) sont décrits. Le cas 1D est synthétisé alors que le cadre bidimensionnel, qui constitue une contribution originale de ce document, est présenté plus en détails. En particulier, nous finissons par une illustration d'avalanche viscoplastique dans le couloir de Taconnaz (Massif du Mont-Blanc). D'autre part, nous donnons un résumé du travail de simulation sur les équations de Bingham incompressible 2D complètes (i.e. non intégrées, par opposition au cas précédent) et la comparaison avec des expériences physiques dans une géométrie de type expansion-contraction.Dans la seconde partie, nous donnons un survol des activités réalisées au sein de l'équipe INRIA Numed, concernant le développement de méthodes bayesiennes pour l'estimation de paramètres de modèles à base d'EDP. Plus précisément, ce travail concerne les méthodes SAEM qui sont très utilisées dans le domaine biomédical. Etant donné le coût prohibitif associé aux nombreuses évaluations du modèle EDP, nous avons proposé, d'une part, une implémentation de métamodèle fixe à base de grille d'interpolation autoraffinée (de type structuré arborescent) et, d'autre part, une méthode de métamodèle évolutif (construit par krigeage) se raffinant au cours des itérations du SAEM, elles mêmes.
- Published
- 2017
22. Application of the Spanish criteria for the water management policy in the creation of new infrastructure
- Author
-
Mateo Lázaro, Jesús, Sánchez Navarro, José Ángel, Edo Romero, Vanesa, and Castillo Mateo, Jorge
- Subjects
Infraestructuras en DPH ,Gestión de inundaciones ,Modelado 2D ,Saint Venant equations ,IBER ,Saint Venant 2D ,Flood management ,Shallow water Models ,Infrastructure in rivers - Abstract
Se presenta una descriptiva de los criterios que en España se vienen adoptando en la implantación de infraestructuras en el dominio público hidráulico. Estos criterios se contemplan en el Real Decreto 9/2008 y en el Proyecto de RD de 2016 que, en materia de gestión de riesgos de inundación, abordan dos aspectos principales a regular, (1) el aumento o creación de riesgo en el entorno de la infraestructura cuyo análisis se basa en el concepto de vía de intenso desagüe y (2) el riesgo para los propios usuarios de la infraestructura que se pretende crear, cuyo análisis se basa en el concepto de zona de flujo preferente. En otras palabras, se analizan dos aspectos, los riesgos a terceros y los riesgos propios. El desarrollo de la temática del artículo se ilustra con un ejemplo, la implantación de un puente de 109 m sobre el río Jalón, que cruza el valle aguas abajo de la localidad de Sabiñán. El apartado principal del análisis consiste en el estudio hidráulico de un tramo de río en situación de crecidas, que se lleva a cabo con el software IBER, en cuya creación han colaborado el CEDEX y las Universidades de La Coruña y Barcelona A description of the criteria adopted in Spain for the building of infrastructure in the public water domain is presented. These criteria are contemplated in Spanish legislation which, in relation to flood risk management, address two main aspects to be regulated, (1) the increase or creation of risk in the infrastructure environment whose, analysis is based on the concept of the main stream channel, and (2 ) the risk of the infrastructure to be created for users, whose analysis is based on the concept of the area of preferential flow. In other words, two aspects are analyzed, risks to third parties and the risks themselves. The development of the topic is illustrated with an example, the building of a 110 m bridge over the Jalon River, which crosses the valley downstream of the town of Sabihan. Therefore, examining in detail the risk increase that the construction of the new bridge could cause on urban areas was required. The main section of the analysis consists in the hydraulic study of a stretch of river in flood situation, which is carried out with the IBER software. Spanish CEDEX and Universities of Coruna and Barcelona collaborated in the creation of this software
- Published
- 2017
23. Aplicación de los criterios del reglamento de dominio público hidráulico en la creación de nuevas infraestructuras en España
- Author
-
Mateo Lázaro, Jesús, Sánchez Navarro, José Ángel, Edo Romero, Vanesa, and Castillo Mateo, Jorge
- Subjects
Infraestructuras en DPH ,Gestión de inundaciones ,Modelado 2D ,Saint Venant equations ,IBER ,Saint Venant 2D ,Flood management ,Shallow water Models ,Infrastructure in rivers - Abstract
Se presenta una descriptiva de los criterios que en España se vienen adoptando en la implantación de infraestructuras en el dominio público hidráulico. Estos criterios se contemplan en el Real Decreto 9/2008 y en el Proyecto de RD de 2016 que, en materia de gestión de riesgos de inundación, abordan dos aspectos principales a regular, (1) el aumento o creación de riesgo en el entorno de la infraestructura cuyo análisis se basa en el concepto de vía de intenso desagüe y (2) el riesgo para los propios usuarios de la infraestructura que se pretende crear, cuyo análisis se basa en el concepto de zona de flujo preferente. En otras palabras, se analizan dos aspectos, los riesgos a terceros y los riesgos propios. El desarrollo de la temática del artículo se ilustra con un ejemplo, la implantación de un puente de 109 m sobre el río Jalón, que cruza el valle aguas abajo de la localidad de Sabiñán. El apartado principal del análisis consiste en el estudio hidráulico de un tramo de río en situación de crecidas, que se lleva a cabo con el software IBER, en cuya creación han colaborado el CEDEX y las Universidades de La Coruña y Barcelona, A description of the criteria adopted in Spain for the building of infrastructure in the public water domain is presented. These criteria are contemplated in Spanish legislation which, in relation to flood risk management, address two main aspects to be regulated, (1) the increase or creation of risk in the infrastructure environment whose, analysis is based on the concept of the main stream channel, and (2 ) the risk of the infrastructure to be created for users, whose analysis is based on the concept of the area of preferential flow. In other words, two aspects are analyzed, risks to third parties and the risks themselves. The development of the topic is illustrated with an example, the building of a 110 m bridge over the Jalon River, which crosses the valley downstream of the town of Sabihan. Therefore, examining in detail the risk increase that the construction of the new bridge could cause on urban areas was required. The main section of the analysis consists in the hydraulic study of a stretch of river in flood situation, which is carried out with the IBER software. Spanish CEDEX and Universities of Coruna and Barcelona collaborated in the creation of this software
- Published
- 2017
24. Networks of hyperbolic balance laws
- Author
-
Borsche, Raul
- Subjects
systems of conservation laws ,Shallow water models ,Coupling conditions ,Networks ,Modelización - Abstract
Models with networks of hyperbolic balance laws are currently used for several applications, e.g. river flows, the human circulatory system, gas pipelines or road networks. These motivations triggered a constant development of analytical results as well as numerical methods. This talk aims to provide an overview of the developments in the past years with a focus on the construction of suitable numerical schemes. Additionally a possible extension to non-conservative equations will discussed. Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.
- Published
- 2017
25. Mathematical study of free surface flows in incompressible dynamics
- Author
-
Kazerani, Dena, Laboratoire Jacques-Louis Lions (LJLL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Pierre & Marie Curie - Paris 6, Pascal Frey, Nicolas Seguin, Kazerani, Dena, STAR, ABES, and Université Pierre et Marie Curie - Paris VI
- Subjects
équation de Navier–Stokes ,méthode des caractéristiques ,méthode des lignes de niveaux ,structure symétrique ,Fluide incompressible ,Modèle d’eaux peu-profondes ,[MATH] Mathematics [math] ,Green-Nadgi equations ,Physics::Fluid Dynamics ,shallow water models ,Navier–Stokes equations ,Green–Naghdi equations ,équations de Green–Naghdi ,Equation de Navier-Stokes ,[MATH]Mathematics [math] ,Méthode de lignes de niveaux ,Modèle d'eaux peu-Profondes ,adaptation de maillage anisotrope ,anisotropic mesh adaptation ,Équations de Green-Naghdi ,[MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA] ,characteristic method ,symmetric structure ,Shallow water model ,level set method ,Incompressible Fluid ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] - Abstract
This thesis is about theoretical study and numerical treatment of some problems raised in incompressible free-surface fluid dynamics. The first part concerns a model called the Green-Naghdi (GN) equations. Similarly to the non-linear shallow water system (also called Saint-Venant system), the Green--Naghdi equations is a shallow water approximation of water waves problem. Indeed, GN equation is one order higher in approximation compared to Saint-Venant system. For this reason, it contains all the terms this latter system in addition to some non-linear third order dispersive terms. In other words, the GN equation is a dispersive perturbation of the Saint-Venant system. The latter system is hyperbolic and fits the general framework developed in the literature for hyperbolic systems. Particularly, it admits an entropy in the sense of Lax and is symmertizable. Therefore, we can apply the well-posedness results developed for symmetric hyperbolic systems. During the first part of this work, we generalize the notion of symmetry to a more general type of equations including the GN system. This lets us symmetrize the GN equations. Then, we use the suggested symmetric structure to obtain a global existence result for the system with a second order dissipative term, by adapting the approach classically used for hyperbolic systems.The second part of this thesis concerns the numerical treatment of the free surface incompressible Navier-Stokes equation with surface tension. We use the level set formulation to represent the fluid free-surface.Thanks to this formulation, the kinematic boundary condition is treated by solving an advection equation satisfied by the level set function. This equation is solved on a computational domain containing the fluid domain, over small time subintervals. Each iteration of the algorithm corresponds to the adevction of the fluid domain on a small time subinterval and to solve the time-discretized Navier-Stokes equations only on the fluid domain.The time discretization of the Navier--Stokes equation is done by the characteristic method. Then, the key tool which lets us solve this equation on the fluid domain, is an anisotropic mesh adaptation. Indeed, the mesh is adapted at each iteration such that we get convenient approximation errors in the vicinity of the fluid domain. The resolution of the discretized Navier-Stokes equation is done using the Uzawa algorithm for a convenient finite element method. The slip boundary conditions are considered by adding a penalization term to the variational formulation associated to the problem., Cette thèse est consacrée à l’étude théorique ainsi qu’au traitement numérique de fluides incompressibles à surface libre. La première partie concerne un système d’équations appelé le système de Green–Naghdi. Comme le système de Saint-Venant, il s’agit d’une approximation d’eaux peu-profondes du problème de Zakharov. La différence est que le système de Green–Naghdi est d’un degré plus élevé en ordre d’approximation. C’est pourquoi il contient tous les termes du système de Saint-Venant plus de termes d’ordre trois non-linéairement dispersives. Autrement dit, le système de Green–Naghdi peut être vu comme une perturbation dispersive du système de Saint-Venant. Ce dernier système étant hyperbolique, il entre dans le cadre classique développé pour des systèmes hyperboliques. En particulier, il est entropique (au sense de Lax) et symétrique. On peut donc lui appliquer les résultats d’existence et d’unicité bien connus pour des systèmes hyperboliques. Dans la première partie de ce travail, on généralise la notion de symétrie à une classe plus générale de systèmes contenant le système de Green–Naghdi. Ceci nous permet de symétriser les équations de Green–Naghdi et d’utiliser la symétrie obtenue pour déduire un résultat d’existence globale après avoir ajouté un terme dissipative d’ordre 2 au système. Ceci est fait en adaptant l’approche utilisée dans la littérature pour des systèmes hyperboliques.La deuxième partie de ce travail concerne le traitement numérique des équations de Navier–Stokes à surface libre avec un terme de tension de surface. Ici, la surface libre est modélisée en utilisant la formulation des lignes de niveaux. C’est pourquoi la condition cinématique (condition de l’évolution de surface libre) s’écrit sous la forme d’une équation d’advection satisfaite par la fonction de ligne de niveaux. Cette équation est résolue sur une domaine de calcul contenant strictement le domaine de fluide, sur de petits sous-intervalles du temps. Chaque itération de l’algorithme global correspond donc à l’advection du domaine du fluide sur le sous-intervalle du temps associé et ensuite de résoudre le système de Navier–Stokes discrétisé en temps sur le domaine du fluide. Cette discrétisation en temps est faite par la méthode des caractéristiques. L’outil clé qui nous permet de résoudre ce système uniquement sur le domaine du fluide est l’adaptation de maillage anisotrope. Plus précisément, à chaque itération le maillage est adapté au domaine du fluide tel que l’erreur d’approximation et l’erreur géométrique soient raisonnablement petites au voisinage du domaine du fluide. La résolution du problème discrétisé en temps sur le domaine du fluide est faite par l’algorithme d’Uzawa utilisé dans la cadre de la méthode des éléments finis. Par ailleurs, la condition de glissement de Navier est traité ici en ajoutant un terme de pénalisation à la formulation variationnelle associée.
- Published
- 2016
26. Traveling Wave Solutions for a Class of One-Dimensional Nonlinear Shallow Water Wave Models
- Author
-
Cao, Chongsheng, Holm, Darryl D., and Titi, Edriss S.
- Published
- 2004
- Full Text
- View/download PDF
27. Problématiques d’analyse numérique et de modélisation pour écoulements de fluides environnementaux
- Author
-
Cathala, Mathieu, Institut de Mathématiques et de Modélisation de Montpellier (I3M), Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM), Université Montpellier II - Sciences et Techniques du Languedoc, Bijan Mohammadi, Fabien Marche, and David Lannes
- Subjects
Water waves ,[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM] ,Principe du maximum ,Non smooth topographies ,Shallow water models ,Topographies irrégulières ,Maximum principle ,Equations d'Euler à surface libre ,Modèles shallow water ,Finite volume schemes ,Equations elliptiques ,Elliptic equations ,Schémas volumes finis - Abstract
This work investigates two research questions associated with environmental flows and their mathematical modeling.The first part is devoted to the development of finite volume methods for anisotropic and heterogeneous diffusion operators arising in models of porous media flows. To ensure that the approximate solutions lie within physical bounds, we aim at maintaining a discrete analogous of the maximum principle for elliptic operators. Starting from any given cell-centered finite volume scheme, we present a general approach to devise non-linear corrections providing a discrete maximum principle while retaining some main properties of the scheme. In particular, we study the coercivity and convergence properties of the modified schemes.The second part of this work focuses on the derivation of approximate models for shallow water wave propagation over rough topographies. In the particular case of one-dimensional polygonal bottom profiles, we first propose an adaptation of the usual derivation method using complex analysis tools. We then develop a formal approach to account for more general topographies. We propose nonlocal alternatives to some classical models (namely Saint-Venant equations, Serre equations and Boussinesq system). All these alternative models only involve smoothing contributions of the bottom.; Ce travail s'inscrit dans l'étude mathématique d'écoulements de fluides environnementaux. Nous en abordons deux aspects, à travers deux contextes distincts d'application.En lien avec la simulation des écoulements en milieux poreux, on s'intéresse dans une première partie à la discrétisation d'opérateurs de diffusion anisotropes hétérogènes par des méthodes de volumes finis sur des maillages généraux. Dans le but d'obtenir des solutions approchées qui respectent les bornes physiques des modèles, notre attention se porte sur la conservation du principe du maximum pour les opérateurs elliptiques. Nous présentons des mécanismes généraux permettant de corriger tout schéma volumes finis afin de garantir un principe du maximum discret tout en préservant certaines de ses propriétés principales. On étudie en particulier les propriétés de coercivité et de convergence des schémas corrigés.La deuxième partie est consacrée à la construction de modèles approchés pour la propagation des vagues en eaux peu profondes et sur des topographies irrégulières. A cet effet, nous proposons tout d'abord une adaptation de la démarche d'étude classique à des écoulements bidimensionnels sur des topographies polygonales. Dans un cadre plus général, nous développons ensuite une démarche formelle qui débouche sur des alternatives non locales à quelques modèles classiques (équations de Saint-Venant, équations de Serre, système de Boussinesq). Ces nouveaux modèles contiennent des termes régularisants pour les contributions du fond.
- Published
- 2013
28. Shallow water waves over polygonal bottoms
- Author
-
Cathala, Mathieu, Institut de Mathématiques et de Modélisation de Montpellier (I3M), and Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)
- Subjects
Water waves ,shallow water models ,Dirichlet-Neumann operator ,non smooth bathymetry ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,76B15, 35Q35 ,Physics::Atmospheric and Oceanic Physics - Abstract
The traditional shallow water model for waves propagating over varying bathymetry depends for its derivation on the asymptotic analysis of a Dirichlet-Neumann operator. This analysis however is restricted to smoothly varying topographies. We propose an adaptation to one dimensional polygonal bottoms using the conformal mapping idea of Hamilton and Nachbin. The asymptotic analysis of the Dirichlet-Neumann operator relies on an ad hoc transformation of the fluid domain into a flat bottom domain. We derive a new shallow water model which accounts for polygonal topographies.
- Published
- 2013
29. Non-linear shallow water models for coastal run-up simulations
- Author
-
Macías-Sánchez, Jorge, Gonzalez-Vida, Jose Manuel, and Castro-Diaz, Manuel Jesus
- Subjects
Monai Valley ,shallow water models ,Circulación oceánica - Métodos de simulación ,run-up simulations ,Maremotos - Métodos de simulación ,Numerical Simulation - Abstract
Shallow water models are frequently used to simulate ocean or coastal circulation or tsunami wave propagation. But these models are seldom used to explicitely reproduce for example tsunami wave run-up into coast. In this work we porpose an implementation of dry/wet areas for shallow water models that allow to reproduce coastal inundation and water retrainment once the impact wave passes over. The run-up model has been tested for simple test cases and geometries as in complex, real cases, as the Lituya Bay 1958 megatsunami. Proyecto DAIFLUID - Plan Nacional de I+D (MEC/FEDER) Referencia MTM2012 / TESELA - Proyecto de Excelencia de la Junta de Andalucía (convocatoria 2011) Referencia P11 - RNM7069 / Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.
- Published
- 2013
30. Asymptotic shallow water models with non smooth topographies
- Author
-
Mathieu Cathala, Cathala, Mathieu, Institut de Mathématiques et de Modélisation de Montpellier (I3M), and Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)
- Subjects
Surface (mathematics) ,General Mathematics ,Dirichlet-Neumann operator ,Non smooth ,01 natural sciences ,010305 fluids & plasmas ,Physics::Fluid Dynamics ,shallow water models ,0103 physical sciences ,Calculus ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,[MATH.MATH-AP] Mathematics [math]/Analysis of PDEs [math.AP] ,Shallow water equations ,Joint (geology) ,Physics::Atmospheric and Oceanic Physics ,Mathematics ,Operator (physics) ,010102 general mathematics ,Mathematical analysis ,non smooth bathymetry ,76B15, 35Q35 ,Small amplitude ,6. Clean water ,Water waves ,Waves and shallow water ,Smoothing - Abstract
We present new models to describe shallow water flows over non smooth topographies. The water waves problem is formulated as a system of two equations on surface quantities in which the topography is involved in a Dirichlet-Neumann operator. Starting from this formulation and using the joint analyticity of this operator with respect to the surface and the bottom parametrizations, we derive a nonlocal shallow water model which only includes smoothing contributions of the bottom. Under additional small amplitude assumptions, Boussinesq-type systems are also derived. Using these alternative shallow water models as references, we finally present numerical tests to assess the precision of the classical shallow water approximations over rough bottoms. In the case of a polygonal bottom, we show numerically that our new model is consistent with the approach developed by Nachbin.
- Published
- 2013
31. Analyse Mathématique De Problèmes En Océanographie Côtière
- Author
-
Israwi, Samer, Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), IMB, David LANNES(david.lannes@ens.fr), and MATH OCEAN ANR
- Subjects
Boussinesq models ,modèle de KdV ,modèle de Green-Naghdi ,modèle de Camassa-Holm ,Korteweg-de Vries approximation ,uneven bottoms ,Camassa-Holm ,shallow water models ,fond variable ,Green-Naghdi equations ,modèle de Boussinesq ,Système d'Euler ,modèle à faible profondeur ,[MATH]Mathematics [math] ,Water-waves ,approximation - Abstract
We study here the water-waves problem for uneven bottoms in a highly nonlinear regime where the small amplitude assumption of the KdV equation is enforced. It is known, that for such regimes, a generalization of the KdV equation can be derived and justified when the bottom is flat. We generalize here this result with a new class of equations taking into account variable bottom topographies. We also demonstrate that these new models are well-posed. We then proceed to study them numerically and compare their behavior with the Boussinesq equations over uneven bottoms. Regimes with stronger nonlinearities than the KdV/Boussinesq regime are then investigated. In particular, a variable coefficient generalization of a Camassa-Holm type equation is derived and justified. Wealso study the Green-Naghdi equations that are commonly used in coastal oceanography todescribe the propagation of large amplitude surface waves. We improve previous results on the well posedness of these equations in the case of one dimensional surface waves. In the $2D$ case, we derive and study a new system of the same accuracy as the standard $2D $ Green-Naghdi equations, but with better mathematical behavior.; Nous nous étudions ici le problème d'Euler avec surface libre sur un fond non plat et dans un régime fortement non linéaire où l'hypothèse de faible amplitude de l'équation de KdV n'est pas vérifiée. On sait que, pour un tel régime, une généralisation de l'équation de KdV peut être dérivée et justifiée lorsque le fond est plat. Nous généralisons ici ces résultats en proposant une nouvelle classe d'équations prenant en compte des topographies variables. Nous démontrons également que ces nouveaux modèles sont bien posés. Nous les étudions aussi numériquement. Ensuite, nous améliorons quelques résultats sur l'existence des équations de Green-Naghdi (GN) dans le cas 1D. Dans le cas de 2D, nous dérivons et étudions un nouveau système de la même précision que les équations de GN usuelles, mais avec un meilleur comportement mathématique.
- Published
- 2010
32. A Spectral Element Shallow Water Model on Spherical Geodesic Grids
- Author
-
NAVAL POSTGRADUATE SCHOOL MONTEREY CA DEPT OF OPERATIONS RESEARCH, Giraldo, Francis X., NAVAL POSTGRADUATE SCHOOL MONTEREY CA DEPT OF OPERATIONS RESEARCH, and Giraldo, Francis X.
- Abstract
The spectral element method for the two-dimensional shallow water equations on the sphere is presented. The equations are written in conservation form and the domains are discretized using quadrilateral elements obtained from the generalized icosahedral grid introduced previously (Giraldo FX. Lagrange-Galerkin methods on spherical geodesic grids: the shallow water equations. Journal of Computational Physics 2000; 160: 336 368). The equations are written in Cartesian co-ordinates that introduce an additional momentum equation, but the pole singularities disappear. This paper represents a departure from previously published work on solving the shallow water equations on the sphere in that the equations are all written, discretized, and solved in three-dimensional Cartesian space. Because the equations are written in a three-dimensional Cartesian co-ordinate system, the algorithm simplifies into the integration of surface elements on the sphere from the fully three-dimensional equations., Pub. in International Journal for Numerical Methods in Fluids, v35 p869-901, 2001.
- Published
- 2001
33. Comparative analysis of nonlinear dispersive shallow water models
- Author
-
Chubarov, LB, Fedotova, ZI, Shokin, YI, Einarsson, Bo, Chubarov, LB, Fedotova, ZI, Shokin, YI, and Einarsson, Bo
- Abstract
The results of comparative analysis of some nonlinear dispersive models of shallow water are presented. The aim is to find their individual properties relevant for the numerical solution of some model problems of long wave transformation over submerged obstacles The study considers basic properties of the listed models and their numerical implementation. Computations are obtained compared with the analytical solution and experimental data. Attention is primarily focused on the models suggested by Peregrine (1967), Zheleznyak and Pelinovsky (1985), Kim, Reid, Whitaker (1988), Fedotova and Pashkova (1997). Also classical equations of shallow water are considered in both linear and nonlinear approximations.
- Published
- 2000
34. Acoustic Propagation Modeling in Shallow Water
- Author
-
SCRIPPS INSTITUTION OF OCEANOGRAPHY LA JOLLA CA, Kuperman, William A., SCRIPPS INSTITUTION OF OCEANOGRAPHY LA JOLLA CA, and Kuperman, William A.
- Abstract
This paper provides references for the Navy's existing models for shallow-water propagation. The shallow-water acoustic environment is then briefly described, followed by a description of sound propagation. Four basic models of sound propagation in the ocean most relevant to shallow-water propagation are derived from their common wave equation origin: ray theory, spectral theory, normal mode theory, and the parabolic equation method. Some results from these models are discussed., This article is from the U.S. Navy Journal of Underwater Acoustics, v46 n4 p275-293, October 1996. This article is from ADC069959, U.S. Navy Journal of Underwater Acoustics. Volume 51, Number 1, January 2001. Special Feature - The Journal's Fiftieth Anniversary.
- Published
- 1996
35. On the Geometry of Extended Self-Similar Solutions of the Airy Shallow Water Equations
- Author
-
Gregorio Falqui, Giovanni Ortenzi, Marco Pedroni, Roberto Camassa, Camassa, R, Falqui, G, Ortenzi, G, and Pedroni, M
- Subjects
Class (set theory) ,Structure (category theory) ,FOS: Physical sciences ,self-similar solution ,01 natural sciences ,010305 fluids & plasmas ,symbols.namesake ,shallow water models ,0103 physical sciences ,Point (geometry) ,Poisson reduction ,010306 general physics ,Nonlinear Schrödinger equation ,Shallow water equations ,Settore MAT/07 - Fisica Matematica ,Mathematical Physics ,Mathematics ,Poisson reductions ,Recurrence relation ,Nonlinear Sciences - Exactly Solvable and Integrable Systems ,bi-Hamiltonian geometry ,Mathematical analysis ,Ode ,Mathematical Physics (math-ph) ,Conserved quantity ,symbols ,Bi-Hamiltonian geometry ,Self-similar solutions ,Shallow water models ,Geometry and Topology ,Exactly Solvable and Integrable Systems (nlin.SI) ,Analysis - Abstract
Self-similar solutions of the so called Airy equations, equivalent to the dispersionless nonlinear Schr\"odinger equation written in Madelung coordinates, are found and studied from the point of view of complete integrability and of their role in the recurrence relation from a bi-Hamiltonian structure for the equations. This class of solutions reduces the PDEs to a finite ODE system which admits several conserved quantities, which allow to construct explicit solutions by quadratures and provide the bi-Hamiltonian formulation for the reduced ODEs.
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.