1. Identification of cognitive load-dependent activation patterns using working memory task-based fMRI at various levels of difficulty
- Author
-
Seyedeh Naghmeh Miri Ashtiani and Mohammad Reza Daliri
- Subjects
Medicine ,Science - Abstract
Abstract Working memory, which is regarded as the foundation of cognitive processes, is a system that stores, processes, and manipulates information in short intervals of time that are actually needed for daily functioning. This study aimed to assess the brain activity of healthy controls (HC) while performing the N-back task, which is one of the most popularly used tests for evaluating working memory along with functional magnetic resonance imaging (fMRI). In this regard, we collected fMRI data from right-handed individuals in a 3.0 T scanner during the Persian version of the visual variant N-back task performance with three levels of complexity varied throughout the experiment (1, 2, and 3-back conditions) to increase the cognitive demands. The statistical parametric mapping (SPM12) software was used to analyze fMRI data for the identification of cognitive load-dependent activation patterns based on contrast images obtained from different levels of task difficulty. Our findings showed that as cognitive complexity increased, the number of significant activation clusters and cluster extent increased in several areas distributed in the cerebellum, frontoparietal lobes, insula, SMA, and lenticular nucleus, the majority of which are recognized for their role in working memory. Furthermore, deactivation patterns during 1-, 2-, and 3-back vs. 0-back contrasts revealed significant clusters in brain regions that are mostly described as being part of the default mode network (DMN). Based on previous research, our results supported the recognized involvement of the mentioned cortical and subcortical areas in various types or levels of N-back tasks. This study found that altering activation patterns by increasing task difficulty could aid in evaluating the various stages of cognitive dysfunction in many brain diseases such as multiple sclerosis (MS) and Alzheimer's disease by comparing controls in future studies to apply early appropriate treatment strategies.
- Published
- 2023
- Full Text
- View/download PDF