137 results on '"Shaden A M, Khalifa"'
Search Results
2. Retraction Note: A Zinc Morpholine Complex Prevents HCl/Ethanol-Induced Gastric Ulcers in a Rat Model
- Author
-
Suzy M. Salama, Nura Suleiman Gwaram, Ahmed S. AlRashdi, Shaden A. M. Khalifa, Mahmood A. Abdulla, Hapipah M. Ali, and Hesham R. El-Seedi
- Subjects
Medicine ,Science - Published
- 2024
- Full Text
- View/download PDF
3. Green Innovation and Synthesis of Honeybee Products-Mediated Nanoparticles: Potential Approaches and Wide Applications
- Author
-
Shaden A. M. Khalifa, Aya A. Shetaia, Nehal Eid, Aida A. Abd El-Wahed, Tariq Z. Abolibda, Abdelfatteh El Omri, Qiang Yu, Mohamed A. Shenashen, Hidayat Hussain, Mohamed F. Salem, Zhiming Guo, Abdulaziz M. Alanazi, and Hesham R. El-Seedi
- Subjects
bee products ,nanoparticles ,biological activities ,catalytic application ,food industries ,Technology ,Biology (General) ,QH301-705.5 - Abstract
Bee products, abundant in bioactive ingredients, have been utilized in both traditional and contemporary medicine. Their antioxidant, antimicrobial, and anti-inflammatory properties make them valuable for food, preservation, and cosmetics applications. Honeybees are a vast reservoir of potentially beneficial products such as honey, bee pollen, bee bread, beeswax, bee venom, and royal jelly. These products are rich in metabolites vital to human health, including proteins, amino acids, peptides, enzymes, sugars, vitamins, polyphenols, flavonoids, and minerals. The advancement of nanotechnology has led to a continuous search for new natural sources that can facilitate the easy, low-cost, and eco-friendly synthesis of nanomaterials. Nanoparticles (NPs) are actively synthesized using honeybee products, which serve dual purposes in preventive and interceptive treatment strategies due to their richness in essential metabolites. This review aims to highlight the potential role of bee products in this line and their applications as catalysts and food preservatives and to point out their anticancer, antibacterial, antifungal, and antioxidant underlying impacts. The research used several online databases, namely Google Scholar, Science Direct, and Sci Finder. The overall findings suggest that these bee-derived substances exhibit remarkable properties, making them promising candidates for the economical and eco-friendly production of NPs.
- Published
- 2024
- Full Text
- View/download PDF
4. Chemical profiling and cytotoxic potential of the n-butanol fraction of Tamarix nilotica flowers
- Author
-
Marwa A. A. Fayed, Riham O. Bakr, Nermeen Yosri, Shaden A. M. Khalifa, Hesham R. El-Seedi, Dalia I. Hamdan, and Mohamed S. Refaey
- Subjects
Tamarix nilotica flowers ,LC–LTQ–MS–MS ,1H-NMR ,Cytotoxicity ,MCF-7 ,Huh-7 ,Other systems of medicine ,RZ201-999 - Abstract
Abstract Background Cancer represents one of the biggest healthcare issues confronting humans and one of the big challenges for scientists in trials to dig into our nature for new remedies or to develop old ones with fewer side effects. Halophytes are widely distributed worldwide in areas of harsh conditions in dunes, and inland deserts, where, to cope with those conditions they synthesize important secondary metabolites highly valued in the medical field. Several Tamarix species are halophytic including T.nilotica which is native to Egypt, with a long history in its tradition, found in its papyri and in folk medicine to treat various ailments. Methods LC–LTQ–MS–MS analysis and 1H-NMR were used to identify the main phytoconstituents in the n- butanol fraction of T.nilotica flowers. The extract was tested in vitro for its cytotoxic effect against breast (MCF-7) and liver cell carcinoma (Huh-7) using SRB assay. Results T.nilotica n-butanol fraction of the flowers was found to be rich in phenolic content, where, LC–LTQ–MS–MS allowed the tentative identification of thirty-nine metabolites, based on the exact mass, the observed spectra fragmentation patterns, and the literature data, varying between tannins, phenolic acids, and flavonoids. 1H-NMR confirmed the classes tentatively identified. The in-vitro evaluation of the n-butanol fraction showed lower activity on MCF-7 cell lines with IC50 > 100 µg/mL, while the higher promising effect was against Huh-7 cell lines with an IC50= 37 µg/mL. Conclusion Our study suggested that T.nilotica flowers' n-butanol fraction is representing a promising cytotoxic candidate against liver cell carcinoma having potential phytoconstituents with variable targets and signaling pathways.
- Published
- 2023
- Full Text
- View/download PDF
5. Efficacy and Tolerability of a Scutellaria lateriflora L. and Cistus × incanus L.-Based Chewing Gum on the Symptoms of Gingivitis: A Monocentric, Randomized, Double-Blind, Placebo-Controlled Clinical Trial
- Author
-
Alessandro Di Minno, Hammad Ullah, Lorenza Francesca De Lellis, Daniele Giuseppe Buccato, Alessandra Baldi, Paola Cuomo, Hesham R. El-Seedi, Shaden A. M. Khalifa, Xiang Xiao, Roberto Piccinocchi, Gaetano Piccinocchi, Roberto Sacchi, and Maria Daglia
- Subjects
Scutellaria lateriflora L. ,Cistus × incanus L. ,gingivitis ,chewing gum ,randomized clinical trial ,Nutrition. Foods and food supply ,TX341-641 - Abstract
Preclinical studies have shown that the combination of Cistus × incanus L. and Scutellaria lateriflora L. extracts exerts beneficial effects on oral health against gingivitis. Thus, this study aimed to assess the tolerability of a chewing gum and its efficacy on gingivitis in a double-blind, placebo-controlled clinical trial. Enrolled subjects (n = 60, 18–70 years) were randomized to receive two chewing gums or a placebo daily for 3 months. At baseline (t0) and monthly (t1, t2, and t3) timepoints, the Quantitative Gingival Bleeding Index (QGBI), the Modified Gingival Index (MGI), and the Oral Health 15 items (OH-15)] were employed to assess potential improvements in gingivitis. Pain was self-quantified via the Visual Analogue Scale (VAS), and the Clinical Global Impression Scale for Severity of illness (CGI-S) helped in evaluating the oral general conditions. This study is listed on the ISRCTN registry. At t3, the QGBI, MGI, OH-15, VAS, and CGI-S values decreased in the treated but not in the placebo group (β = 0.6 ± 0.1, t176 = 3.680, p < 0.001; β = 0.87 ± 0.21, t115 = 4.263, p < 0.001; β = 5.3 ± 2.5, t172 = 2.086, p = 0.038; β = 3.16 ± 0.51, t88 = 6.253, p < 0.001; and β = 1.09 ± 0.32, t83 = 3.419, p < 0.001, respectively). A significant improvement in gingival health occurred after a 3-month intervention with the chewing gums containing S. lateriflora and C. incanus extracts.
- Published
- 2024
- Full Text
- View/download PDF
6. Exploring the Therapeutic Potential of Royal Jelly in Metabolic Disorders and Gastrointestinal Diseases
- Author
-
Hesham R. El-Seedi, Suzy Salama, Aida A. Abd El-Wahed, Zhiming Guo, Alessandro Di Minno, Maria Daglia, Chuan Li, Xiao Guan, Daniele Giuseppe Buccato, Shaden A. M. Khalifa, and Kai Wang
- Subjects
royal jelly ,diabetes mellitus ,gastrointestinal diseases ,cardiovascular diseases ,bioactive compounds ,Nutrition. Foods and food supply ,TX341-641 - Abstract
Metabolic disorders, encompassing diabetes mellitus, cardiovascular diseases, gastrointestinal disorders, etc., pose a substantial global health threat, with rising morbidity and mortality rates. Addressing these disorders is crucial, as conventional drugs often come with high costs and adverse effects. This review explores the potential of royal jelly (RJ), a natural bee product rich in bioactive components, as an alternative strategy for managing metabolic diseases. RJ exhibits diverse therapeutic properties, including antimicrobial, estrogen-like, anti-inflammatory, hypotensive, anticancer, and antioxidant effects. This review’s focus is on investigating how RJ and its components impact conditions like diabetes mellitus, cardiovascular disease, and gastrointestinal illnesses. Evidence suggests that RJ serves as a complementary treatment for various health issues, notably demonstrating cholesterol- and glucose-lowering effects in diabetic rats. Specific RJ-derived metabolites, such as 10-hydroxy-2-decenoic acid (10-HDA), also known as the “Queen bee acid,” show promise in reducing insulin resistance and hyperglycemia. Recent research highlights RJ’s role in modulating immune responses, enhancing anti-inflammatory cytokines, and suppressing key inflammatory mediators. Despite these promising findings, further research is needed to comprehensively understand the mechanisms underlying RJ’s therapeutic effects.
- Published
- 2024
- Full Text
- View/download PDF
7. In Vitro Anti-Diabetic, Anti-Inflammatory, Antioxidant Activities and Toxicological Study of Optimized Psychotria malayana Jack Leaves Extract
- Author
-
Sharifah Nurul Akilah Syed Mohamad, Alfi Khatib, Siti Zaiton Mat So’ad, Qamar Uddin Ahmed, Zalikha Ibrahim, Tanzina Sharmin Nipun, Humaryanto Humaryanto, Mohamed F. AlAjmi, Shaden A. M. Khalifa, and Hesham R. El-Seedi
- Subjects
Psychotria malayana Jack ,anti-diabetic ,anti-inflammatory ,antioxidant ,toxicity ,GC-MS ,Medicine ,Pharmacy and materia medica ,RS1-441 - Abstract
Psychotria malayana Jack (Family: Rubiaceae, local name: Salung) is a traditional herb used to treat diabetes. A previous study by our research group demonstrated that P. malayana methanolic and water extract exhibits significant potential as an effective agent for managing diabetes. Further research has been performed on the extraction optimization of this plant to enhance its inhibitory activity against α-glucosidase, a key enzyme associated with diabetes, and to reduce its toxicity. The objectives of this study are to evaluate the anti-diabetic, anti-inflammatory, and antioxidant properties of the optimized P. malayana leaf extract (OE), to evaluate its toxicity using a zebrafish embryo/larvae model, and to analyze its metabolites. The anti-diabetic effects were assessed by investigating α-glucosidase inhibition (AGI), while the inflammation inhibitory activity was performed using the soybean lipoxygenase inhibitory (SLOXI) test. The assessment of antioxidant activity was performed utilizing FRAP and DPPH assays. The toxicology study was conducted using the zebrafish embryo/larvae (Danio rerio) model. The metabolites present in the extracts were analyzed using GC-MS and LC-MS. OE demonstrated significant AGI and SLOXI activities, represented as 2.02 and 4.92 µg/mL for IC50 values, respectively. It exhibited potent antioxidant activities as determined by IC50 values of 13.08 µg/mL (using the DPPH assay) and 95.44 mmol TE/mg DW (using the FRAP assay), and also demonstrated an LC50 value of 224.29 µg/mL, which surpasses its therapeutic index of 111.03. OE exhibited a higher therapeutic index compared to that of the methanol extract (13.84) stated in the previous state of the art. This suggests that OE exhibits a lower level of toxicity, making it safer for use, and has the potential to be highly effective in its anti-diabetic activity. Liquid chromatography–mass spectrometry (LC-MS) and gas chromatography–mass spectrometry (GC-MS) demonstrated the presence of several constituents in this extract. Among them, several compounds, such as propanoic acid, succinic acid, D-tagatose, myo-inositol, isorhamnetin, moracin M-3′-O-β-D-glucopyranoside, procyanidin B3, and leucopelargonidin, have been reported as possessing anti-diabetic and antioxidant activities. This finding offers great potential for future research in diabetes treatment.
- Published
- 2023
- Full Text
- View/download PDF
8. Anti-proliferative and immunomodulatory potencies of cinnamon oil on Ehrlich ascites carcinoma bearing mice
- Author
-
Dalia S. Morsi, Sobhy Hassab El-Nabi, Mona A. Elmaghraby, Ola A. Abu Ali, Eman Fayad, Shaden A. M. Khalifa, Hesham R. El-Seedi, and Islam M. El-Garawani
- Subjects
Medicine ,Science - Abstract
Abstract Cinnamon is a well-known natural spice and flavoring substance used worldwide. The objective of the present work is to explore the possible antitumor and immunomodulatory potencies of cinnamon essential oil (Cinn) on Ehrlich ascites carcinoma (EAC). A total of fifty female Swiss albino mice were sub-grouped into five groups (n = 10), namely, normal (a non-tumorized and non-treated) group; EAC-tumorized and non-treated group; Cinn (non-tumorized mice received Cinn, 50 mg/kg per body weight daily) group; a group of EAC-tumorized mice treated with Cinn and the final positive control group of EAC-tumorized mice received cisplatin. Eight compounds were identified from Cinn using UPLC-MS-Qtof and NMR analysis. Compared to EAC untreated group, Cinn successfully (P
- Published
- 2022
- Full Text
- View/download PDF
9. Total Lipid Extracts of Honeybee Drone Larvae Are Modulated by Extraction Temperature and Display Consistent Anti-Inflammatory Potential
- Author
-
Yiming Luo, Yuyang Guo, Wen Zhao, Shaden A. M. Khalifa, Hesham R. El-Seedi, Xiaoling Su, and Liming Wu
- Subjects
honey bees ,drone larvae ,anti-inflammatory ,UPLC-Q-exactive-orbitrap–MS ,GC–MS QP2010plus ,lipidomics ,Chemical technology ,TP1-1185 - Abstract
Honeybee drone larvae are male bees that develop from unfertilized eggs and play a role in colony reproduction. The nutritional value of honeybee drone larvae is due to their high protein, lipid, and other nutrient contents, making them a profitable food source for humans in some cultures. Drone larvae lipids (DLLs) contribute to drone development; however, few studies have explored their substantial compositions and bioactive functions. In this study, we carried out DLL lipidomics analysis using UPLC-Q-Exactive-Orbitrap–MS prior to in vitro anti-inflammatory activity analysis. The results highlighted the importance of the extraction temperature on the DLL composition. A total of 21 lipids were found in the DLL extract, mostly categorized into five groups: nine phospholipids, three sphingolipids, two neutral lipids, one plant glycoglycerolipid, four lipid acyl, and others. Drying extraction at −20 °C produced more sphingolipids, phospholipids, and unsaturated fatty acids. Of 37 fatty acids, 18 were displayed at −20 °C degrees, as shown by GC–MS quantitative analysis. Myristic (246.99 ± 13.19 μg/g), palmitic (1707.87 ± 60.53 μg/g), stearic (852.32 ± 24.17 μg/g), and oleic (2463.03 ± 149.61 μg/g) acids were the predominant fatty acids. Furthermore, we examined the significant in vitro anti-inflammatory effects of DLL (−20 °C) using lipopolysaccharide (LPS)-challenged RAW264.7 cells. Nitric oxide (NO) and reactive oxygen (ROS) production and mRNA expression of IL-6, IL-10, COX-2, and iNOS were significantly decreased, demonstrating the anti-inflammatory function of DLL. Overall, this study provided insight into the lipid composition of DLL, revealed the influence of temperature, and explored the functionality of DLL (−20 °C), allowing for further application of DLLs as functional foods.
- Published
- 2023
- Full Text
- View/download PDF
10. Review of Marine Cyanobacteria and the Aspects Related to Their Roles: Chemical, Biological Properties, Nitrogen Fixation and Climate Change
- Author
-
Hesham R. El-Seedi, Mohamed F. El-Mallah, Nermeen Yosri, Muaaz Alajlani, Chao Zhao, Muhammad A. Mehmood, Ming Du, Hammad Ullah, Maria Daglia, Zhiming Guo, Shaden A. M. Khalifa, and Qiyang Shou
- Subjects
marine cyanobacteria ,historical record ,climate change ,nitrogen fixation ,secondary metabolites ,clinical trials ,Biology (General) ,QH301-705.5 - Abstract
Marine cyanobacteria are an ancient group of photosynthetic microbes dating back to 3.5 million years ago. They are prolific producers of bioactive secondary metabolites. Over millions of years, natural selection has optimized their metabolites to possess activities impacting various biological targets. This paper discusses the historical and existential records of cyanobacteria, and their role in understanding the evolution of marine cyanobacteria through the ages. Recent advancements have focused on isolating and screening bioactive compounds and their respective medicinal properties, and we also discuss chemical property space and clinical trials, where compounds with potential pharmacological effects, such as cytotoxicity, anticancer, and antiparasitic properties, are highlighted. The data have shown that about 43% of the compounds investigated have cytotoxic effects, and around 8% have anti-trypanosome activity. We discussed the role of different marine cyanobacteria groups in fixing nitrogen percentages on Earth and their outcomes in fish productivity by entering food webs and enhancing productivity in different agricultural and ecological fields. The role of marine cyanobacteria in the carbon cycle and their outcomes in improving the efficiency of photosynthetic CO2 fixation in the chloroplasts of crop plants, thus enhancing the crop plant’s yield, was highlighted. Ultimately, climate changes have a significant impact on marine cyanobacteria where the temperature rises, and CO2 improves the cyanobacterial nitrogen fixation.
- Published
- 2023
- Full Text
- View/download PDF
11. Sidr Honeys Physical and Chemical Characterization, a Comprehensive Approach through LC-MS/MS, NMR, and GC-MS Analysis
- Author
-
Aida A. Abd El-Wahed, Eman H. Rashwan, Mohamed F. AlAjmi, Shaden A. M. Khalifa, Aamer Saeed, Chao Zhao, Yahya Al Naggar, Zhiming Guo, Syed G. Musharraf, Kai Wang, Hesham R. El-Seedi, and Nermeen Yosri
- Subjects
Sidr honey ,sugar contents ,hydroxymethylfurfural (HMF) ,pollen analysis ,nonvolatile metabolite ,volatile compounds ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Honey intake is advantageous to human health due to its antioxidant, anticancer, anti-inflammatory, and antimicrobial properties, all of which are attributed to the rich bioactive compound contents. Moreover, hepatoprotective, wound healing, and gastrointestinal protective properties have been documented. Honey’s nutritional value is significantly affected by its chemical composition, which varies depending on botanical and geographical origin. In particular, after Manuka honey, Sidr honey from the Ziziphus species is the most popular. The chemical compositions, physicochemical properties, bioactive compounds, and sensory characteristics of two Sidr honey samples from Egypt and Saudi Arabia were investigated in the current study. Moisture content, electrical conductivity (EC), pH, free acidity (FA), total acidity, lactone hydroxymethylfurfural (HMF) content, and diastase (α-amylase) activity were measured. By using high-performance liquid chromatography (HPLC), mass spectrometry (LC-MS/MS), nuclear magnetic resonance (1HNMR), and solid-phase micro-extraction (SPME) coupled with gas chromatography (GC-MS) analyses, the sugar profile, non-volatile, and volatile compounds were also identified. The physicochemical analysis revealed the following results for Sidr honey from Saudi Arabia and Egypt, respectively: a moisture content of 18.03 ± 0.05% and 19.03 ± 0.06%, EC values of 1.18 ± 0.05 and 1.16 ± 0.01 mS/cm, pH values of 4.87 ± 0.08 and 5.10 ± 0.01, FA of 37.50 ± 0.05 and 36.50 ± 0.05 meq/kg, total acidity of 41.06 ± 0.05 and 37.50 ± 0.05 meq/kg, lactone of 3.49 ± 0.005 and 1 ± 0.0 meq/kg, HMF of 20.92 ± 0.02 and 11.33 ± 0.01 mg/kg, and diastase of 59.97 ± 0.05 and 8.64 ± 0.06g/100 g. Honey from Saudi Arabia and Egypt displayed 22.51 ± 0.05 and 26.62 ± 0.16 % glucose, 40.33 ± 0.06 and 35.28 ± 0.01% fructose, 8.94 ± 0.17, and 8.87 ± 0.01% sucrose, and 8.22 ± 0.006 and 8.13 ± 0.01% maltose, respectively. According to the International Honey Commission (IHC) and GCC Standardization Organization (GSO) regulations, the levels of glucose, fructose, sucrose, and maltose were near the standard levels. Flavonoids, sugars, vitamins, and nitrogen contents were additionally measured using LC-MS/MS, whereas GC-MS was employed to identify aldehydes, ketones, phenols, acids, esters, anthraquinone, hydrocarbons, and nitrogenous compounds. The results of a study on the effect of honey’s geographic origin on its broad quality are summarized. As a result, knowing its optimal chemical and physical characteristics served as the criterion and indicator of the honey’s quality.
- Published
- 2023
- Full Text
- View/download PDF
12. Combination of Chemically Characterized Pomegranate Extract and Hydrophilic Vitamins against Prolonged Fatigue: A Monocentric, Randomized, Double-Blind, Placebo-Controlled Clinical Trial
- Author
-
Hammad Ullah, Eduardo Sommella, Alessandro Di Minno, Roberto Piccinocchi, Daniele Giuseppe Buccato, Lorenza Francesca De Lellis, Costanza Riccioni, Alessandra Baldi, Hesham R. El-Seedi, Shaden A. M. Khalifa, Gaetano Piccinocchi, Pietro Campiglia, Roberto Sacchi, and Maria Daglia
- Subjects
prolonged fatigue ,pomegranate extract ,polyphenols ,vitamin B complex ,vitamin C ,Nutrition. Foods and food supply ,TX341-641 - Abstract
Prolonged fatigue is associated with non-pathological causes and lacks an established therapeutic approach. The current study is aimed at assessing the efficacy of a new food supplement (Improve™) based on a chemically characterized pomegranate extract and hydro-soluble vitamins (B complex and C). UHPLC-HRMS analysis of pomegranate extract showed the presence of 59 compounds, with gallotannins and ellagitannins being the most abundant phytochemicals. For the clinical study, 58 subjects were randomized into two groups, 1 and 2 (n = 29, each), which received either the food supplement or placebo. The effects of the food supplement against fatigue were assessed via validated questionnaires, recorded at time intervals t0 (at baseline), t1 (after 28 days), t2 (56 days), and t3 (after follow-up) in combination with the analysis of biochemical markers at t0 and t2. Fatigue severity scale (FSS) questionnaire scores were significantly decreased at the t2 and t3 time intervals in subjects treated with the food supplements, while the effect of the food supplement on a 12-Item Short Form Survey (SF-12) was not considerable. Moreover, the food supplement did not significantly affect biochemical parameters associated with fatigue and stress conditions. This study shows that the food supplement tested reduces prolonged fatigue following two months of supplementation in healthy subjects with mild prolonged fatigue.
- Published
- 2023
- Full Text
- View/download PDF
13. Comparative MS- and NMR-Based Metabolome Mapping of Egyptian Red and White Squill Bulbs F. Liliaceae and in Relation to Their Cytotoxic Effect
- Author
-
Omar M. Khattab, Dina M. El-Kersh, Shaden A. M. Khalifa, Nermeen Yosri, Hesham R. El-Seedi, and Mohamed A. Farag
- Subjects
Urginea martima ,squill ,bufadienolides ,SPME-GC/MS ,NMR ,UPLC/MS ,Botany ,QK1-989 - Abstract
Urginea maritima L. (squill) species is widely spread at the Mediterranean region as two main varieties, i.e., white squill (WS) and red squill (RS), that are recognized for several health potentials. The major secondary metabolite classes of the squill are cardiac glycosides, mainly, bufadienolides, flavonoids, and anthocyanins. Herein, a multiplex MS and NMR metabolomics approach targeting secondary and aroma compounds in WS and RS was employed for varieties classification. Solid-phase micro extraction-gas chromatography/mass spectroscopy (SPME-GC/MS), ultra-high-performance liquid chromatography/mass spectrometry (UPLC/MS), as well as nuclear magnetic resonance (NMR) provided fingerprinting and structural confirmation of the major metabolites for both types of the squill. For comparison of the different platforms’ classification potential, multivariate data analysis was employed. While Bufadienolides, viz. “hydroxy-scilliglaucosidin-O-rhamnoside, desacetylscillirosidin-O-rhamnoside and bufotalidin-O-hexoside” as well as oxylipids, were enriched in WS, flavonoids, i.e., dihydro-kaempferol-O-hexoside and its aglycon, taxifolin derivative, were predominant in RS. A cytotoxicity screening against three cancer cell lines, including breast adenocarcinoma (MCF-7), lung (A-549), and ovarian (SKOV-3) cell lines was conducted. Results revealed that WS was more effective on A-549 and SKOV-3 cell lines (WS IC50 0.11 and 0.4 µg/mL, respectively) owing to its abundance of bufadienolides, while RS recorded IC50 (MCF7 cell line) 0.17 µg/mL since is is rich inflavonoids.
- Published
- 2023
- Full Text
- View/download PDF
14. In Vivo Toxicity Assessment of the Probiotic Bacillus amyloliquefaciens HTI-19 Isolated from Stingless Bee (Heterotrigona itama) Honey
- Author
-
Fatin Aina Zulkhairi Amin, Mohamad Zulhafiz Shafiq Cheng, Suriana Sabri, Norsharina Ismail, Kim Wei Chan, Norhaizan Mohd Esa, Mohd Azmi Mohd Lila, Saulol Hamid Nur-Fazila, Shaden A. M. Khalifa, Hesham R. El-Seedi, and Norhasnida Zawawi
- Subjects
functional foods ,probiotic safety ,Sprague Dawley rat ,Nutrition. Foods and food supply ,TX341-641 - Abstract
This study evaluated the acute and sub-acute toxicity of B. amyloliquefaciens HTI-19 (isolated from stingless bee honey) in female Sprague Dawley rats. In an acute toxicity study, the rats received a low dosage (1 × 109 CFU·mL−1), medium dosage (3 × 109 CFU·mL−1), or high dosage (1 × 1010 CFU·mL−1) of B. amyloliquefaciens HTI-19 daily orally by syringe-feeding for 14 days. For the subacute toxicity study, rats received a low dosage (1 × 109 CFU·mL−1) or a high dosage (1 × 1010 CFU·mL−1) for 28 days. The probiotic feeding in acute and sub-acute toxicity studies showed no mortality or significant abnormalities in rats throughout the experimental period. In week 2 of the acute study, the body weight of the rats showed a significant increase (p < 0.05) compared to the control. By gross and microscopic examination of organs, no evidently significant changes were observed in the morphology of organs. Serum biochemical tests and blood hematology tests also revealed no treatment-related changes. Overall, these data indicated that oral administration of B. amyloliquefaciens HTI-19 up to 1 × 109 CFU·mL−1 for 28 days can be considered safe.
- Published
- 2023
- Full Text
- View/download PDF
15. In Vitro Antimicrobial and Antibiofilm Properties and Bioaccessibility after Oral Digestion of Chemically Characterized Extracts Obtained from Cistus × incanus L., Scutellaria lateriflora L., and Their Combination
- Author
-
Hammad Ullah, Alessandro Di Minno, Anna De Filippis, Eduardo Sommella, Daniele Giuseppe Buccato, Lorenza Francesca De Lellis, Hesham R. El-Seedi, Shaden A. M. Khalifa, Roberto Piccinocchi, Massimiliano Galdiero, Pietro Campiglia, and Maria Daglia
- Subjects
Cistus × incanus L. ,Scutellaria lateriflora L. ,oral health ,gingivitis ,Porphyromonas gingivalis ,Chemical technology ,TP1-1185 - Abstract
Periodontal diseases are oral inflammatory diseases ranging from gingivitis to chronic periodontitis. Porphyromonas gingivalis is one of the major pathogens responsible for severe and chronic periodontitis. Plant extracts with antimicrobial activity could be considered possible alternatives to chlorhexidine, an antiseptic substance used in oral hygiene thatcan cause bacteria resistance. Here, two commercial extracts obtained from Cistus × incanus L. and Scutellaria lateriflora L. were chemically characterized usingUltra-High-Performance Liquid Chromatography (UHPLC) coupled with a Q-Exactive Hybrid Quadrupole Orbitrap Mass Spectrometer. The extracts were studied for their bioaccessibility after simulated in vitro oral digestion, their antimicrobial activity against P. gingivalis, their protective effects against cellular invasion by P. gingivalis, and their antibiofilm activity. The extracts were found to contain very complex mixtures of polyphenols, which were quite stable after in vitro simulated oral digestion and demonstrated mild, dose-dependent inhibitory activity against P. gingivalis growth. This activity increased with the combination of the two extracts. Moreover, the combination of the extracts induced a reduction in P. gingivalis HaCaT invasiveness, and the reduction in biofilm came to around 80%. In conclusion, a combination of C. incanus and S. lateriflora showed promising effects useful in the treatment of gingivitis.
- Published
- 2023
- Full Text
- View/download PDF
16. Honey Bee Products: Preclinical and Clinical Studies of Their Anti-inflammatory and Immunomodulatory Properties
- Author
-
Hesham R. El-Seedi, Nehal Eid, Aida A. Abd El-Wahed, Mostafa E. Rateb, Hanan S. Afifi, Ahmed F. Algethami, Chao Zhao, Yahya Al Naggar, Sultan M. Alsharif, Haroon Elrasheid Tahir, Baojun Xu, Kai Wang, and Shaden A. M. Khalifa
- Subjects
bee products ,inflammation ,diabetes ,hypertension ,cancer ,preclinical and clinical studies ,Nutrition. Foods and food supply ,TX341-641 - Abstract
Inflammation is a defense process triggered when the body faces assaults from pathogens, toxic substances, microbial infections, or when tissue is damaged. Immune and inflammatory disorders are common pathogenic pathways that lead to the progress of various chronic diseases, such as cancer and diabetes. The overproduction of cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α, is an essential parameter in the clinical diagnosis of auto-inflammatory diseases. In this review, the effects of bee products have on inflammatory and autoimmune diseases are discussed with respect to the current literature. The databases of Google Scholar, PubMed, Science Direct, Sci-Finder and clinical trials were screened using different combinations of the following terms: “immunomodulatory”, “anti-inflammatory”, “bee products”, “honey”, “propolis”, “royal jelly”, “bee venom”, “bee pollen”, “bee bread”, “preclinical trials”, “clinical trials”, and “safety”. Honey bee products, including propolis, royal jelly, honey, bee venom, and bee pollen, or their bioactive chemical constituents like polyphenols, demonstrate interesting therapeutic potential in the regulation of inflammatory mediator production as per the increase of TNF-α, IL-1β, IL-6, Il-2, and Il-7, and the decrease of reactive oxygen species (ROS) production. Additionally, improvement in the immune response via activation of B and T lymphocyte cells, both in in vitro, in vivo and in clinical studies was reported. Thus, the biological properties of bee products as anti-inflammatory, immune protective, antioxidant, anti-apoptotic, and antimicrobial agents have prompted further clinical investigation.
- Published
- 2022
- Full Text
- View/download PDF
17. In Vitro Bioaccessibility and Anti-Inflammatory Activity of a Chemically Characterized Allium cepa L. Extract Rich in Quercetin Derivatives Optimized by the Design of Experiments
- Author
-
Hammad Ullah, Alessandro Di Minno, Cristina Santarcangelo, Ariyawan Tantipongpiradet, Marco Dacrema, Rita di Matteo, Hesham R. El-Seedi, Shaden A. M. Khalifa, Alessandra Baldi, Antonietta Rossi, and Maria Daglia
- Subjects
Allium cepa L. ,quercetin ,bioaccessibility ,design of experiments ,anti-inflammatory activity ,Organic chemistry ,QD241-441 - Abstract
Allium cepa L. is a highly consumed garden crop rich in biologically active phenolic and organosulfur compounds. This study aimed to assess the in vitro bioaccessibility and anti-inflammatory effect of a chemically characterized A. cepa extract rich in quercetin and its derivatives. Different varieties of A. cepa were studied; based on the highest total phenolic content, the “Golden” variety was selected. Its extracts, obtained from the tunicate bulb, tunic, and bulb, were subjected to determination of quercetin and its derivatives with LC-MS analysis and based on the highest total quercetin content, the tunic extract was utilized for further experiments. The extraction method was optimized through a design of experiment (DoE) method via full factorial design, which showed that 40% ethanol and 1 g tunic/20 mL solvent are the best extraction conditions. HPLC analysis of the optimized tunic extract identified 14 flavonols, including 10 quercetin derivatives. As far as in vitro bioaccessibility was concerned, the increases in some quercetin derivatives following the gastro-duodenal digestion process support the bioaccessibility of these bioactive compounds. Moreover, the extract significantly inhibited the production of PGE2 in stimulated J774 cell lines, while no effects of the tunic extract were observed against the release of IL-1β, TNF-α, and nitrites. The study provided insights into the optimized extraction conditions to obtain an A. cepa tunic extract rich in bioavailable quercetin derivatives with significant anti-inflammatory effects against PGE2.
- Published
- 2022
- Full Text
- View/download PDF
18. Saudi Arabian Plants: A Powerful Weapon against a Plethora of Diseases
- Author
-
Hesham R. El-Seedi, Safaa M. Kotb, Syed G. Musharraf, Awad A. Shehata, Zhiming Guo, Sultan M. Alsharif, Aamer Saeed, Omer A. A. Hamdi, Haroon Elrasheid Tahir, Rasha Alnefaie, Rob Verpoorte, and Shaden A. M. Khalifa
- Subjects
Saudi Arabian plants ,distribution ,anti-inflammation ,anti-cancer ,antibiotic resistance ,active compounds ,Botany ,QK1-989 - Abstract
The kingdom of Saudi Arabia (SA) ranks fifth in Asia in terms of area. It features broad biodiversity, including interesting flora, and was the historical origin of Islam. It is endowed with a large variety of plants, including many herbs, shrubs, and trees. Many of these plants have a long history of use in traditional medicine. The aim of this review is to evaluate the present knowledge on the plants growing in SA regarding their pharmacological and biological activities and the identification of their bioactive compounds to determine which plants could be of interest for further studies. A systematic summary of the plants’ history, distribution, various pharmacological activities, bioactive compounds, and clinical trials are presented in this paper to facilitate future exploration of their therapeutic potential. The literature was obtained from several scientific search engines, including Sci-Finder, PubMed, Web of Science, Google Scholar, Scopus, MDPI, Wiley publications, and Springer Link. Plant names and their synonyms were validated by ‘The Plant List’ on 1 October 2021. SA is home to approximately 2247 plant species, including native and introduced plants that belong to 142 families and 837 genera. It shares the flora of three continents, with many unique features due to its extreme climate and geographical and geological conditions. As plants remain the leading supplier of new therapeutic agents to treat various ailments, Saudi Arabian plants may play a significant role in the fight against cancer, inflammation, and antibiotic-resistant bacteria. To date, 102 active compounds have been identified in plants from different sites in SA. Plants from the western and southwestern regions have been evaluated for various biological activities, including antioxidant, anti-cancer, antimicrobial, antimalarial, anti-inflammatory, anti-glycation, and cytotoxic activities. The aerial parts of the plants, especially the leaves, have yielded most of the bioactive compounds. Most bioactivity tests involve in vitro assessments for the inhibition of the growth of tumour cell lines, and several compounds with in vitro antitumour activity have been reported. More in-depth studies to evaluate the mode of action of the compounds are necessary to pave the way for clinical trials. Ecological and taxonomical studies are needed to evaluate the flora of SA, and a plan for the conservation of wild plants should be implemented, including the management of the protection of endemic plants.
- Published
- 2022
- Full Text
- View/download PDF
19. Artificial Intelligence and Precision Medicine: A New Frontier for the Treatment of Brain Tumors
- Author
-
Anil K. Philip, Betty Annie Samuel, Saurabh Bhatia, Shaden A. M. Khalifa, and Hesham R. El-Seedi
- Subjects
precision medicine ,brain tumors ,artificial intelligence ,imaging technology ,gene targeting ,patient care ,Science - Abstract
Brain tumors are a widespread and serious neurological phenomenon that can be life- threatening. The computing field has allowed for the development of artificial intelligence (AI), which can mimic the neural network of the human brain. One use of this technology has been to help researchers capture hidden, high-dimensional images of brain tumors. These images can provide new insights into the nature of brain tumors and help to improve treatment options. AI and precision medicine (PM) are converging to revolutionize healthcare. AI has the potential to improve cancer imaging interpretation in several ways, including more accurate tumor genotyping, more precise delineation of tumor volume, and better prediction of clinical outcomes. AI-assisted brain surgery can be an effective and safe option for treating brain tumors. This review discusses various AI and PM techniques that can be used in brain tumor treatment. These new techniques for the treatment of brain tumors, i.e., genomic profiling, microRNA panels, quantitative imaging, and radiomics, hold great promise for the future. However, there are challenges that must be overcome for these technologies to reach their full potential and improve healthcare.
- Published
- 2022
- Full Text
- View/download PDF
20. Designing Functionally Substituted Pyridine-Carbohydrazides for Potent Antibacterial and Devouring Antifungal Effect on Multidrug Resistant (MDR) Strains
- Author
-
Farooq-Ahmad Khan, Sana Yaqoob, Shujaat Ali, Nimra Tanveer, Yan Wang, Sajda Ashraf, Khwaja Ali Hasan, Shaden A. M. Khalifa, Qiyang Shou, Zaheer Ul-Haq, Zi-Hua Jiang, and Hesham R. El-Seedi
- Subjects
multidrug resistance ,MDR strains ,antibiotics resistance ,antimicrobial ,pyridine ,Organic chemistry ,QD241-441 - Abstract
The emergence of multidrug-resistant (MDR) pathogens and the gradual depletion of available antibiotics have exacerbated the need for novel antimicrobial agents with minimal toxicity. Herein, we report functionally substituted pyridine carbohydrazide with remarkable antimicrobial effect on multi-drug resistant strains. In the series, compound 6 had potent activity against four MDR strains of Candida spp., with minimum inhibitory concentration (MIC) values being in the range of 16–24 µg/mL and percentage inhibition up to 92.57%, which was exceptional when compared to broad-spectrum antifungal drug fluconazole (MIC = 20 µg/mL, 81.88% inhibition). Substitution of the octyl chain in 6 with a shorter butyl chain resulted in a significant anti-bacterial effect of 4 against Pseudomonas aeruginosa (ATCC 27853), the MIC value being 2-fold superior to the standard combination of ampicillin/cloxacillin. Time-kill kinetics assays were used to discern the efficacy and pharmacodynamics of the potent compounds. Further, hemolysis tests confirmed that both compounds had better safety profiles than the standard drugs. Besides, molecular docking simulations were used to further explore their mode of interaction with target proteins. Overall results suggest that these compounds have the potential to become promising antimicrobial drugs against MDR strains.
- Published
- 2022
- Full Text
- View/download PDF
21. Chemical Profiling and Nutritional Evaluation of Bee Pollen, Bee Bread, and Royal Jelly and Their Role in Functional Fermented Dairy Products
- Author
-
Amira M. G. Darwish, Aida A. Abd El-Wahed, Mohamed G. Shehata, Hesham R. El-Seedi, Saad H. D. Masry, Shaden A. M. Khalifa, Hatem M. Mahfouz, and Sobhy A. El-Sohaimy
- Subjects
honeybee products ,amino acid profile ,chemical profiling ,international molecular network GNPS database ,antioxidant potentials ,proteolytic activity ,Organic chemistry ,QD241-441 - Abstract
Honeybee products, as multicomponent substances, have been a focus of great interest. The present work aimed to perform the nutritional and chemical profiling and biochemical characterization of bee pollen (BP), bee bread (BB), and royal jelly (RJ) and study their applications in the fortification of functional fermented dairy products. Their effects on starter cultures and the physicochemical and sensorial quality of products were monitored. A molecular networking analysis identified a total of 46 compounds in the three bee products that could be potential medicines, including flavonoids, fatty acids, and peptides. BB showed the highest protein and sugar contents (22.57 and 26.78 g/100 g), which cover 45.14 and 53.56% of their daily values (DVs), with considerable amounts of the essential amino acids threonine and lysine (59.50 and 42.03%). BP, BB, and RJ can be considered sources of iron, as 100 g can cover 141, 198.5, and 94.94% of DV%, respectively. BP was revealed to have the highest phenolic and flavonoid contents (105.68 and 43.91 µg/g) and showed a synergetic effect when mixed with RJ, resulting in increased antioxidant activity, while BB showed a synergetic effect when mixed with RJ in terms of both antioxidant and proteolytic powers (IC50 7.54, 11.55, 12.15, 12.50, and 12.65 cP compared to the control (10.55 cP)), reflecting their organoleptic properties and highlighting these health-oriented products as promising natural products for human health care.
- Published
- 2022
- Full Text
- View/download PDF
22. UPLC-MS/MS Analysis of Naturally Derived Apis mellifera Products and Their Promising Effects against Cadmium-Induced Adverse Effects in Female Rats
- Author
-
Alaa Amr, Aida Abd El-Wahed, Hesham R. El-Seedi, Shaden A. M. Khalifa, Maria Augustyniak, Lamia M. El-Samad, Ahmed E. Abdel Karim, and Abeer El Wakil
- Subjects
honey bee ,propolis ,royal jelly ,oxidative stress ,reproductive toxicity ,Nutrition. Foods and food supply ,TX341-641 - Abstract
Honeybee products arouse interest in society due to their natural origin and range of important biological properties. Propolis (P) and royal jelly (RJ) attract scientists’ attention because they exhibit antioxidant, anti-inflammatory, anti-bacterial, anti-tumor, and immunomodulatory abilities. In this study, we tested whether P and RJ could mitigate the adverse effects of cadmium (Cd) exposure, with particular emphasis on the reproductive function in female rats. In this line, one week of pretreatment was established. Six experimental groups were created, including (i) the control group (without any supplementation), (ii) the Cd group (receiving CdCl2 in a dose of 4.5 mg/kg/day), (iii) the P group (50 mg of P/kg/day), (iv) RJ group (200 mg of RJ/kg/day), (v) P + Cd group (rats pretreated with P and then treated with P and Cd simultaneously), (vi) RJ + Cd group (animals pretreated with RJ before receiving CdCl2 simultaneously with RJ). Cd treatment of rats adversely affected a number of measured parameters, including body weight, ovarian structure and ultrastructure, oxidative stress parameters, increased ovarian Cd content and prolonged the estrous cycle. Pretreatment and then cotreatment with P or RJ and Cd alleviated the adverse effects of Cd, transferring the clusters in the PCA analysis chart toward the control group. However, clusters for cotreated groups were still distinctly separated from the control and P, or RJ alone treated groups. Most likely, investigated honeybee products can alter Cd absorption in the gut and/or increase its excretion through the kidneys and/or mitigate oxidative stress by various components. Undoubtedly, pretreatment with P or RJ can effectively prepare the organism to overcome harmful insults. Although the chemical composition of RJ and P is relatively well known, focusing on proportion, duration, and scheme of treatment, as well as the effects of particular components, may provide interesting data in the future. In the era of returning to natural products, both P and RJ seem valuable materials for further consideration as anti-infertility agents.
- Published
- 2022
- Full Text
- View/download PDF
23. Structural Diversity, LC-MS-MS Analysis and Potential Biological Activities of Brevibacillus laterosporus Extract
- Author
-
Muhammad Zayed, Islam M. El-Garawani, Sabha M. El-Sabbagh, Bassem Amr, Sultan M. Alsharif, Ahmed A. Tayel, Mohamed F. AlAjmi, Hasnaa M. S. Ibrahim, Qiyang Shou, Shaden A. M. Khalifa, Hesham R. El-Seedi, and Nora Elfeky
- Subjects
Brevibacillus laterosporus ,marine sediment ,cyclo dipeptides ,cytotoxicity ,antimicrobial ,phylogenetic analysis ,Microbiology ,QR1-502 - Abstract
Lake Mariout is Egypt’s degraded coastal marine habitat that encompasses a variety of wastes. The biodiversity and hard environmental conditions allow the co-existence of organisms with high resistance and rich metabolism, making them potential candidates for screening and isolating novel microbial strains. A bacterial isolate (BF202) cultured from the marine sediments of Alexandria’s Mariout Lake (Egypt) was tested for its antimicrobial and anticancer potential. The phylogenetic analysis of the isolated strain’s 16S rDNA and gyrB revealed that BF202 belongs to Brevibacillus laterosporus (B. laterosporus). Antibiosis of B. laterosporus was confirmed against microbial pathogens including Escherichia coli, Klebsiella pneumoniae, Salmonella typhi, and Staphylococcus aureus. The highest antibacterial activity was detected on glucose peptone medium after 18 h of incubation at 35 °C, and at pH of 7.0 in the presence of mannose and ammonium carbonate as carbon and nitrogen sources, respectively. The cytotoxicity of the methanolic extract against breast cancer (MCF-7) and normal Vero cell lines, using the MTT test, revealed IC50 values of 7.93 and 23.79 µg/mL, respectively. To identify apoptotic and necrotic cells, a flow cytometric analysis using annexin V-FITC/PI dual-labeling was utilized and recorded a higher number of necrotic cells compared to apoptotic ones. Similarly, the cell cycle S-phase arrest was reported. The LC-MS-MS investigation of B. laterosporus extract and the molecular networking database analysis demonstrated five strategic diketopiperazine compounds with antimicrobial and anticancer activities. Taken together, this research shows that the crude extract of B. laterosporus might be an effective agent against drug-resistant bacteria and malignant disorders due to its richness in diketopiperazines.
- Published
- 2022
- Full Text
- View/download PDF
24. Insights into the Role of Natural Products in the Control of the Honey Bee Gut Parasite (Nosema spp.)
- Author
-
Hesham R. El-Seedi, Aida A. Abd El-Wahed, Yahya Al Naggar, Aamer Saeed, Jianbo Xiao, Hammad Ullah, Syed G. Musharraf, Mohammad H. Boskabady, Wei Cao, Zhiming Guo, Maria Daglia, Abeer El Wakil, Kai Wang, and Shaden A. M. Khalifa
- Subjects
honey bees ,nosemosis ,essential oils ,plant extracts ,active compounds ,safety ,Veterinary medicine ,SF600-1100 ,Zoology ,QL1-991 - Abstract
The honey bee is an important economic insect due to its role in pollinating many agricultural plants. Unfortunately, bees are susceptible to many pathogens, including pests, parasites, bacteria, and viruses, most of which exert a destructive impact on thousands of colonies. The occurrence of resistance to the therapeutic substances used against these organisms is rising, and the residue from these chemicals may accumulate in honey bee products, subsequently affecting the human health. There is current advice to avoid the use of antibiotics, antifungals, antivirals, and other drugs in bees, and therefore, it is necessary to develop alternative strategies for the treatment of bee diseases. In this context, the impact of nosema diseases (nosemosis) on bee health and the negative insults of existing drugs are discussed. Moreover, attempts to combat nosema through the use of alternative compounds, including essential oils, plant extracts, and microbes in vitro and in vivo, are documented.
- Published
- 2022
- Full Text
- View/download PDF
25. A Spotlight on the Egyptian Honeybee (Apis mellifera lamarckii)
- Author
-
Hesham R. El-Seedi, Aida A. Abd El-Wahed, Chao Zhao, Aamer Saeed, Xiaobo Zou, Zhiming Guo, Ahmed G. Hegazi, Awad A. Shehata, Haged H. R. El-Seedi, Ahmed F. Algethami, Yahya Al Naggar, Neveen F. Agamy, Mostafa E. Rateb, Mohamed F. A. Ramadan, Shaden A. M. Khalifa, and Kai Wang
- Subjects
beekeeping ,beehives ,Egyptian honeybee (Apis mellifera lamarckii) ,genetic analysis ,defensive behaviors ,Veterinary medicine ,SF600-1100 ,Zoology ,QL1-991 - Abstract
Egypt has an ongoing long history with beekeeping, which started with the ancient Egyptians making various reliefs and inscriptions of beekeeping on their tombs and temples. The Egyptian honeybee (Apis mellifera lamarckii) is an authentic Egyptian honeybee subspecies utilized in apiculture. A. m. lamarckii is a distinct honeybee subspecies that has a particular body color, size, and high levels of hygienic behavior. Additionally, it has distinctive characteristics; including the presence of the half-queens, an excessive number of swarm cells, high adaptability to climatic conditions, good resistance to specific bee diseases, including the Varro disorder, and continuous breeding during the whole year despite low productivity, using very little propolis, and tending to abscond readily. This review discusses the history of beekeeping in Egypt and its current situation in addition to its morphology, genetic analysis, and distinctive characters, and the defensive behaviors of native A. m. lamarckii subspecies.
- Published
- 2022
- Full Text
- View/download PDF
26. Chemistry and the Potential Antiviral, Anticancer, and Anti-Inflammatory Activities of Cardiotonic Steroids Derived from Toads
- Author
-
Hesham R. El-Seedi, Nermeen Yosri, Bishoy El-Aarag, Shaymaa H. Mahmoud, Ahmed Zayed, Ming Du, Aamer Saeed, Syed G. Musharraf, Islam M. El-Garawani, Mohamed R. Habib, Haroon Elrasheid Tahir, Momtaz M. Hegab, Xiaobo Zou, Zhiming Guo, Thomas Efferth, and Shaden A. M. Khalifa
- Subjects
anticancer ,antiviral ,anti-inflammatory ,cardiotonic steroids ,bufadienolides ,bufotalin ,Organic chemistry ,QD241-441 - Abstract
Cardiotonic steroids (CTS) were first documented by ancient Egyptians more than 3000 years ago. Cardiotonic steroids are a group of steroid hormones that circulate in the blood of amphibians and toads and can also be extracted from natural products such as plants, herbs, and marines. It is well known that cardiotonic steroids reveal effects against congestive heart failure and atrial fibrillation; therefore, the term "cardiotonic" has been coined. Cardiotonic steroids are divided into two distinct groups: cardenolides (plant-derived) and bufadienolides (mainly of animal origin). Cardenolides have an unsaturated five-membered lactone ring attached to the steroid nucleus at position 17; bufadienolides have a doubly unsaturated six-membered lactone ring. Cancer is a leading cause of mortality in humans all over the world. In 2040, the global cancer load is expected to be 28.4 million cases, which would be a 47% increase from 2020. Moreover, viruses and inflammations also have a very nebative impact on human health and lead to mortality. In the current review, we focus on the chemistry, antiviral and anti-cancer activities of cardiotonic steroids from the naturally derived (toads) venom to combat these chronic devastating health problems. The databases of different research engines (Google Scholar, PubMed, Science Direct, and Sci-Finder) were screened using different combinations of the following terms: “cardiotonic steroids”, “anti-inflammatory”, “antiviral”, “anticancer”, “toad venom”, “bufadienolides”, and “poison chemical composition”. Various cardiotonic steroids were isolated from diverse toad species and exhibited superior anti-inflammatory, anticancer, and antiviral activities in in vivo and in vitro models such as marinobufagenin, gammabufotalin, resibufogenin, and bufalin. These steroids are especially difficult to identify. However, several compounds and their bioactivities were identified by using different molecular and biotechnological techniques. Biotechnology is a new tool to fully or partially generate upscaled quantities of natural products, which are otherwise only available at trace amounts in organisms.
- Published
- 2022
- Full Text
- View/download PDF
27. Royal Jelly: Beneficial Properties and Synergistic Effects with Chemotherapeutic Drugs with Particular Emphasis in Anticancer Strategies
- Author
-
Suzy Salama, Qiyang Shou, Aida A. Abd El-Wahed, Nizar Elias, Jianbo Xiao, Ahmed Swillam, Muhammad Umair, Zhiming Guo, Maria Daglia, Kai Wang, Shaden A. M. Khalifa, and Hesham R. El-Seedi
- Subjects
royal jelly ,cancer ,anticancer drugs ,synergistic effect ,Nutrition. Foods and food supply ,TX341-641 - Abstract
Cancer is one of the major causes of death globally. Currently, various methods are used to treat cancer, including radiotherapy, surgery, and chemotherapy, all of which have serious adverse effects. A healthy lifestyle, especially a nutritional diet, plays a critical role in the treatment and prevention of many disorders, including cancer. The above notion, plus the trend in going back to nature, encourages consumers and the food industry to invest more in food products and to find potential candidates that can maintain human health. One of these agents, and a very notable food agent, is royal jelly (RJ), known to be produced by the hypopharyngeal and mandibular salivary glands of young nurse honeybees. RJ contains bioactive substances, such as carbohydrates, protein, lipids, peptides, mineral salts and polyphenols which contribute to the appreciated biological and pharmacological activities. Antioxidant, anticancer, anti-inflammatory, antidiabetic, and antibacterial impacts are among the well-recognized benefits. The combination of RJ or its constituents with anticancer drugs has synergistic effects on cancer disorders, enhancing the drug’s effectiveness or reducing its side effects. The purpose of the present review is to emphasize the possible interactions between chemotherapy and RJ, or its components, in treating cancer illnesses.
- Published
- 2022
- Full Text
- View/download PDF
28. In Vitro Induction of Apoptosis in Isolated Acute Myeloid Leukemia Cells: The Role of Anastatica hierochuntica Methanolic Extract
- Author
-
Islam M. El-Garawani, Amira S. Abd El-Gaber, Noura A. Algamdi, Aamer Saeed, Chao Zhao, Omar M. Khattab, Mohamed F. AlAjmi, Zhiming Guo, Shaden A. M. Khalifa, and Hesham R. El-Seedi
- Subjects
acute myeloid leukemia blasts ,anticancer ,1H-NMR ,LC-ESI-MS ,Brassicaceae ,molecular networking ,Microbiology ,QR1-502 - Abstract
Anastatica hierochuntica L. (Cruciferae) has been known in Egyptian folk medicine as a remedy for gastrointestinal disorders, diabetes and heart diseases. Despite the wide usage, A. hierochuntica research provides insufficient data to support its traditional practice. The cytotoxicity of A. hierochuntica methanolic extract was investigated on acute myeloid leukemia blasts (AML) and normal human peripheral leucocytes (NHPL). The phytochemical identification of bioactive compounds using 1H-NMR and LC-ESI-MS was also performed. A. hierochuntica extract caused non-significant cytotoxicity on NHPL, while the cytotoxicity on AML was significant (IC50: 0.38 ± 0.02 μg/mL). The negative expression of p53, upregulation of Caspase-3 and increase in the BAX/BCL-2 ratio were reported at the protein and mRNA levels. The results suggest that A. hierochuntica extract induced AML cell death via the p53-independent mitochondrial intrinsic pathway and further attention should be paid to this plant as a promising natural anticancer agent.
- Published
- 2022
- Full Text
- View/download PDF
29. Bee Pollen: Clinical Trials and Patent Applications
- Author
-
Jari S. Algethami, Aida A. Abd El-Wahed, Mohamed H. Elashal, Hanan R. Ahmed, Esraa H. Elshafiey, Eslam M. Omar, Yahya Al Naggar, Ahmed F. Algethami, Qiyang Shou, Sultan M. Alsharif, Baojun Xu, Awad A. Shehata, Zhiming Guo, Shaden A. M. Khalifa, Kai Wang, and Hesham R. El-Seedi
- Subjects
bee pollen ,diseases ,functional foods ,cosmetics ,Nutrition. Foods and food supply ,TX341-641 - Abstract
Bee pollen is a natural cocktail of floral nectar, flower pollen, enzymes, and salivary secretions produced by honeybees. Bee pollen is one of the bee products most enriched in proteins, polysaccharides, polyphenols, lipids, minerals, and vitamins. It has a significant health and medicinal impact and provides protection against many diseases, including diabetes, cancer, infectious, and cardiovascular. Bee pollen is commonly promoted as a cost-effective functional food. In particular, bee pollen has been applied in clinical trials for allergies and prostate illnesses, with a few investigations on cancer and skin problems. However, it is involved in several patents and health recipes to combat chronic health problems. This review aimed to highlight the clinical trials and patents involving bee pollen for different cases and to present the role of bee pollen as a supplementary food and a potential product in cosmetic applications.
- Published
- 2022
- Full Text
- View/download PDF
30. Antifungal Activity of Soft Tissue Extract from the Garden Snail Helix aspersa (Gastropoda, Mollusca)
- Author
-
Hoda H. Abd-El Azeem, Gamalat Y. Osman, Hesham R. El-Seedi, Ahmed M. Fallatah, Shaden A. M. Khalifa, and Mohamed M. Gharib
- Subjects
Helix aspersa ,soft tissue ,extract ,Candida albicans ,Aspergillus flavus ,Aspergillus brasiliensis ,Organic chemistry ,QD241-441 - Abstract
Gastropods comprise approximately 80% of molluscans, of which land snails are used variably as food and traditional medicines due to their high protein content. Moreover, different components from land snails exhibit antimicrobial activities. In this study, we evaluated the antifungal activity of soft tissue extracts from Helix aspersa against Candida albicans, Aspergillus flavus, and Aspergillus brasiliensis by identifying extract components using liquid chromatography-tandem mass spectrometry (LC-MS-MS). Two concentrations of three extracts (methanol, acetone, and acetic acid) showed antifungal activity. Both acetone (1 g/3 mL) and acetic acid extracts (1 g/mL) significantly inhibited C.albicans growth (p = 0.0001, 5.2 ± 0.2 mm and p = 0.02, 69.7 ± 0.6 mm, respectively). A. flavus and A. brasiliensis growth were inhibited by all extracts at 1 g/mL, while inhibition was observed for acetic acid extracts against A. brasiliensis (p = 0.02, 50.3 ± 3.5 mm). The highest growth inhibition was observed for A. flavus using acetic acid and acetone extracts (inhibition zones = 38 ± 1.7 mm and 3.1 ± 0.7 mm, respectively). LC-MS-MS studies on methanol and acetone extracts identified 11-α-acetoxyprogesterone with a parent mass of 372.50800 m/z and 287.43500 m/z for luteolin. Methanol extracts contained hesperidin with a parent mass of 611.25400 m/z, whereas linoleic acid and genistein (parent mass = 280.4 and 271.48900 m/z, respectively) were the main metabolites.
- Published
- 2022
- Full Text
- View/download PDF
31. Bee Stressors from an Immunological Perspective and Strategies to Improve Bee Health
- Author
-
Hesham R. El-Seedi, Hanan R. Ahmed, Aida A. Abd El-Wahed, Aamer Saeed, Ahmed F. Algethami, Nour F. Attia, Zhiming Guo, Syed G. Musharraf, Alfi Khatib, Sultan M. Alsharif, Yahya Al Naggar, Shaden A. M. Khalifa, and Kai Wang
- Subjects
honeybees ,immunity ,agrochemicals ,nutrition ,ecological stressors ,sustainable beekeeping ,Veterinary medicine ,SF600-1100 - Abstract
Honeybees are the most prevalent insect pollinator species; they pollinate a wide range of crops. Colony collapse disorder (CCD), which is caused by a variety of biotic and abiotic factors, incurs high economic/ecological loss. Despite extensive research to identify and study the various ecological stressors such as microbial infections, exposure to pesticides, loss of habitat, and improper beekeeping practices that are claimed to cause these declines, the deep understanding of the observed losses of these important insects is still missing. Honeybees have an innate immune system, which includes physical barriers and cellular and humeral responses to defend against pathogens and parasites. Exposure to various stressors may affect this system and the health of individual bees and colonies. This review summarizes and discusses the composition of the honeybee immune system and the consequences of exposure to stressors, individually or in combinations, on honeybee immune competence. In addition, we discuss the relationship between bee nutrition and immunity. Nutrition and phytochemicals were highlighted as the factors with a high impact on honeybee immunity.
- Published
- 2022
- Full Text
- View/download PDF
32. Curcumin-Injected Musca domestica Larval Hemolymph: Cecropin Upregulation and Potential Anticancer Effect
- Author
-
Shaymaa Mahmoud, Sobhy Hassab El-Nabi, Asmaa Hawash, Hesham R. El-Seedi, Shaden A. M. Khalifa, Sami Ullah, Abdullah G. Al-Sehemi, and Islam M. El-Garawani
- Subjects
M. domestica larva ,hemolymph ,curcumin ,cytotoxicity ,MCF-7 ,apoptosis ,Organic chemistry ,QD241-441 - Abstract
Over recent decades, much attention has been given to imply the natural products in cancer therapy alone or in combination with other established procedures. Insects have a rich history in traditional medicine across the globe, which holds promise for the future of natural product drug discovery. Cecropins, peptides produced by insects, are components of a defense system against infections and are well known to exert antimicrobial and antitumor capabilities. The present study aimed to investigate, for the first time, the role of curcumin in enhancing the anticancer effect of Musca domestica larval hemolymph. Third larval instars of M. domestica were injected with curcumin and the hemolymph was picked at 4, 8, and 24 h post-curcumin injection. M. domestica cecropin A (MdCecA) was evaluated in control and injected larval hemolymphs. The cytotoxicity on breast cancer cell lines (MCF-7) and normal Vero cells was assessed to be comparable to control larval hemolymph. Curcumin-injected larval hemolymphs exhibited significant cytotoxicity with respect to the uninjected ones against MCF-7; however, Vero cells showed no cytotoxicity. The IC50 was 106 ± 2.9 and 388 ± 9.2 μg/mL for the hemolymphs of injected larvae at 4 and 8 h, respectively, while the control larval hemolymph revealed the IC50 of >500 μg/mL. For mechanistic anticancer evaluation, concentrations of 30, 60, and 100 μg/mL of curcumin-injected larval hemolymphs were examined. A significant G2/M cell cycle arrest was observed, confirming the anti-proliferative properties of hemolymphs over the tested concentrations. The MdCecA transcripts were significantly (p < 0.05) upregulated at 4 and 8 h post-injection, while a significant downregulation was observed after 24 h. Cecropin quantification by LC–MS revealed that MdCecA peptides have the highest expression in the hemolymph of the treated larvae at 8 h relative to the control group. The upregulation of cecropin expression at mRNA and protein levels may be attributed to the curcumin stimulation and linked to the increased cytotoxicity toward the cancer cell line. In conclusion, the results suggest that the apoptotic and anti-proliferative effects of M. domestica hemolymph on MCF-7 cells following the curcumin injection can be used as a natural candidate in future pharmaceutical industries.
- Published
- 2022
- Full Text
- View/download PDF
33. Cosmetic Applications of Bee Venom
- Author
-
Aida A. Abd El-Wahed, Shaden A. M. Khalifa, Mohamed H. Elashal, Syed G. Musharraf, Aamer Saeed, Alfi Khatib, Haroon Elrasheid Tahir, Xiaobo Zou, Yahya Al Naggar, Arshad Mehmood, Kai Wang, and Hesham R. El-Seedi
- Subjects
bee venom ,cosmetics applications ,skin diseases ,Medicine - Abstract
Bee venom (BV) is a typical toxin secreted by stingers of honeybee workers. BV and BV therapy have long been attractive to different cultures, with extensive studies during recent decades. Nowadays, BV is applied to combat several skin diseases, such as atopic dermatitis, acne vulgaris, alopecia, vitiligo, and psoriasis. BV is used extensively in topical preparations as cosmetics and used as dressing for wound healing, as well as in facemasks. Nevertheless, the safety of BV as a therapeutic choice has always been a concern due to the immune system reaction in some people due to BV use. The documented unfavorable impact is explained by the fact that the skin reactions to BV might expand to excessive immunological responses, including anaphylaxis, that typically resolve over numerous days. This review aims to address bee venom therapeutic uses in skin cosmetics.
- Published
- 2021
- Full Text
- View/download PDF
34. GC-MS- and NMR-Based Metabolomics and Molecular Docking Reveal the Potential Alpha-Glucosidase Inhibitors from Psychotria malayana Jack Leaves
- Author
-
Tanzina Sharmin Nipun, Alfi Khatib, Zalikha Ibrahim, Qamar Uddin Ahmed, Irna Elina Redzwan, Riesta Primaharinastiti, Mohd Zuwairi Saiman, Raudah Fairuza, Tri Dewanti Widyaningsih, Mohamed F. AlAjmi, Shaden A. M. Khalifa, and Hesham R. El-Seedi
- Subjects
P. malayana ,α-glucosidase ,multivariate data analysis ,GC-MS ,NMR ,molecular docking ,Medicine ,Pharmacy and materia medica ,RS1-441 - Abstract
Psychotria malayana Jack leaf, known in Indonesia as “daun salung”, is traditionally used for the treatment of diabetes and other diseases. Despite its potential, the phytochemical study related to its anti-diabetic activity is still lacking. Thus, this study aimed to identify putative inhibitors of α-glucosidase, a prominent enzyme contributing to diabetes type 2 in P. malayana leaf extract using gas chromatography-mass spectrometry (GC-MS)- and nuclear magnetic resonance (NMR)-based metabolomics, and to investigate the molecular interaction between those inhibitors and the enzyme through in silico approach. Twenty samples were extracted with different solvent ratios of methanol–water (0, 25, 50, 75, and 100% v/v). All extracts were tested on the alpha-glucosidase inhibition (AGI) assay and analyzed using GC-MS and NMR. Multivariate data analysis through a partial least square (PLS) and orthogonal partial square (OPLS) models were developed in order to correlate the metabolite profile and the bioactivity leading to the annotation of the putative bioactive compounds in the plant extracts. A total of ten putative bioactive compounds were identified and some of them reported in this plant for the first time, namely 1,3,5-benzenetriol (1); palmitic acid (2); cholesta-7,9(11)-diene-3-ol (3); 1-monopalmitin (4); β-tocopherol (5); α-tocopherol (6); 24-epicampesterol (7); stigmast-5-ene (8); 4-hydroxyphenylpyruvic acid (10); and glutamine (11). For the evaluation of the potential binding modes between the inhibitors and protein, the in silico study via molecular docking was performed where the crystal structure of Saccharomyces cerevisiae isomaltase (PDB code: 3A4A) was used. Ten amino acid residues, namely ASP352, HIE351, GLN182, ARG442, ASH215, SER311, ARG213, GLH277, GLN279, and PRO312 established hydrogen bond in the docked complex, as well as hydrophobic interaction of other amino acid residues with the putative compounds. The α-glucosidase inhibitors showed moderate to high binding affinities (−5.5 to −9.4 kcal/mol) towards the active site of the enzymatic protein, where compounds 3, 5, and 8 showed higher binding affinity compared to both quercetin and control ligand.
- Published
- 2021
- Full Text
- View/download PDF
35. Combination of Chemically Characterized Pomegranate Extract and Hydrophilic Vitamins against Prolonged Fatigue: A Monocentric, Randomized, Double-Blind, Placebo-Controlled Clinical Trial
- Author
-
Daglia, Hammad Ullah, Eduardo Sommella, Alessandro Di Minno, Roberto Piccinocchi, Daniele Giuseppe Buccato, Lorenza Francesca De Lellis, Costanza Riccioni, Alessandra Baldi, Hesham R. El-Seedi, Shaden A. M. Khalifa, Gaetano Piccinocchi, Pietro Campiglia, Roberto Sacchi, and Maria
- Subjects
prolonged fatigue ,pomegranate extract ,polyphenols ,vitamin B complex ,vitamin C - Abstract
Prolonged fatigue is associated with non-pathological causes and lacks an established therapeutic approach. The current study is aimed at assessing the efficacy of a new food supplement (Improve™) based on a chemically characterized pomegranate extract and hydro-soluble vitamins (B complex and C). UHPLC-HRMS analysis of pomegranate extract showed the presence of 59 compounds, with gallotannins and ellagitannins being the most abundant phytochemicals. For the clinical study, 58 subjects were randomized into two groups, 1 and 2 (n = 29, each), which received either the food supplement or placebo. The effects of the food supplement against fatigue were assessed via validated questionnaires, recorded at time intervals t0 (at baseline), t1 (after 28 days), t2 (56 days), and t3 (after follow-up) in combination with the analysis of biochemical markers at t0 and t2. Fatigue severity scale (FSS) questionnaire scores were significantly decreased at the t2 and t3 time intervals in subjects treated with the food supplements, while the effect of the food supplement on a 12-Item Short Form Survey (SF-12) was not considerable. Moreover, the food supplement did not significantly affect biochemical parameters associated with fatigue and stress conditions. This study shows that the food supplement tested reduces prolonged fatigue following two months of supplementation in healthy subjects with mild prolonged fatigue.
- Published
- 2023
- Full Text
- View/download PDF
36. Ruta Essential Oils: Composition and Bioactivities
- Author
-
Lutfun Nahar, Hesham R. El-Seedi, Shaden A. M. Khalifa, Majid Mohammadhosseini, and Satyajit D. Sarker
- Subjects
Ruta ,Rutaceae ,Ruta angustifolia ,Ruta chalepensis ,Ruta graveolens ,Ruta montana ,Organic chemistry ,QD241-441 - Abstract
Ruta L. is a typical genus of the citrus family, Rutaceae Juss. and comprises ca. 40 different species, mainly distributed in the Mediterranean region. Ruta species have long been used in traditional medicines as an abortifacient and emmenagogue and for the treatment of lung diseases and microbial infections. The genus Ruta is rich in essential oils, which predominantly contain aliphatic ketones, e.g., 2-undecanone and 2-nonanone, but lack any significant amounts of terpenes. Three Ruta species, Ruta chalepensis L., Ruta graveolens L., and Ruta montana L., have been extensively studied for the composition of their essential oils and several bioactivities, revealing their potential medicinal and agrochemical applications. This review provides a systematic evaluation and critical appraisal of publications available in the literature on the composition and bioactivities of the essential oils obtained from Ruta species and includes a brief outlook of the potential applications of nanotechnology and chitosan-based products of Ruta essential oils.
- Published
- 2021
- Full Text
- View/download PDF
37. Anti-Viral and Immunomodulatory Properties of Propolis: Chemical Diversity, Pharmacological Properties, Preclinical and Clinical Applications, and In Silico Potential against SARS-CoV-2
- Author
-
Nermeen Yosri, Aida A. Abd El-Wahed, Reem Ghonaim, Omar M. Khattab, Aya Sabry, Mahmoud A. A. Ibrahim, Mahmoud F. Moustafa, Zhiming Guo, Xiaobo Zou, Ahmed F. M. Algethami, Saad H. D. Masry, Mohamed F. AlAjmi, Hanan S. Afifi, Shaden A. M. Khalifa, and Hesham R. El-Seedi
- Subjects
propolis ,chemical constituents ,antiviral ,immunomodulatory ,clinical applications ,SARS-CoV-2 ,Chemical technology ,TP1-1185 - Abstract
Propolis, a resin produced by honeybees, has long been used as a dietary supplement and folk remedy, and more recent preclinical investigations have demonstrated a large spectrum of potential therapeutic bioactivities, including antioxidant, antibacterial, anti-inflammatory, neuroprotective, immunomodulatory, anticancer, and antiviral properties. As an antiviral agent, propolis and various constituents have shown promising preclinical efficacy against adenoviruses, influenza viruses, respiratory tract viruses, herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), human immunodeficiency virus (HIV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Over 300 chemical components have been identified in propolis, including terpenes, flavonoids, and phenolic acids, with the specific constituent profile varying widely according to geographic origin and regional flora. Propolis and its constituents have demonstrated potential efficacy against SARS-CoV-2 by modulating multiple pathogenic and antiviral pathways. Molecular docking studies have demonstrated high binding affinities of propolis derivatives to multiple SARS-CoV-2 proteins, including 3C-like protease (3CLpro), papain-like protease (PLpro), RNA-dependent RNA polymerase (RdRp), the receptor-binding domain (RBD) of the spike protein (S-protein), and helicase (NSP13), as well as to the viral target angiotensin-converting enzyme 2 (ACE2). Among these compounds, retusapurpurin A has shown high affinity to 3CLpro (ΔG = −9.4 kcal/mol), RdRp (−7.5), RBD (−7.2), NSP13 (−9.4), and ACE2 (−10.4) and potent inhibition of viral entry by forming hydrogen bonds with amino acid residues within viral and human target proteins. In addition, propolis-derived baccharin demonstrated even higher binding affinity towards PLpro (−8.2 kcal/mol). Measures of drug-likeness parameters, including metabolism, distribution, absorption, excretion, and toxicity (ADMET) characteristics, also support the potential of propolis as an effective agent to combat COVID-19.
- Published
- 2021
- Full Text
- View/download PDF
38. Overview of Bee Pollination and Its Economic Value for Crop Production
- Author
-
Shaden A. M. Khalifa, Esraa H. Elshafiey, Aya A. Shetaia, Aida A. Abd El-Wahed, Ahmed F. Algethami, Syed G. Musharraf, Mohamed F. AlAjmi, Chao Zhao, Saad H. D. Masry, Mohamed M. Abdel-Daim, Mohammed F. Halabi, Guoyin Kai, Yahya Al Naggar, Mokhtar Bishr, Mohamed A. M. Diab, and Hesham R. El-Seedi
- Subjects
bees pollination ,economic ,crop production ,bee visitation ,challenges ,impact ,Science - Abstract
Pollination plays a significant role in the agriculture sector and serves as a basic pillar for crop production. Plants depend on vectors to move pollen, which can include water, wind, and animal pollinators like bats, moths, hoverflies, birds, bees, butterflies, wasps, thrips, and beetles. Cultivated plants are typically pollinated by animals. Animal-based pollination contributes to 30% of global food production, and bee-pollinated crops contribute to approximately one-third of the total human dietary supply. Bees are considered significant pollinators due to their effectiveness and wide availability. Bee pollination provides excellent value to crop quality and quantity, improving global economic and dietary outcomes. This review highlights the role played by bee pollination, which influences the economy, and enlists the different types of bees and other insects associated with pollination.
- Published
- 2021
- Full Text
- View/download PDF
39. Rapid Identification of Common Secondary Metabolites of Medicinal Herbs Using High-Performance Liquid Chromatography with Evaporative Light Scattering Detector in Extracts
- Author
-
Kiran Ali, Arslan Ali, Muhammad Noman Khan, Saeedur Rahman, Shaheen Faizi, Muhammad Shaiq Ali, Shaden A. M. Khalifa, Hesham R. El-Seedi, and Syed Ghulam Musharraf
- Subjects
dereplication ,HPLC-ELSD ,plant extracts ,flavonoids ,triterpenes ,sterols ,Microbiology ,QR1-502 - Abstract
The discovery and identification of novel natural products of medicinal importance in the herbal medicine industry becomes a challenge. The complexity of this process can be reduced by dereplication strategies. The current study includes a method based on high-performance liquid chromatography (HPLC), using the evaporative light scattering detector (ELSD) to identify the 12 most common secondary metabolites in plant extracts. Twelve compounds including rutin, taxifolin, quercetin, apigenin, kaempferol, betulinic acid, oleanolic acid, betulin, lupeol, stigmasterol, and β-sitosterol were analyzed simultaneously. The polarity of the compounds varied greatly from highly polar (flavonoids) to non-polar (triterpenes and sterols). This method was also tested for HPLC-DAD and HPLC-ESI-MS/MS analysis. Oleanolic acid and ursolic acid could not be separated in HPLC-ELSD analysis but were differentiated using LC-ESI-MS/MS analysis due to different fragment ions. The regression values (R2 > 0.996) showed good linearity in the range of 50–1000 µg/mL for all compounds. The range of LOD and LOQ values were 7.76–38.30 µg/mL and 23.52–116.06 µg/mL, respectively. %RSD and % trueness values of inter and intraday studies were mostly
- Published
- 2021
- Full Text
- View/download PDF
40. Blue Biotechnology: Computational Screening of Sarcophyton Cembranoid Diterpenes for SARS-CoV-2 Main Protease Inhibition
- Author
-
Mahmoud A. A. Ibrahim, Alaa H. M. Abdelrahman, Mohamed A. M. Atia, Tarik A. Mohamed, Mahmoud F. Moustafa, Abdulrahim R. Hakami, Shaden A. M. Khalifa, Fahad A. Alhumaydhi, Faris Alrumaihi, Syed Hani Abidi, Khaled S. Allemailem, Thomas Efferth, Mahmoud E. Soliman, Paul W. Paré, Hesham R. El-Seedi, and Mohamed-Elamir F. Hegazy
- Subjects
genus Sarcophyton ,cembranoid diterpenes metabolites ,SARS-CoV-2 main protease ,molecular docking ,molecular dynamics ,reactome ,Biology (General) ,QH301-705.5 - Abstract
The coronavirus pandemic has affected more than 150 million people, while over 3.25 million people have died from the coronavirus disease 2019 (COVID-19). As there are no established therapies for COVID-19 treatment, drugs that inhibit viral replication are a promising target; specifically, the main protease (Mpro) that process CoV-encoded polyproteins serves as an Achilles heel for assembly of replication-transcription machinery as well as down-stream viral replication. In the search for potential antiviral drugs that target Mpro, a series of cembranoid diterpenes from the biologically active soft-coral genus Sarcophyton have been examined as SARS-CoV-2 Mpro inhibitors. Over 360 metabolites from the genus were screened using molecular docking calculations. Promising diterpenes were further characterized by molecular dynamics (MD) simulations based on molecular mechanics-generalized Born surface area (MM-GBSA) binding energy calculations. According to in silico calculations, five cembranoid diterpenes manifested adequate binding affinities as Mpro inhibitors with ΔGbinding < −33.0 kcal/mol. Binding energy and structural analyses of the most potent Sarcophyton inhibitor, bislatumlide A (340), was compared to darunavir, an HIV protease inhibitor that has been recently subjected to clinical-trial as an anti-COVID-19 drug. In silico analysis indicates that 340 has a higher binding affinity against Mpro than darunavir with ΔGbinding values of −43.8 and −34.8 kcal/mol, respectively throughout 100 ns MD simulations. Drug-likeness calculations revealed robust bioavailability and protein-protein interactions were identified for 340; biochemical signaling genes included ACE, MAPK14 and ESR1 as identified based on a STRING database. Pathway enrichment analysis combined with reactome mining revealed that 340 has the capability to re-modulate the p38 MAPK pathway hijacked by SARS-CoV-2 and antagonize injurious effects. These findings justify further in vivo and in vitro testing of 340 as an antiviral agent against SARS-CoV-2.
- Published
- 2021
- Full Text
- View/download PDF
41. Bee Pollen: Current Status and Therapeutic Potential
- Author
-
Shaden A. M. Khalifa, Mohamed H. Elashal, Nermeen Yosri, Ming Du, Syed G. Musharraf, Lutfun Nahar, Satyajit D. Sarker, Zhiming Guo, Wei Cao, Xiaobo Zou, Aida A. Abd El-Wahed, Jianbo Xiao, Hany A. Omar, Mohamed-Elamir F. Hegazy, and Hesham R. El-Seedi
- Subjects
bee pollen ,metabolic syndromes ,human health ,functional food ,nutritional value ,Nutrition. Foods and food supply ,TX341-641 - Abstract
Bee pollen is a combination of plant pollen and honeybee secretions and nectar. The Bible and ancient Egyptian texts are documented proof of its use in public health. It is considered a gold mine of nutrition due to its active components that have significant health and medicinal properties. Bee pollen contains bioactive compounds including proteins, amino acids, lipids, carbohydrates, minerals, vitamins, and polyphenols. The vital components of bee pollen enhance different bodily functions and offer protection against many diseases. It is generally marketed as a functional food with affordable and inexpensive prices with promising future industrial potentials. This review highlights the dietary properties of bee pollen and its influence on human health, and its applications in the food industry.
- Published
- 2021
- Full Text
- View/download PDF
42. Cyanobacteria—From the Oceans to the Potential Biotechnological and Biomedical Applications
- Author
-
Shaden A. M. Khalifa, Eslam S. Shedid, Essa M. Saied, Amir Reza Jassbi, Fatemeh H. Jamebozorgi, Mostafa E. Rateb, Ming Du, Mohamed M. Abdel-Daim, Guo-Yin Kai, Montaser A. M. Al-Hammady, Jianbo Xiao, Zhiming Guo, and Hesham R. El-Seedi
- Subjects
cyanobacteria ,clinical trials ,antioxidant ,antiviral ,COVID-19 ,dietary supplements ,Biology (General) ,QH301-705.5 - Abstract
Cyanobacteria are photosynthetic prokaryotic organisms which represent a significant source of novel, bioactive, secondary metabolites, and they are also considered an abundant source of bioactive compounds/drugs, such as dolastatin, cryptophycin 1, curacin toyocamycin, phytoalexin, cyanovirin-N and phycocyanin. Some of these compounds have displayed promising results in successful Phase I, II, III and IV clinical trials. Additionally, the cyanobacterial compounds applied to medical research have demonstrated an exciting future with great potential to be developed into new medicines. Most of these compounds have exhibited strong pharmacological activities, including neurotoxicity, cytotoxicity and antiviral activity against HCMV, HSV-1, HHV-6 and HIV-1, so these metabolites could be promising candidates for COVID-19 treatment. Therefore, the effective large-scale production of natural marine products through synthesis is important for resolving the existing issues associated with chemical isolation, including small yields, and may be necessary to better investigate their biological activities. Herein, we highlight the total synthesized and stereochemical determinations of the cyanobacterial bioactive compounds. Furthermore, this review primarily focuses on the biotechnological applications of cyanobacteria, including applications as cosmetics, food supplements, and the nanobiotechnological applications of cyanobacterial bioactive compounds in potential medicinal applications for various human diseases are discussed.
- Published
- 2021
- Full Text
- View/download PDF
43. Wasp Venom Biochemical Components and Their Potential in Biological Applications and Nanotechnological Interventions
- Author
-
Aida Abd El-Wahed, Nermeen Yosri, Hanem H. Sakr, Ming Du, Ahmed F. M. Algethami, Chao Zhao, Ahmed H. Abdelazeem, Haroon Elrasheid Tahir, Saad H. D. Masry, Mohamed M. Abdel-Daim, Syed Ghulam Musharraf, Islam El-Garawani, Guoyin Kai, Yahya Al Naggar, Shaden A. M. Khalifa, and Hesham R. El-Seedi
- Subjects
wasp’s venom ,biomedical properties ,bioactive compounds ,nanotechnology applications ,allergy ,Medicine - Abstract
Wasps, members of the order Hymenoptera, are distributed in different parts of the world, including Brazil, Thailand, Japan, Korea, and Argentina. The lifestyles of the wasps are solitary and social. Social wasps use venom as a defensive measure to protect their colonies, whereas solitary wasps use their venom to capture prey. Chemically, wasp venom possesses a wide variety of enzymes, proteins, peptides, volatile compounds, and bioactive constituents, which include phospholipase A2, antigen 5, mastoparan, and decoralin. The bioactive constituents have anticancer, antimicrobial, and anti-inflammatory effects. However, the limited quantities of wasp venom and the scarcity of advanced strategies for the synthesis of wasp venom’s bioactive compounds remain a challenge facing the effective usage of wasp venom. Solid-phase peptide synthesis is currently used to prepare wasp venom peptides and their analogs such as mastoparan, anoplin, decoralin, polybia-CP, and polydim-I. The goal of the current review is to highlight the medicinal value of the wasp venom compounds, as well as limitations and possibilities. Wasp venom could be a potential and novel natural source to develop innovative pharmaceuticals and new agents for drug discovery.
- Published
- 2021
- Full Text
- View/download PDF
44. The Ameliorative Role of Acacia senegal Gum against the Oxidative Stress and Genotoxicity Induced by the Radiographic Contrast Medium (Ioxitalamate) in Albino Rats
- Author
-
Islam El-Garawani, Sobhy Hassab El-Nabi, Ahmed El Kattan, Azza Sallam, Sabha Elballat, Shaimaa Abou-Ghanima, Islam H. El Azab, Hesham R. El-Seedi, Shaden A. M. Khalifa, and Sawsan El-Shamy
- Subjects
Arabic gum ,DNA damage ,genotoxicity ,Ioxitalamate ,oxidative stress ,LC-MS-MS ,Therapeutics. Pharmacology ,RM1-950 - Abstract
Arabic gum (Acacia senegal, AG) is proven effective antioxidant and cytoprotective agent. The present study was designed to test this notion by investigating the possible role of AG against the radiographic contrast medium (Ioxitalamate, Telebrix-35®, TBX)-induced oxidative stress and genotoxicity. Albino rats were divided into four groups and supplied with either; distilled water, daily 10% (w/v) AG, an intravenous dose of TBX (1600 mg I/kg b.wt) and co-administration of TBX and AG. Rats were sacrificed and blood samples were collected to assess the genotoxicity employing the peripheral blood leucocytes fluorescent double staining; namely the acridine orange/ethidium bromide (AO/EB) staining and alkaline comet assay. Further, chromosomal analyses were done in bone marrow cells. Serum urea and creatinine levels, in addition to malondialdehyde (MDA), nitric oxide (NO), catalase (CAT) and glutathione (GSH) levels in kidney tissues were measured. Liquid chromatography-mass spectrophotometry (LC-MS-MS) was performed to identify the chemical composition of AG extract. Kidney functions, single/double-stranded DNA damage, chromosomal aberrations, mitotic index, MDA and NO levels were significantly (p < 0.001) increased in TBX-treated group compared to the control and AG-treated one. Meanwhile, CAT and GSH activities were significantly diminished and the AG supplementation significantly (p < 0.001) ameliorated these effects compared with the control and AG-treated groups. Five compounds have been identified using GNPS networking including 7,3′,4′-Trihydroxyisoflavone, Noscapine, Tetrahydropapaveroline, Costunolide, Hesperidin. In conclusion, results of the present study suggest that AG exerted a protective role against TBX-induced oxidative stress and genotoxicity which may be attributed to the active metabolites in the gum.
- Published
- 2021
- Full Text
- View/download PDF
45. RETRACTED ARTICLE: A Zinc Morpholine Complex Prevents HCl/Ethanol-Induced Gastric Ulcers in a Rat Model
- Author
-
Suzy M. Salama, Nura Suleiman Gwaram, Ahmed S. AlRashdi, Shaden A. M. Khalifa, Mahmood A. Abdulla, Hapipah M. Ali, and Hesham R. El-Seedi
- Subjects
Medicine ,Science - Abstract
Abstract Zinc is a naturally occurring element with roles in wound healing and rescuing tissue integrity, particularly in the gastrointestinal system, where it can be detected in the mucosal and submucosal layers. Zinc chelates are known to have beneficial effects on the gastrointestinal mucosa and in cases of gastric ulcer. We synthesized complexes of zinc featuring a heterocyclic amine binding amino acids then investigated their ability to enhance the gastric self-repair. Zinc-morpholine complex, Zn(L)SCN, namely showed strong free-radical scavenging, promotion of the DNA and RNA polymerases reconstruction and suppression of cell damage. The complex’s mode of action is proposed to involve hydrogen bond formation via its bis(thiocyanato-k)zinc moiety. Zn(L)SCN complex had potent effects on gastric enzymatic activity both in vitro and in vivo. The complex disrupted the ulcerative process as demonstrated by changes in the intermediate metabolites of the oxidative pathway – specifically, reduction in the MDA levels and elevation of reduced glutathione together with an attenuation of oxidative DNA damage. Additionally, Zn(L)SCN restored the gastric mucosa, inhibited the production of pro-inflammatory cytokines (IL-6, TNF and the caspases), and preserved the gastric mucous balance. Zn(L)SCN thus exhibited anti-oxidative, anti-inflammatory and anti-apoptotic activities, all of which have cytoprotective effects on the gastric lining.
- Published
- 2016
- Full Text
- View/download PDF
46. In Vitro Antimicrobial and Antibiofilm Properties and Bioaccessibility after Oral Digestion of Chemically Characterized Extracts Obtained from Cistus x incanus L., Scutellaria lateriflora L., and Their Combination
- Author
-
Hammad Ullah, Alessandro Di Minno, Anna De Filippis, Eduardo Sommella, Daniele Giuseppe Buccato, Lorenza Francesca De Lellis, Hesham R. El-Seedi, Shaden A. M. Khalifa, Roberto Piccinocchi, Massimiliano Galdiero, Pietro Campiglia, Maria Daglia, Ullah, Hammad, DI MINNO, Alessandro, De Filippis, Anna, Sommella, Eduardo Maria, Buccato, DANIELE GIUSEPPE, DE LELLIS, LORENZA FRANCESCA, El-Seedi, Hesham R., Khalifa, Shaden A. M., Piccinocchi, Roberto, Galdiero, Massimiliano, Campiglia, Pietro, and Daglia, Maria
- Subjects
Health (social science) ,Cistus × incanus L ,Scutellaria lateriflora L ,Plant Science ,gingiviti ,Porphyromonas gingivali ,Odontologi ,Health Professions (miscellaneous) ,Microbiology ,Dentistry ,oral health ,gingivitis ,Porphyromonas gingivalis ,Food Science ,Cistus x incanus L - Abstract
Periodontal diseases are oral inflammatory diseases ranging from gingivitis to chronic periodontitis. Porphyromonas gingivalis is one of the major pathogens responsible for severe and chronic periodontitis. Plant extracts with antimicrobial activity could be considered possible alternatives to chlorhexidine, an antiseptic substance used in oral hygiene thatcan cause bacteria resistance. Here, two commercial extracts obtained from Cistus × incanus L. and Scutellaria lateriflora L. were chemically characterized usingUltra-High-Performance Liquid Chromatography (UHPLC) coupled with a Q-Exactive Hybrid Quadrupole Orbitrap Mass Spectrometer. The extracts were studied for their bioaccessibility after simulated in vitro oral digestion, their antimicrobial activity against P. gingivalis, their protective effects against cellular invasion by P. gingivalis, and their antibiofilm activity. The extracts were found to contain very complex mixtures of polyphenols, which were quite stable after in vitro simulated oral digestion and demonstrated mild, dose-dependent inhibitory activity against P. gingivalis growth. This activity increased with the combination of the two extracts. Moreover, the combination of the extracts induced a reduction in P. gingivalis HaCaT invasiveness, and the reduction in biofilm came to around 80%. In conclusion, a combination of C. incanus and S. lateriflora showed promising effects useful in the treatment of gingivitis.
- Published
- 2023
47. Arctium lappa (Burdock) : Insights from ethnopharmacology potential, chemical constituents, clinical studies, pharmacological utility and nanomedicine
- Author
-
Nermeen, Yosri, Sultan M, Alsharif, Jianbo, Xiao, Syed G, Musharraf, Chao, Zhao, Aamer, Saeed, Ruichang, Gao, Noha S, Said, Alessandro, Di Minno, Maria, Daglia, Zhiming, Guo, Shaden A M, Khalifa, and Hesham R, El-Seedi
- Subjects
Pharmacology ,Clinical trials ,Nanomedicine ,Preclinical trials ,Biochemistry and Molecular Biology ,General Medicine ,Pharmacology and Toxicology ,Farmakologi och toxikologi ,Folk medicine ,Biokemi och molekylärbiologi ,Bioactive constituents - Abstract
Arctium lappa L. is a medicinal edible homologous plant, commonly known as burdock or bardana, which belongs to the Asteraceae family. It is widely distributed throughout Northern Asia, Europe, and North America and has been utilized for hundreds of years. The roots, fruits, seeds, and leaves of A. lappa have been extensively used in traditional Chinese Medicine (TCM). A. lappa has attracted a great deal of attention due to its possession of highly recognized bioactive metabolites with significant therapeutic potential. Numerous pharmacological effects have been demonstrated in vitro and in vivo by A. lappa and its bioactive metabolites, including antimicrobial, anti-obesity, antioxidant, anticancer, anti-inflammatory, anti-diabetic, anti-allergic, antiviral, gastroprotective, hepatoprotective, and neuroprotective activities. Additionally, A. lappa has demonstrated considerable clinical efficacies and valuable applications in nanomedicine. Collectively, this review covers the properties of A. lappa and its bioactive metabolites, ethnopharmacology aspects, pharmacological effects, clinical trials, and applications in the field of nanomedicine. Hence, a significant attention should be paid to clinical trials and industrial applications of this plant with particular emphasis, on drug discovery and nanotechnology.
- Published
- 2023
48. Antioxidant, Anti-Inflammatory, and Anti-Apoptotic Effects of Azolla pinnata Ethanolic Extract against Lead-Induced Hepatotoxicity in Rats
- Author
-
Ahmed Shaaban Abd Elrasoul, Ahmed Abdelmoniem Mousa, Sahar Hassan Orabi, Mostafa Abd El-Gaber Mohamed, Shaban M. Gad-Allah, Rafa Almeer, Mohamed M. Abdel-Daim, Shaden A. M. Khalifa, Hesham R. El-Seedi, and Mabrouk Attia Abd Eldaim
- Subjects
lead acetate ,hepatotoxicity ,Azolla pinnata ,caspase 3 ,NMR ,LC–MS-MS ,Therapeutics. Pharmacology ,RM1-950 - Abstract
The current study investigated the protective potential of Azolla pinnate ethanolic extract (APE) against lead-induced hepatotoxicity in rats. Sixty male Wistar albino rats were randomly allocated into six groups (n = 10). The control group was orally administrated with saline. The second group received lead acetate (100 mg/kg body weight (BW) orally for 60 days). The third group was fed with APE (10 mg/kg BW orally for 60 days). The fourth group was administrated with lead acetate like the second group and APE like the third group, concomitantly, for 60 days. The fifth group was administrated with APE like the third group for 30 days, then orally administrated with the lead acetate like the second group for another 30 days. The sixth group was administrated with lead acetate like the second group for 30 days, then with APE like the third group for a further 30 days. Phytochemical analysis of APE indicated the presence of peonidin 3-O-glucoside cation, vitexin, rutin, thiamine, choline, tamarixetin, hyperoside, astragalin, and quercetin. The latter has been elucidated using one- and two-dimensional nuclear magnetic resonance (1D and 2D NMR) and liquid chromatography–mass spectrometry (LC–MS-MS). Lead acetate increased the serum levels of alanine and aspartate aminotransferases and that of urea, creatinine, tumor necrosis factor alpha, and interleukin 1β, hepatic tissue malondialdehyde contents, and caspase 3 protein expression, as well as altering the hepatic tissue architecture. However, it decreased the serum levels of interleukin 10 and glutathione (GSH) contents, and the activities of catalase and superoxide dismutase in hepatic tissue. In contrast, the administration of APE ameliorated the lead-induced alterations in liver function and structure, exemplifying the benefits of Azolla’s phytochemical contents. Collectively, A. pinnate extract is a protective and curative agent against lead-induced hepatotoxicity via its antioxidant, anti-inflammatory, and anti-apoptotic impacts.
- Published
- 2020
- Full Text
- View/download PDF
49. Alpha-Glucosidase Inhibitory Effect of Psychotria malayana Jack Leaf: A Rapid Analysis Using Infrared Fingerprinting
- Author
-
Tanzina Sharmin Nipun, Alfi Khatib, Qamar Uddin Ahmed, Irna Elina Redzwan, Zalikha Ibrahim, Al’aina Yuhainis Firus Khan, Riesta Primaharinastiti, Shaden A. M. Khalifa, and Hesham R. El-Seedi
- Subjects
Psychotria malayana ,α-glucosidase inhibition ,orthogonal partial least square ,fingerprint ,infrared spectroscopy analysis ,Organic chemistry ,QD241-441 - Abstract
The plant Psychotria malayana Jack belongs to the Rubiaceae family and is known in Malaysia as “meroyan sakat/salung”. A rapid analytical technique to facilitate the evaluation of the P. malayana leaves’ quality has not been well-established yet. This work aimed therefore to develop a validated analytical technique in order to predict the alpha-glucosidase inhibitory action (AGI) of P. malayana leaves, applying a Fourier Transform Infrared Spectroscopy (FTIR) fingerprint and utilizing an orthogonal partial least square (OPLS). The dried leaf extracts were prepared by sonication of different ratios of methanol-water solvent (0, 25, 50, 75, and 100% v/v) prior to the assessment of alpha-glucosidase inhibition (AGI) and the following infrared spectroscopy. The correlation between the biological activity and the spectral data was evaluated using multivariate data analysis (MVDA). The 100% methanol extract possessed the highest inhibitory activity against the alpha-glucosidase (IC50 2.83 ± 0.32 μg/mL). Different bioactive functional groups, including hydroxyl (O-H), alkenyl (C=C), methylene (C-H), carbonyl (C=O), and secondary amine (N-H) groups, were detected by the multivariate analysis. These functional groups actively induced the alpha-glucosidase inhibition effect. This finding demonstrated the spectrum profile of the FTIR for the natural herb P. malayana Jack, further confirming its medicinal value. The developed validated model can be used to predict the AGI of P. malayana, which will be useful as a tool in the plant’s quality control.
- Published
- 2020
- Full Text
- View/download PDF
50. Anti-Inflammatory Principles from Tamarix aphylla L.: A Bioassay-Guided Fractionation Study
- Author
-
Adel S. Gadallah, Mujeeb-ur-Rehman, Atta-ur-Rahman, Sammer Yousuf, Atia-tul-Wahab, Almas Jabeen, Mahmoud M. Swilam, Shaden A. M. Khalifa, Hesham R. El-Seedi, and M. Iqbal Choudhary
- Subjects
Tamarix aphylla L. ,immunomodulatory ,reactive oxygen species (ROS) ,nitric oxide (NO) ,tumor necrosis factor (TNF-α) ,T-cell proliferation ,Organic chemistry ,QD241-441 - Abstract
Natural products have served as primary remedies since ancient times due to their cultural acceptance and outstanding biodiversity. To investigate whether Tamarix aphylla L. modulates an inflammatory process, we carried out bioassay-guided isolation where the extracts and isolated compounds were tested for their modulatory effects on several inflammatory indicators, such as nitric oxide (NO), reactive oxygen species (ROS), proinflammatory cytokine; tumour necrosis factor (TNF-α), as well as the proliferation of the lymphocyte T-cells. The aqueous ethanolic extract of the plant inhibited the intracellular ROS production, NO generation, and T-cell proliferation. The aqueous ethanolic crude extract was partitioned by liquid-liquid fractionation using n-hexane (n-C6H6), dichloromethane (DCM), ethyl acetate (EtOAc), n-butanol (n-BuOH), and water (H2O). The DCM and n-BuOH extracts showed the highest activity against most inflammatory indicators and were further purified to obtain compounds 1–4. The structures of 3,5-dihydroxy-4’,7-dimethoxyflavone (1) and 3,5-dihydroxy-4-methoxybenzoic acid methyl ester (2) from the DCM extracts; and kaempferol (3), and 3-hydroxy-4-methoxy-(E)-cinnamic acid (4) from the n-BuOH extract were elucidated by different spectroscopic tools, including MS, NMR, UV, and IR. Compound 2 inhibited the production of ROS and TNF-α, whereas compound 3 showed inhibitory activity against all the tested mediators. A better understanding of the potential aspect of Tamarix aphylla L. derivatives as anti-inflammatory agents could open the door for the development of advanced anti-inflammatory entities.
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.