1. Genetically encoded discovery of perfluoroaryl macrocycles that bind to albumin and exhibit extended circulation in vivo
- Author
-
Jeffrey Y. K. Wong, Arunika I. Ekanayake, Serhii Kharchenko, Steven E. Kirberger, Ryan Qiu, Payam Kelich, Susmita Sarkar, Jiaqian Li, Kleinberg X. Fernandez, Edgar R. Alvizo-Paez, Jiayuan Miao, Shiva Kalhor-Monfared, J. Dwyer John, Hongsuk Kang, Hwanho Choi, John M. Nuss, John C. Vederas, Yu-Shan Lin, Matthew S. Macauley, Lela Vukovic, William C. K. Pomerantz, and Ratmir Derda
- Subjects
Science - Abstract
Abstract Peptide-based therapeutics have gained attention as promising therapeutic modalities, however, their prevalent drawback is poor circulation half-life in vivo. In this paper, we report the selection of albumin-binding macrocyclic peptides from genetically encoded libraries of peptides modified by perfluoroaryl-cysteine SNAr chemistry, with decafluoro-diphenylsulfone (DFS). Testing of the binding of the selected peptides to albumin identified SICRFFC as the lead sequence. We replaced DFS with isosteric pentafluorophenyl sulfide (PFS) and the PFS-SICRFFCGG exhibited K D = 4–6 µM towards human serum albumin. When injected in mice, the concentration of the PFS-SICRFFCGG in plasma was indistinguishable from the reference peptide, SA-21. More importantly, a conjugate of PFS-SICRFFCGG and peptide apelin-17 analogue (N3-PEG6-NMe17A2) showed retention in circulation similar to SA-21; in contrast, apelin-17 analogue was cleared from the circulation after 2 min. The PFS-SICRFFC is the smallest known peptide macrocycle with a significant affinity for human albumin and substantial in vivo circulation half-life. It is a productive starting point for future development of compact macrocycles with extended half-life in vivo.
- Published
- 2023
- Full Text
- View/download PDF