1. The manufacture, optical properties, and mechanical aspects of europium-doped borate glasses
- Author
-
Gharam A. Alharshan, A. M. A. Mahmoud, Nasra M. Ebrahem, Ragab A. Elsad, Shaaban M. Shaaban, Mohamed Elsafi, and Shimaa Ali Said
- Subjects
Micro-hardness ,Young’s modulus ,Volume energy loss function (VELF) ,Eu3+ ,Molar volume ,Medicine ,Science - Abstract
Abstract An investigation into the optical and mechanical properties of a novel borate glasses with the chemical composition of 70 B2O3-10 Li2O-10ZnO-5Bi2O3-5CaO-xEu2O3 was conducted. The glassy specimens of Eu3+-doped borate were prepared by the melting-quenching technique. An enhanced density from 3.0860 to 3.2176 g cm−3 and reduced molar volume from 29.27819 to 29.17447 (cm3 mol−1) are the outcome of increasing the concentration of Eu3+ in glasses. Plotting the extinction coefficient, dielectric constant (ε1, ε2), and refractive index (n) against wavelength reveals that they all rise as level of Eu3+ elements in the glass lattice increases. An increase in Eu3+ concentration results in a decrease in both the volume (VELF) and surface (SELF) energy loss functions. Also, all elastic-mechanical moduli (such as Young’s, Bulk, Shear, and Elongation) increase with increasing the quantity of Eu3+ ions in the glass lattice. The Young’s modulus (Y, GPa) of the glassy specimens was 34.512, 36.089, 36.504, 36.730 and 37.114 GPa for x equal 0, 0.25, 0.5, 0.75 and 1 mol ratio in the glass system, and coded by Eu-0.0, Eu-0.25, Eu-0.5, Eu-0.75 and Eu-1.0, respectively. Growing Eu2O3 levels resulted in an increase in Micro-Hardness from 2.050 to 2.146 GPa. Poisson’s ratio values for Eu-0.0, Eu-0.250, Eu-0.5, Eu-0.75 and Eu-1.0 were 0.273, 0.275, 0.277, 0.277 and 0.278, respectively.
- Published
- 2024
- Full Text
- View/download PDF