1. Characterizing Nanoparticle Mass Distributions Using Charge-Independent Nanoresonator Mass Spectrometry
- Author
-
Szu-Hsueh Lai, Adrien Reynaud, Ning-Ning Zhang, Minjeong Kwak, Bogdan Vysotskyi, Sergio Dominguez-Medina, Thomas Fortin, Kavya Clement, Martial Defoort, Tae Geol Lee, Kun Liu, Sébastien Hentz, Christophe D. Masselon, Department of Chemistry, National Cheng Kung University (NCKU), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Korea Research Institute of Standards and Science [Daejon] (KRISS), KRISS, Circuits, Devices and System Integration (TIMA-CDSI), Techniques de l'Informatique et de la Microélectronique pour l'Architecture des systèmes intégrés (TIMA), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)
- Subjects
General Energy ,PACS 8542 ,NMR-derived mass of grafted PEG on NTPs ,information on aerodynamic focusing ,repeatability study data ,NTP mass measured by ICP-MS ,Physical and Theoretical Chemistry ,NEMS-MS architecture and NEMS particle sensor ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,NTP mass calculation ,silica density characterization ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials - Abstract
International audience; Due to their unique size-dependent properties, nanoparticles (NPs) have many industrial and biomedical applications. Although NPs are generally characterized based on the size or morphological analysis, the mass of whole particles can be of interest as it represents the total amount of material in the particle regardless of shape, density, or elemental composition. In addition, the shape of nonspherical NPs presents a conceptual challenge, making them difficult to characterize in terms of size or morphological characteristics. Here, we used a novel nano-electro-mechanical sensor mass spectrometry (NEMS-MS) technology to characterize the mass distributions of various NPs. For standard spherical gold NPs, mass distributions covered the range from ∼5 to 250 MDa (8 to ∼415 attograms). Applying the density of gold (19.3 g/cm3) and assuming perfect sphericity, these mass measurements were used to compute the equivalent diameters of the NPs. The sizes determined agreed well with the transmission electron microscopy (TEM) imaging data, with deviations of ∼1.4%. Subsequently, we analyzed the mass distribution of ∼50 nm synthetic silicon dioxide particles, having determined their size by electron microscopy (SEM and TEM). Their estimated density was in line with the literature values derived from differential mobility analyzer and aerosol particle mass analyzer data. Finally, we examined the intact gold nanotetrapods and obtained a mass distribution revealing their controlled polydispersity. The presence of polyethylene glycol coating was also quantified and corroborated nuclear magnetic resonance observations. Our results demonstrate the potential of NEMS-MS-based measurements as an effective means to characterize NPs, whatever their composition, shape or density.
- Published
- 2022