1. Quantum nonlocal modulation cancellation with distributed clocks
- Author
-
Chapman, Stephen D., Seshadri, Suparna, Lukens, Joseph M., Peters, Nicholas A., McKinney, Jason D., Weiner, Andrew M., and Lu, Hsuan-Hao
- Subjects
Quantum Physics ,Physics - Optics - Abstract
We demonstrate nonlocal modulation of entangled photons with truly distributed RF clocks. Leveraging a custom radio-over-fiber (RFoF) system characterized via classical spectral interference, we validate its effectiveness for quantum networking by multiplexing the RFoF clock with one photon from a frequency-bin-entangled pair and distributing the coexisting quantum-classical signals over fiber. Phase modulation of the two photons reveals nonlocal correlations in excellent agreement with theory: in-phase modulation produces additional sidebands in the joint spectral intensity, while out-of-phase modulation is nonlocally canceled. Our simple, feedback-free design attains sub-picosecond synchronization -- namely, drift less than $\sim$0.5 ps in a 5.5 km fiber over 30 min (fractionally only $\sim$2$\times$10$^{-8}$ of the total fiber delay) -- and should facilitate frequency-encoded quantum networking protocols such as high-dimensional quantum key distribution and entanglement swapping, unlocking frequency-bin qubits for practical quantum communications in deployed metropolitan-scale networks.
- Published
- 2024