1. Metabolic diversity in commensal protists regulates intestinal immunity and trans-kingdom competition.
- Author
-
Gerrick ER, Zlitni S, West PT, Carter MM, Mechler CM, Olm MR, Caffrey EB, Li JA, Higginbottom SK, Severyn CJ, Kracke F, Spormann AM, Sonnenburg JL, Bhatt AS, and Howitt MR
- Subjects
- Animals, Humans, Mice, Dietary Fiber, Intestine, Small metabolism, Dietary Carbohydrates metabolism, Biodiversity, Gastrointestinal Microbiome, Polysaccharides metabolism, Parabasalidea metabolism
- Abstract
The microbiota influences intestinal health and physiology, yet the contributions of commensal protists to the gut environment have been largely overlooked. Here, we discover human- and rodent-associated parabasalid protists, revealing substantial diversity and prevalence in nonindustrialized human populations. Genomic and metabolomic analyses of murine parabasalids from the genus Tritrichomonas revealed species-level differences in excretion of the metabolite succinate, which results in distinct small intestinal immune responses. Metabolic differences between Tritrichomonas species also determine their ecological niche within the microbiota. By manipulating dietary fibers and developing in vitro protist culture, we show that different Tritrichomonas species prefer dietary polysaccharides or mucus glycans. These polysaccharide preferences drive trans-kingdom competition with specific commensal bacteria, which affects intestinal immunity in a diet-dependent manner. Our findings reveal unappreciated diversity in commensal parabasalids, elucidate differences in commensal protist metabolism, and suggest how dietary interventions could regulate their impact on gut health., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2023 Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF