128 results on '"Sequeira, Ana M. M."'
Search Results
2. Links between the three-dimensional movements of whale sharks (Rhincodon typus) and the bio-physical environment off a coral reef
- Author
-
D’Antonio, Ben, Ferreira, Luciana C., Meekan, Mark, Thomson, Paul G., Lieber, Lilian, Virtue, Patti, Power, Chloe, Pattiaratchi, Charitha B., Brierley, Andrew S., Sequeira, Ana M. M., and Thums, Michele
- Published
- 2024
- Full Text
- View/download PDF
3. Big data analyses reveal patterns and drivers of the movements of southern elephant seals
- Author
-
Rodríguez, Jorge P., Fernández-Gracia, Juan, Thums, Michele, Hindell, Mark A., Sequeira, Ana M. M., Meekan, Mark G., Costa, Daniel P., Guinet, Christophe, Harcourt, Robert G., McMahon, Clive R., Muelbert, Monica, Duarte, Carlos M., and Eguíluz, Víctor M.
- Subjects
Quantitative Biology - Quantitative Methods ,Physics - Biological Physics ,Physics - Data Analysis, Statistics and Probability ,Quantitative Biology - Populations and Evolution - Abstract
The growing number of large databases of animal tracking provides an opportunity for analyses of movement patterns at the scales of populations and even species. We used analytical approaches, developed to cope with big data, that require no a priori assumptions about the behaviour of the target agents, to analyse a pooled tracking dataset of 272 elephant seals (Mirounga leonina) in the Southern Ocean, that was comprised of >500,000 location estimates collected over more than a decade. Our analyses showed that the displacements of these seals were described by a truncated power law distribution across several spatial and temporal scales, with a clear signature of directed movement. This pattern was evident when analysing the aggregated tracks despite a wide diversity of individual trajectories. We also identified marine provinces that described the migratory and foraging habitats of these seals. Our analysis provides evidence for the presence of intrinsic drivers of movement, such as memory, that cannot be detected using common models of movement behaviour. These results highlight the potential for big data techniques to provide new insights into movement behaviour when applied to large datasets of animal tracking., Comment: 18 pages, 5 figures, 6 supplementary figures
- Published
- 2018
- Full Text
- View/download PDF
4. Bayesian Learning of Biodiversity Models Using Repeated Observations
- Author
-
Sequeira, Ana M. M., Caley, M. Julian, Mellin, Camille, Mengersen, Kerrie L., Morel, Jean-Michel, Editor-in-Chief, Teissier, Bernard, Editor-in-Chief, Baur, Karin, Advisory Editor, Brion, Michel, Advisory Editor, De Lellis, Camillo, Advisory Editor, Figalli, Alessio, Advisory Editor, Huber, Annette, Advisory Editor, Khoshnevisan, Davar, Advisory Editor, Kontoyiannis, Ioannis, Advisory Editor, Kunoth, Angela, Advisory Editor, Mézard, Ariane, Advisory Editor, Podolskij, Mark, Advisory Editor, Serfaty, Sylvia, Advisory Editor, Vezzosi, Gabriele, Advisory Editor, Wienhard, Anna, Advisory Editor, Mengersen, Kerrie L., editor, Pudlo, Pierre, editor, and Robert, Christian P., editor
- Published
- 2020
- Full Text
- View/download PDF
5. Reply to: Shark mortality cannot be assessed by fishery overlap alone
- Author
-
Queiroz, Nuno, Humphries, Nicolas E., Couto, Ana, Vedor, Marisa, da Costa, Ivo, Sequeira, Ana M. M., Mucientes, Gonzalo, Santos, António M., Abascal, Francisco J., Abercrombie, Debra L., Abrantes, Katya, Acuña-Marrero, David, Afonso, André S., Afonso, Pedro, Anders, Darrell, Araujo, Gonzalo, Arauz, Randall, Bach, Pascal, Barnett, Adam, Bernal, Diego, Berumen, Michael L., Lion, Sandra Bessudo, Bezerra, Natalia P. A., Blaison, Antonin V., Block, Barbara A., Bond, Mark E., Bonfil, Ramon, Bradford, Russell W., Braun, Camrin D., Brooks, Edward J., Brooks, Annabelle, Brown, Judith, Bruce, Barry D., Byrne, Michael E., Campana, Steven E., Carlisle, Aaron B., Chapman, Demian D., Chapple, Taylor K., Chisholm, John, Clarke, Christopher R., Clua, Eric G., Cochran, Jesse E. M., Crochelet, Estelle C., Dagorn, Laurent, Daly, Ryan, Cortés, Daniel Devia, Doyle, Thomas K., Drew, Michael, Duffy, Clinton A. J., Erikson, Thor, Espinoza, Eduardo, Ferreira, Luciana C., Ferretti, Francesco, Filmalter, John D., Fischer, G. Chris, Fitzpatrick, Richard, Fontes, Jorge, Forget, Fabien, Fowler, Mark, Francis, Malcolm P., Gallagher, Austin J., Gennari, Enrico, Goldsworthy, Simon D., Gollock, Matthew J., Green, Jonathan R., Gustafson, Johan A., Guttridge, Tristan L., Guzman, Hector M., Hammerschlag, Neil, Harman, Luke, Hazin, Fábio H. V., Heard, Matthew, Hearn, Alex R., Holdsworth, John C., Holmes, Bonnie J., Howey, Lucy A., Hoyos, Mauricio, Hueter, Robert E., Hussey, Nigel E., Huveneers, Charlie, Irion, Dylan T., Jacoby, David M. P., Jewell, Oliver J. D., Johnson, Ryan, Jordan, Lance K. B., Joyce, Warren, Keating Daly, Clare A., Ketchum, James T., Klimley, A. Peter, Kock, Alison A., Koen, Pieter, Ladino, Felipe, Lana, Fernanda O., Lea, James S. E., Llewellyn, Fiona, Lyon, Warrick S., MacDonnell, Anna, Macena, Bruno C. L., Marshall, Heather, McAllister, Jaime D., Meÿer, Michael A., Morris, John J., Nelson, Emily R., Papastamatiou, Yannis P., Peñaherrera-Palma, Cesar, Pierce, Simon J., Poisson, Francois, Quintero, Lina Maria, Richardson, Andrew J., Rogers, Paul J., Rohner, Christoph A., Rowat, David R. L., Samoilys, Melita, Semmens, Jayson M., Sheaves, Marcus, Shillinger, George, Shivji, Mahmood, Singh, Sarika, Skomal, Gregory B., Smale, Malcolm J., Snyders, Laurenne B., Soler, German, Soria, Marc, Stehfest, Kilian M., Thorrold, Simon R., Tolotti, Mariana T., Towner, Alison, Travassos, Paulo, Tyminski, John P., Vandeperre, Frederic, Vaudo, Jeremy J., Watanabe, Yuuki Y., Weber, Sam B., Wetherbee, Bradley M., White, Timothy D., Williams, Sean, Zárate, Patricia M., Harcourt, Robert, Hays, Graeme C., Meekan, Mark G., Thums, Michele, Irigoien, Xabier, Eguiluz, Victor M., Duarte, Carlos M., Sousa, Lara L., Simpson, Samantha J., Southall, Emily J., and Sims, David W.
- Published
- 2021
- Full Text
- View/download PDF
6. Reply to: Caution over the use of ecological big data for conservation
- Author
-
Queiroz, Nuno, Humphries, Nicolas E., Couto, Ana, Vedor, Marisa, da Costa, Ivo, Sequeira, Ana M. M., Mucientes, Gonzalo, Santos, António M., Abascal, Francisco J., Abercrombie, Debra L., Abrantes, Katya, Acuña-Marrero, David, Afonso, André S., Afonso, Pedro, Anders, Darrell, Araujo, Gonzalo, Arauz, Randall, Bach, Pascal, Barnett, Adam, Bernal, Diego, Berumen, Michael L., Lion, Sandra Bessudo, Bezerra, Natalia P. A., Blaison, Antonin V., Block, Barbara A., Bond, Mark E., Bonfil, Ramon, Braun, Camrin D., Brooks, Edward J., Brooks, Annabelle, Brown, Judith, Byrne, Michael E., Campana, Steven E., Carlisle, Aaron B., Chapman, Demian D., Chapple, Taylor K., Chisholm, John, Clarke, Christopher R., Clua, Eric G., Cochran, Jesse E. M., Crochelet, Estelle C., Dagorn, Laurent, Daly, Ryan, Cortés, Daniel Devia, Doyle, Thomas K., Drew, Michael, Duffy, Clinton A. J., Erikson, Thor, Espinoza, Eduardo, Ferreira, Luciana C., Ferretti, Francesco, Filmalter, John D., Fischer, G. Chris, Fitzpatrick, Richard, Fontes, Jorge, Forget, Fabien, Fowler, Mark, Francis, Malcolm P., Gallagher, Austin J., Gennari, Enrico, Goldsworthy, Simon D., Gollock, Matthew J., Green, Jonathan R., Gustafson, Johan A., Guttridge, Tristan L., Guzman, Hector M., Hammerschlag, Neil, Harman, Luke, Hazin, Fábio H. V., Heard, Matthew, Hearn, Alex R., Holdsworth, John C., Holmes, Bonnie J., Howey, Lucy A., Hoyos, Mauricio, Hueter, Robert E., Hussey, Nigel E., Huveneers, Charlie, Irion, Dylan T., Jacoby, David M. P., Jewell, Oliver J. D., Johnson, Ryan, Jordan, Lance K. B., Joyce, Warren, Keating Daly, Clare A., Ketchum, James T., Klimley, A. Peter, Kock, Alison A., Koen, Pieter, Ladino, Felipe, Lana, Fernanda O., Lea, James S. E., Llewellyn, Fiona, Lyon, Warrick S., MacDonnell, Anna, Macena, Bruno C. L., Marshall, Heather, McAllister, Jaime D., Meÿer, Michael A., Morris, John J., Nelson, Emily R., Papastamatiou, Yannis P., Peñaherrera-Palma, Cesar, Pierce, Simon J., Poisson, Francois, Quintero, Lina Maria, Richardson, Andrew J., Rogers, Paul J., Rohner, Christoph A., Rowat, David R. L., Samoilys, Melita, Semmens, Jayson M., Sheaves, Marcus, Shillinger, George, Shivji, Mahmood, Singh, Sarika, Skomal, Gregory B., Smale, Malcolm J., Snyders, Laurenne B., Soler, German, Soria, Marc, Stehfest, Kilian M., Thorrold, Simon R., Tolotti, Mariana T., Towner, Alison, Travassos, Paulo, Tyminski, John P., Vandeperre, Frederic, Vaudo, Jeremy J., Watanabe, Yuuki Y., Weber, Sam B., Wetherbee, Bradley M., White, Timothy D., Williams, Sean, Zárate, Patricia M., Harcourt, Robert, Hays, Graeme C., Meekan, Mark G., Thums, Michele, Irigoien, Xabier, Eguiluz, Victor M., Duarte, Carlos M., Sousa, Lara L., Simpson, Samantha J., Southall, Emily J., and Sims, David W.
- Published
- 2021
- Full Text
- View/download PDF
7. Whale Shark Movements and Migrations
- Author
-
Hearn, Alex R., primary, Green, Jonathan R., additional, Peñaherrera-Palma, César R., additional, Reynolds, Samantha, additional, Rohner, Christoph A., additional, Román, Marlon, additional, and Sequeira, Ana M. M., additional
- Published
- 2021
- Full Text
- View/download PDF
8. Outstanding Questions in Whale Shark Research and Conservation
- Author
-
Rowat, David, primary, Robinson, David P., additional, Dove, Alistair D. M., additional, Araujo, Gonzalo, additional, Clauss, Tonya, additional, Coco, Christopher, additional, Dearden, Philip, additional, Grace, Molly K., additional, Green, Jonathan R., additional, Hearn, Alex R., additional, Holmberg, Jason, additional, Hoopes, Lisa, additional, Matsumoto, Rui, additional, McClain, Craig R., additional, Meekan, Mark G., additional, Murakumo, Kiyomi, additional, Norman, Bradley M., additional, Nozu, Ryo, additional, Pardo, Sebástian A., additional, Peele, Emily E., additional, Peñaherrera-Palma, César R., additional, Perry, Cameron, additional, Prebble, Clare E. M., additional, Reynolds, Samantha, additional, Román, Marlon, additional, Rohner, Christoph A., additional, Sato, Keiichi, additional, Schmidt, Jennifer V., additional, Schreiber, Christian, additional, Sequeira, Ana M. M., additional, Womersley, Freya, additional, Yanagisawa, Makio, additional, Yopak, Kara E., additional, Ziegler, Jackie, additional, and Pierce, Simon J., additional
- Published
- 2021
- Full Text
- View/download PDF
9. The importance of migratory connectivity for global ocean policy
- Author
-
Dunn, Daniel C., Harrison, Autumn-Lynn, Curtice, Corrie, DeLand, Sarah, Donnelly, Ben, Fujioka, Ei, Heywood, Eleanor, Kot, Connie Y., Poulin, Sarah, Whitten, Meredith, Åkesson, Susanne, Alberini, Amalia, Appeltans, Ward, Arcos, José Manuel, Bailey, Helen, Ballance, Lisa T., Block, Barbara, Blondin, Hannah, Boustany, Andre M., Brenner, Jorge, Catry, Paulo, Cejudo, Daniel, Cleary, Jesse, Corkeron, Peter, Costa, Daniel P., Coyne, Michael, Crespo, Guillermo Ortuño, Davies, Tammy E., Dias, Maria P., Douvere, Fanny, Ferretti, Francesco, Formia, Angela, Freestone, David, Friedlaender, Ari S., Frisch-Nwakanma, Heidrun, Froján, Christopher Barrio, Gjerde, Kristina M., Glowka, Lyle, Godley, Brendan J., Gonzalez-Solis, Jacob, Granadeiro, José Pedro, Gunn, Vikki, Hashimoto, Yuriko, Hawkes, Lucy M., Hays, Graeme C., Hazin, Carolina, Jimenez, Jorge, Johnson, David E., Luschi, Paolo, Maxwell, Sara M., McClellan, Catherine, Modest, Michelle, di ciara, Giuseppe Notarbartolo, Palacio, Alejandro Herrero, Palacios, Daniel M., Pauly, Andrea, Rayner, Matt, Rees, Alan F., Salazar, Erick Ross, Secor, David, Sequeira, Ana M. M., Spalding, Mark, Spina, Fernando, Van Parijs, Sofie, Wallace, Bryan, Varo-Cruz, Nuria, Virtue, Melanie, Weimerskirch, Henri, Wilson, Laurie, Woodward, Bill, and Halpin, Patrick N.
- Published
- 2019
10. Bayesian Learning of Biodiversity Models Using Repeated Observations
- Author
-
Sequeira, Ana M. M., primary, Caley, M. Julian, additional, Mellin, Camille, additional, and Mengersen, Kerrie L., additional
- Published
- 2020
- Full Text
- View/download PDF
11. Global spatial risk assessment of sharks under the footprint of fisheries
- Author
-
Queiroz, Nuno, Humphries, Nicolas E., Couto, Ana, Vedor, Marisa, da Costa, Ivo, Sequeira, Ana M. M., and Mucientes, Gonzalo
- Subjects
Spatial behavior in animals -- Analysis ,Fisheries -- Analysis -- Distribution ,Risk assessment -- Methods ,Sharks -- Protection and preservation -- Analysis -- Distribution ,Fish industry -- Analysis -- Distribution ,Company distribution practices ,Environmental issues ,Science and technology ,Zoology and wildlife conservation - Abstract
Effective ocean management and the conservation of highly migratory species depend on resolving the overlap between animal movements and distributions, and fishing effort. However, this information is lacking at a global scale. Here we show, using a big-data approach that combines satellite-tracked movements of pelagic sharks and global fishing fleets, that 24% of the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries. Space-use hotspots of commercially valuable sharks and of internationally protected species had the highest overlap with longlines (up to 76% and 64%, respectively), and were also associated with significant increases in fishing effort. We conclude that pelagic sharks have limited spatial refuge from current levels of fishing effort in marine areas beyond national jurisdictions (the high seas). Our results demonstrate an urgent need for conservation and management measures at high-seas hotspots of shark space use, and highlight the potential of simultaneous satellite surveillance of megafauna and fishers as a tool for near-real-time, dynamic management. A global dataset of the satellite-tracked movements of pelagic sharks and fishing fleets show that sharks--and, in particular, commercially important species--have limited spatial refuge from fishing effort., Author(s): Nuno Queiroz [sup.1] [sup.2] , Nicolas E. Humphries [sup.2] , Ana Couto [sup.1] , Marisa Vedor [sup.1] [sup.3] , Ivo da Costa [sup.1] , Ana M. M. Sequeira [sup.4] [...]
- Published
- 2019
- Full Text
- View/download PDF
12. Links between the three-dimensional movements of whale sharks (Rhincodon typus) and the bio-physical environment off a coral reef.
- Author
-
D'Antonio, Ben, Ferreira, Luciana C., Meekan, Mark, Thomson, Paul G., Lieber, Lilian, Virtue, Patti, Power, Chloe, Pattiaratchi, Charitha B., Brierley, Andrew S., Sequeira, Ana M. M., and Thums, Michele
- Subjects
WHALE shark ,CORAL reefs & islands ,CORALS ,PREDATORY aquatic animals ,CHLOROPHYLL spectra - Abstract
Background: Measuring coastal-pelagic prey fields at scales relevant to the movements of marine predators is challenging due to the dynamic and ephemeral nature of these environments. Whale sharks (Rhincodon typus) are thought to aggregate in nearshore tropical waters due to seasonally enhanced foraging opportunities. This implies that the three-dimensional movements of these animals may be associated with bio-physical properties that enhance prey availability. To date, few studies have tested this hypothesis. Methods: Here, we conducted ship-based acoustic surveys, net tows and water column profiling (salinity, temperature, chlorophyll fluorescence) to determine the volumetric density, distribution and community composition of mesozooplankton (predominantly euphausiids and copepods) and oceanographic properties of the water column in the vicinity of whale sharks that were tracked simultaneously using satellite-linked tags at Ningaloo Reef, Western Australia. Generalised linear mixed effect models were used to explore relationships between the 3-dimensional movement behaviours of tracked sharks and surrounding prey fields at a spatial scale of ~ 1 km. Results: We identified prey density as a significant driver of horizontal space use, with sharks occupying areas along the reef edge where densities were highest. These areas were characterised by complex bathymetry such as reef gutters and pinnacles. Temperature and salinity profiles revealed a well-mixed water column above the height of the bathymetry (top 40 m of the water column). Regions of stronger stratification were associated with reef gutters and pinnacles that concentrated prey near the seabed, and entrained productivity at local scales (~ 1 km). We found no quantitative relationship between the depth use of sharks and vertical distributions of horizontally averaged prey density. Whale sharks repeatedly dove to depths where spatially averaged prey concentration was highest but did not extend the time spent at these depth layers. Conclusions: Our work reveals previously unrecognized complexity in interactions between whale sharks and their zooplankton prey. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
13. Back to the wild: movements of a juvenile tiger shark released from a public aquarium
- Author
-
Jewell, Oliver J. D., primary, D'Antonio, Ben, additional, Blane, Stacy, additional, Gosden, Emily, additional, Taylor, Michael D., additional, Calich, Hannah J., additional, Fraser, Matthew W., additional, and Sequeira, Ana M. M., additional
- Published
- 2023
- Full Text
- View/download PDF
14. Transferability of predictive models of coral reef fish species richness
- Author
-
Sequeira, Ana M. M., Mellin, Camille, Lozano-Montes, Hector M., Vanderklift, Mathew A., Babcock, Russ C., Haywood, Michael D. E., Meeuwig, Jessica J., and Caley, M. Julian
- Published
- 2016
15. Predators on track for ocean protection around Antarctica
- Author
-
Sequeira, Ana M. M.
- Published
- 2020
- Full Text
- View/download PDF
16. Editorial: Tracking marine megafauna for conservation and marine spatial planning
- Author
-
Pereira, Jorge M., primary, Clay, Thomas A., additional, Reisinger, Ryan R., additional, Ropert-Coudert, Yan, additional, and Sequeira, Ana M. M., additional
- Published
- 2023
- Full Text
- View/download PDF
17. Spatial and temporal predictions of inter-decadal trends in Indian Ocean whale sharks
- Author
-
Sequeira, Ana M. M., Mellin, Camille, Delean, Steven, Meekan, Mark G., and Bradshaw, Corey J. A.
- Published
- 2013
18. A Machine Learning Approach for Animal Trajectory Classification
- Author
-
Hernández, J. M., Rodríguez-García, Jorge Pablo, Sequeira, Ana M. M., and Eguíluz, Víctor M.
- Subjects
ComputingMethodologies_GENERAL - Abstract
Trabajo presentado en el IFISC Poster Party (online).-- The IFISC Poster Party is an annual activity where PhD students and postdoctoral researchers of IFISC present their research in a poster format.-- Biocomplexity., The ocean is the largest ecosystem on Earth where diverse human activities threaten marine life. Thus, knowing how, when, where and why animals move is important for their conservation. As a result of the study of marine animal movement through tracking devices during the past decades, we have collected a large database of around 13000 individual trajectories from more than 100 species, which can be analyzed via data-driven methods. Since its potential remains generally unexplored under these novel techniques, our goal will be to assess their performance and adequateness through the classification of species associated with spatio-temporal points (latitude, longitude, time). When shifting the trajectories to a common origin, we find that the initial accuracy of 88% falls to 66%, indicating that while the initial location is a useful feature, the algorithms are able to extract information from the shape of the trajectory. Furthermore, performance is robust to noise (artificially generated trajectories) and through the error analysis we are able to provide insight for identifying corrupted or inaccurate data, which can be useful for determining potential flaws in the data collection.
- Published
- 2022
19. Global collision-risk hotspots of marine traffic and the world’s largest fish, the whale shark
- Author
-
Womersley, Freya C., Humphries, Nicolas E., Queiroz, Nuno, Vedor, Marisa, da Costa, Ivo, Furtado, Miguel, Tyminski, John P., Abrantes, Katya, Araujo, Gonzalo, Bach, Steffen S., Barnett, Adam, Berumen, Michael L., Bessudo Lion, Sandra, Braun, Camrin D., Clingham, Elizabeth, Cochran, Jesse E. M., de la Parra, Rafael, Diamant, Stella, Dove, Alistair D. M., Dudgeon, Christine L., Erdmann, Mark V., Espinoza, Eduardo, Fitzpatrick, Richard, Gonzalez Cano, Jaime, Green, Jonathan R., Guzman, Hector M., Hardenstine, Royale, Hasan, Abdi, Hazin, Fabio H. V., Hearn, Alex R., Hueter, Robert, Jaidah, Mohammed Y., Labaja, Jessica, Ladino, Felipe, Macena, Bruno C. L., Morris, John J. Jr., Norman, Bradley M., Penaherrera-Palma, Cesar, Pierce, Simon J., Quintero, Lina M., Ramirez-Macias, Deni, Reynolds, Samantha D., Richardson, Anthony J., Robinson, David P., Rohner, Christoph A., Rowat, David R. L., Sheaves, Marcus, Shivji, Mahmood, Sianipar, Abraham B., Skomal, Gregory B., Soler, German, Syakurachman, Ismail, Thorrold, Simon R., Webb, D. Harry, Wetherbee, Bradley M., White, Timothy D., Clavelle, Tyler, Kroodsma, David A., Thums, Michele, Ferreira, Luciana C., Meekan, Mark G., Arrowsmith, Lucy M., Lester, Emily K., Meyers, Megan M., Peel, Lauren R., Sequeira, Ana M. M., Eguiluz, Victor M., Duarte, Carlos M., Sims, David W., Womersley, Freya C., Humphries, Nicolas E., Queiroz, Nuno, Vedor, Marisa, da Costa, Ivo, Furtado, Miguel, Tyminski, John P., Abrantes, Katya, Araujo, Gonzalo, Bach, Steffen S., Barnett, Adam, Berumen, Michael L., Bessudo Lion, Sandra, Braun, Camrin D., Clingham, Elizabeth, Cochran, Jesse E. M., de la Parra, Rafael, Diamant, Stella, Dove, Alistair D. M., Dudgeon, Christine L., Erdmann, Mark V., Espinoza, Eduardo, Fitzpatrick, Richard, Gonzalez Cano, Jaime, Green, Jonathan R., Guzman, Hector M., Hardenstine, Royale, Hasan, Abdi, Hazin, Fabio H. V., Hearn, Alex R., Hueter, Robert, Jaidah, Mohammed Y., Labaja, Jessica, Ladino, Felipe, Macena, Bruno C. L., Morris, John J. Jr., Norman, Bradley M., Penaherrera-Palma, Cesar, Pierce, Simon J., Quintero, Lina M., Ramirez-Macias, Deni, Reynolds, Samantha D., Richardson, Anthony J., Robinson, David P., Rohner, Christoph A., Rowat, David R. L., Sheaves, Marcus, Shivji, Mahmood, Sianipar, Abraham B., Skomal, Gregory B., Soler, German, Syakurachman, Ismail, Thorrold, Simon R., Webb, D. Harry, Wetherbee, Bradley M., White, Timothy D., Clavelle, Tyler, Kroodsma, David A., Thums, Michele, Ferreira, Luciana C., Meekan, Mark G., Arrowsmith, Lucy M., Lester, Emily K., Meyers, Megan M., Peel, Lauren R., Sequeira, Ana M. M., Eguiluz, Victor M., Duarte, Carlos M., and Sims, David W.
- Abstract
© The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Womersley, F. C., Humphries, N. E., Queiroz, N., Vedor, M., da Costa, I., Furtado, M., Tyminski, J. P., Abrantes, K., Araujo, G., Bach, S. S., Barnett, A., Berumen, M. L., Bessudo Lion, S., Braun, C. D., Clingham, E., Cochran, J. E. M., de la Parra, R., Diamant, S., Dove, A. D. M., Dudgeon, C. L., Erdmann, M. V., Espinoza, E., Fitzpatrick, R., González Cano, J., Green, J. R., Guzman, H. M., Hardenstine, R., Hasan, A., Hazin, F. H. V., Hearn, A. R., Hueter, R. E., Jaidah, M. Y., Labaja, J., Ladinol, F., Macena, B. C. L., Morris Jr., J. J., Norman, B. M., Peñaherrera-Palmav, C., Pierce, S. J., Quintero, L. M., Ramırez-Macías, D., Reynolds, S. D., Richardson, A. J., Robinson, D. P., Rohner, C. A., Rowat, D. R. L., Sheaves, M., Shivji, M. S., Sianipar, A. B., Skomal, G. B., Soler, G., Syakurachman, I., Thorrold, S. R., Webb, D. H., Wetherbee, B. M., White, T. D., Clavelle, T., Kroodsma, D. A., Thums, M., Ferreira, L. C., Meekan, M. G., Arrowsmith, L. M., Lester, E. K., Meyers, M. M., Peel, L. R., Sequeira, A. M. M., Eguıluz, V. M., Duarte, C. M., & Sims, D. W. Global collision-risk hotspots of marine traffic and the world’s largest fish, the whale shark. Proceedings of the National Academy of Sciences of the United States of America, 119(20), (2022): e2117440119, https://doi.org/10.1073/pnas.2117440119., Marine traffic is increasing globally yet collisions with endangered megafauna such as whales, sea turtles, and planktivorous sharks go largely undetected or unreported. Collisions leading to mortality can have population-level consequences for endangered species. Hence, identifying simultaneous space use of megafauna and shipping throughout ranges may reveal as-yet-unknown spatial targets requiring conservation. However, global studies tracking megafauna and shipping occurrences are lacking. Here we combine satellite-tracked movements of the whale shark, Rhincodon typus, and vessel activity to show that 92% of sharks’ horizontal space use and nearly 50% of vertical space use overlap with persistent large vessel (>300 gross tons) traffic. Collision-risk estimates correlated with reported whale shark mortality from ship strikes, indicating higher mortality in areas with greatest overlap. Hotspots of potential collision risk were evident in all major oceans, predominantly from overlap with cargo and tanker vessels, and were concentrated in gulf regions, where dense traffic co-occurred with seasonal shark movements. Nearly a third of whale shark hotspots overlapped with the highest collision-risk areas, with the last known locations of tracked sharks coinciding with busier shipping routes more often than expected. Depth-recording tags provided evidence for sinking, likely dead, whale sharks, suggesting substantial “cryptic” lethal ship strikes are possible, which could explain why whale shark population declines continue despite international protection and low fishing-induced mortality. Mitigation measures to reduce ship-strike risk should be considered to conserve this species and other ocean giants that are likely experiencing similar impacts from growing global vessel traffic., Funding for data analysis was provided by the UK Natural Environment Research Council (NERC) through a University of Southampton INSPIRE DTP PhD Studentship to F.C.W. Additional funding for data analysis was provided by NERC Discovery Science (NE/R00997/X/1) and the European Research Council (ERC-AdG-2019 883583 OCEAN DEOXYFISH) to D.W.S., Fundação para a Ciência e a Tecnologia (FCT) under PTDC/BIA/28855/2017 and COMPETE POCI-01–0145-FEDER-028855, and MARINFO–NORTE-01–0145-FEDER-000031 (funded by Norte Portugal Regional Operational Program [NORTE2020] under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund–ERDF) to N.Q. FCT also supported N.Q. (CEECIND/02857/2018) and M.V. (PTDC/BIA-COM/28855/2017). D.W.S. was supported by a Marine Biological Association Senior Research Fellowship. All tagging procedures were approved by institutional ethical review bodies and complied with all relevant ethical regulations in the jurisdictions in which they were performed. Details for individual research teams are given in SI Appendix, section 8. Full acknowledgments for tagging and field research are given in SI Appendix, section 7. This research is part of the Global Shark Movement Project (https://www.globalsharkmovement.org).
- Published
- 2022
20. GlobalSharkMovement / GlobalCollisionRisk
- Author
-
Womersley, Freya C., Humphries, Nicolas E., Queiroz, Nuno, Vedor, Marisa, Costa, Ivo da, Furtado, Miguel, Tyminski, John P., Abrantes, Katya, Araujo, Gonzalo, Bach, Steffen S., Barnett, Adam, Berumen, Michael L., Bessudo Lion, Sandra, Braun, Camrin D., Clingham, Elizabeth, Cochran, Jesse E. M., Parra, Rafael de la, Diamant, Stella, Dove, Alistair D. M., Dudgeon, Christine L., Erdmann, Mark V., Espinoza, Eduardo, Fitzpatrick, Richard, González Cano , Jaime, Green, Jonathan R., Guzman, Hector M., Hardenstine, Royale, Hasan, Abdi, Hazin, Fábio H. V., Hearn, Alex R., Hueter, Robert E., Jaidah, Mohammed Y., Labaja, Jessica, Ladino, Felipe, Macena, Bruno C. L., Morris, John J., Norman, Bradley M., Peñaherrera-Palma, Cesar, Pierce, Simon J., Quintero, Lina M., Ramírez-Macías, Dení, Reynolds, Samantha D., Richardson, Anthony J., Robinson, David P., Rohner, Christoph A., Rowat, David R. L., Sheaves, Marcus, Shivji, Mahmood S., Sianipar, Abraham B., Skomal, Gregory B., Soler, German, Syakurachman, Ismail, Thorrold, Simon R., Webb, D. Harry, Wetherbee, Bradley M., White, Timothy D., Clavelle, Tyler, Kroodsma, David A., Thums, Michele, Ferreira, Luciana C., Meekan, Mark G., Arrowsmith, Lucy M., Lester, Emily K., Meyers, Megan M., Peel, Lauren R., Sequeira, Ana M. M., Eguíluz, Víctor M., Duarte, Carlos M., Sims, David W., Womersley, Freya C., Humphries, Nicolas E., Queiroz, Nuno, Vedor, Marisa, Costa, Ivo da, Furtado, Miguel, Tyminski, John P., Abrantes, Katya, Araujo, Gonzalo, Bach, Steffen S., Barnett, Adam, Berumen, Michael L., Bessudo Lion, Sandra, Braun, Camrin D., Clingham, Elizabeth, Cochran, Jesse E. M., Parra, Rafael de la, Diamant, Stella, Dove, Alistair D. M., Dudgeon, Christine L., Erdmann, Mark V., Espinoza, Eduardo, Fitzpatrick, Richard, González Cano , Jaime, Green, Jonathan R., Guzman, Hector M., Hardenstine, Royale, Hasan, Abdi, Hazin, Fábio H. V., Hearn, Alex R., Hueter, Robert E., Jaidah, Mohammed Y., Labaja, Jessica, Ladino, Felipe, Macena, Bruno C. L., Morris, John J., Norman, Bradley M., Peñaherrera-Palma, Cesar, Pierce, Simon J., Quintero, Lina M., Ramírez-Macías, Dení, Reynolds, Samantha D., Richardson, Anthony J., Robinson, David P., Rohner, Christoph A., Rowat, David R. L., Sheaves, Marcus, Shivji, Mahmood S., Sianipar, Abraham B., Skomal, Gregory B., Soler, German, Syakurachman, Ismail, Thorrold, Simon R., Webb, D. Harry, Wetherbee, Bradley M., White, Timothy D., Clavelle, Tyler, Kroodsma, David A., Thums, Michele, Ferreira, Luciana C., Meekan, Mark G., Arrowsmith, Lucy M., Lester, Emily K., Meyers, Megan M., Peel, Lauren R., Sequeira, Ana M. M., Eguíluz, Víctor M., Duarte, Carlos M., and Sims, David W.
- Abstract
Repository containing derived data for the manuscript 'Global collision-risk hotspots of marine traffic and the world's largest fish, the whale shark'.
- Published
- 2022
21. Global collision-risk hotspots of marine traffic and the world’s largest fish, the whale shark
- Author
-
Natural Environment Research Council (UK), European Research Council, Fundação para a Ciência e a Tecnologia (Portugal), European Commission, Womersley, Freya C., Humphries, Nicolas E., Queiroz, Nuno, Vedor, Marisa, Costa, Ivo da, Furtado, Miguel, Tyminski, John P., Abrantes, Katya, Araujo, Gonzalo, Bach, Steffen S., Barnett, Adam, Berumen, Michael L., Bessudo Lion, Sandra, Braun, Camrin D., Clingham, Elizabeth, Cochran, Jesse E. M., Parra, Rafael de la, Diamant, Stella, Dove, Alistair D. M., Dudgeon, Christine L., Erdmann, Mark V., Espinoza, Eduardo, Fitzpatrick, Richard, González Cano , Jaime, Green, Jonathan R., Guzman, Hector M., Hardenstine, Royale, Hasan, Abdi, Hazin, Fábio H. V., Hearn, Alex R., Hueter, Robert E., Jaidah, Mohammed Y., Labaja, Jessica, Ladino, Felipe, Macena, Bruno C. L., Morris, John J., Norman, Bradley M., Peñaherrera-Palma, Cesar, Pierce, Simon J., Quintero, Lina M., Ramírez-Macías, Dení, Reynolds, Samantha D., Richardson, Anthony J., Robinson, David P., Rohner, Christoph A., Rowat, David R. L., Sheaves, Marcus, Shivji, Mahmood S., Sianipar, Abraham B., Skomal, Gregory B., Soler, German, Syakurachman, Ismail, Thorrold, Simon R., Webb, D. Harry, Wetherbee, Bradley M., White, Timothy D., Clavelle, Tyler, Kroodsma, David A., Thums, Michele, Ferreira, Luciana C., Meekan, Mark G., Arrowsmith, Lucy M., Lester, Emily K., Meyers, Megan M., Peel, Lauren R., Sequeira, Ana M. M., Eguíluz, Víctor M., Duarte, Carlos M., Sims, David W., Natural Environment Research Council (UK), European Research Council, Fundação para a Ciência e a Tecnologia (Portugal), European Commission, Womersley, Freya C., Humphries, Nicolas E., Queiroz, Nuno, Vedor, Marisa, Costa, Ivo da, Furtado, Miguel, Tyminski, John P., Abrantes, Katya, Araujo, Gonzalo, Bach, Steffen S., Barnett, Adam, Berumen, Michael L., Bessudo Lion, Sandra, Braun, Camrin D., Clingham, Elizabeth, Cochran, Jesse E. M., Parra, Rafael de la, Diamant, Stella, Dove, Alistair D. M., Dudgeon, Christine L., Erdmann, Mark V., Espinoza, Eduardo, Fitzpatrick, Richard, González Cano , Jaime, Green, Jonathan R., Guzman, Hector M., Hardenstine, Royale, Hasan, Abdi, Hazin, Fábio H. V., Hearn, Alex R., Hueter, Robert E., Jaidah, Mohammed Y., Labaja, Jessica, Ladino, Felipe, Macena, Bruno C. L., Morris, John J., Norman, Bradley M., Peñaherrera-Palma, Cesar, Pierce, Simon J., Quintero, Lina M., Ramírez-Macías, Dení, Reynolds, Samantha D., Richardson, Anthony J., Robinson, David P., Rohner, Christoph A., Rowat, David R. L., Sheaves, Marcus, Shivji, Mahmood S., Sianipar, Abraham B., Skomal, Gregory B., Soler, German, Syakurachman, Ismail, Thorrold, Simon R., Webb, D. Harry, Wetherbee, Bradley M., White, Timothy D., Clavelle, Tyler, Kroodsma, David A., Thums, Michele, Ferreira, Luciana C., Meekan, Mark G., Arrowsmith, Lucy M., Lester, Emily K., Meyers, Megan M., Peel, Lauren R., Sequeira, Ana M. M., Eguíluz, Víctor M., Duarte, Carlos M., and Sims, David W.
- Abstract
Marine traffic is increasing globally yet collisions with endangered megafauna such as whales, sea turtles, and planktivorous sharks go largely undetected or unreported. Collisions leading to mortality can have population-level consequences for endangered species. Hence, identifying simultaneous space use of megafauna and shipping throughout ranges may reveal as-yet-unknown spatial targets requiring conservation. However, global studies tracking megafauna and shipping occurrences are lacking. Here we combine satellite-tracked movements of the whale shark, Rhincodon typus, and vessel activity to show that 92% of sharks’ horizontal space use and nearly 50% of vertical space use overlap with persistent large vessel (>300 gross tons) traffic. Collision-risk estimates correlated with reported whale shark mortality from ship strikes, indicating higher mortality in areas with greatest overlap. Hotspots of potential collision risk were evident in all major oceans, predominantly from overlap with cargo and tanker vessels, and were concentrated in gulf regions, where dense traffic co-occurred with seasonal shark movements. Nearly a third of whale shark hotspots overlapped with the highest collision-risk areas, with the last known locations of tracked sharks coinciding with busier shipping routes more often than expected. Depth-recording tags provided evidence for sinking, likely dead, whale sharks, suggesting substantial “cryptic” lethal ship strikes are possible, which could explain why whale shark population declines continue despite international protection and low fishing-induced mortality. Mitigation measures to reduce ship-strike risk should be considered to conserve this species and other ocean giants that are likely experiencing similar impacts from growing global vessel traffic., [Significance] Global vessel traffic is increasing alongside world economic growth. The potential for rising lethal ship strikes on endangered species of marine megafauna, such as the plankton-feeding whale shark, remains poorly understood since areas of highest overlap are seldom determined across an entire species range. Here we show how satellite tracking whale sharks and large vessel movements globally provides a means to localize high-overlap areas and to determine how collision risk changes in time. Our results point to potential high levels of undetected or unreported ship strikes, which may explain why whale shark populations continue to decline despite protection and low fishing-induced mortality. Collision mitigations in high-collision-risk areas appear necessary to help conserve this iconic species.
- Published
- 2022
22. Global collision-risk hotspots of marine traffic and the world’s largest fish, the whale shark
- Author
-
Womersley, Freya C., primary, Humphries, Nicolas E., additional, Queiroz, Nuno, additional, Vedor, Marisa, additional, da Costa, Ivo, additional, Furtado, Miguel, additional, Tyminski, John P., additional, Abrantes, Katya, additional, Araujo, Gonzalo, additional, Bach, Steffen S., additional, Barnett, Adam, additional, Berumen, Michael L., additional, Bessudo Lion, Sandra, additional, Braun, Camrin D., additional, Clingham, Elizabeth, additional, Cochran, Jesse E. M., additional, de la Parra, Rafael, additional, Diamant, Stella, additional, Dove, Alistair D. M., additional, Dudgeon, Christine L., additional, Erdmann, Mark V., additional, Espinoza, Eduardo, additional, Fitzpatrick, Richard, additional, Cano, Jaime González, additional, Green, Jonathan R., additional, Guzman, Hector M., additional, Hardenstine, Royale, additional, Hasan, Abdi, additional, Hazin, Fábio H. V., additional, Hearn, Alex R., additional, Hueter, Robert E., additional, Jaidah, Mohammed Y., additional, Labaja, Jessica, additional, Ladino, Felipe, additional, Macena, Bruno C. L., additional, Morris, John J., additional, Norman, Bradley M., additional, Peñaherrera-Palma, Cesar, additional, Pierce, Simon J., additional, Quintero, Lina M., additional, Ramírez-Macías, Dení, additional, Reynolds, Samantha D., additional, Richardson, Anthony J., additional, Robinson, David P., additional, Rohner, Christoph A., additional, Rowat, David R. L., additional, Sheaves, Marcus, additional, Shivji, Mahmood S., additional, Sianipar, Abraham B., additional, Skomal, Gregory B., additional, Soler, German, additional, Syakurachman, Ismail, additional, Thorrold, Simon R., additional, Webb, D. Harry, additional, Wetherbee, Bradley M., additional, White, Timothy D., additional, Clavelle, Tyler, additional, Kroodsma, David A., additional, Thums, Michele, additional, Ferreira, Luciana C., additional, Meekan, Mark G., additional, Arrowsmith, Lucy M., additional, Lester, Emily K., additional, Meyers, Megan M., additional, Peel, Lauren R., additional, Sequeira, Ana M. M., additional, Eguíluz, Victor M., additional, Duarte, Carlos M., additional, and Sims, David W., additional
- Published
- 2022
- Full Text
- View/download PDF
23. Editorial: Sustainable Development Goal 14 - Life Below Water: Towards a Sustainable Ocean
- Author
-
Molony, Brett W., primary, Ford, Alex T., additional, Sequeira, Ana M. M., additional, Borja, Angel, additional, Zivian, Anna Milena, additional, Robinson, Carol, additional, Lønborg, Christian, additional, Escobar-Briones, Elva G., additional, Di Lorenzo, Emanuele, additional, Andersen, Jesper H., additional, Müller, Marius N., additional, Devlin, Michelle J., additional, Failler, Pierre, additional, Villasante, Sebastian, additional, Libralato, Simone, additional, and Fortibuoni, Tomaso, additional
- Published
- 2022
- Full Text
- View/download PDF
24. Book Review The Ocean Sunfishes: Evolution, Biology, and Conservation
- Author
-
Sequeira, Ana M. M., primary
- Published
- 2022
- Full Text
- View/download PDF
25. Animal Borne Ocean Sensors – AniBOS – An Essential Component of the Global Ocean Observing System
- Author
-
McMahon, Clive R., primary, Roquet, Fabien, additional, Baudel, Sophie, additional, Belbeoch, Mathieu, additional, Bestley, Sophie, additional, Blight, Clint, additional, Boehme, Lars, additional, Carse, Fiona, additional, Costa, Daniel P., additional, Fedak, Michael A., additional, Guinet, Christophe, additional, Harcourt, Robert, additional, Heslop, Emma, additional, Hindell, Mark A., additional, Hoenner, Xavier, additional, Holland, Kim, additional, Holland, Mellinda, additional, Jaine, Fabrice R. A., additional, Jeanniard du Dot, Tiphaine, additional, Jonsen, Ian, additional, Keates, Theresa R., additional, Kovacs, Kit M., additional, Labrousse, Sara, additional, Lovell, Philip, additional, Lydersen, Christian, additional, March, David, additional, Mazloff, Matthew, additional, McKinzie, Megan K., additional, Muelbert, Mônica M. C., additional, O’Brien, Kevin, additional, Phillips, Lachlan, additional, Portela, Esther, additional, Pye, Jonathan, additional, Rintoul, Stephen, additional, Sato, Katsufumi, additional, Sequeira, Ana M. M., additional, Simmons, Samantha E., additional, Tsontos, Vardis M., additional, Turpin, Victor, additional, van Wijk, Esmee, additional, Vo, Danny, additional, Wege, Mia, additional, Whoriskey, Frederick Gilbert, additional, Wilson, Kenady, additional, and Woodward, Bill, additional
- Published
- 2021
- Full Text
- View/download PDF
26. State of Shark and Ray Genomics in an Era of Extinction
- Author
-
Pearce, Jessica, primary, Fraser, Matthew W., additional, Sequeira, Ana M. M., additional, and Kaur, Parwinder, additional
- Published
- 2021
- Full Text
- View/download PDF
27. Comprehensive analytical approaches reveal species‐specific search strategies in sympatric apex predatory sharks
- Author
-
Calich, Hannah J., primary, Rodríguez, Jorge P., additional, Eguíluz, Víctor M., additional, Hammerschlag, Neil, additional, Pattiaratchi, Charitha, additional, Duarte, Carlos M., additional, and Sequeira, Ana M. M., additional
- Published
- 2021
- Full Text
- View/download PDF
28. First Insights Into the Horizontal Movements of Whale Sharks (Rhincodon typus) in the Northern Arabian Sea
- Author
-
Arrowsmith, Lucy M., primary, Paidi, Charan Kumar, additional, Bloch, Farukhkha Husenkha, additional, John, Sajan, additional, Choudhury, Binod Chandra, additional, Kaul, Rahul, additional, Sequeira, Ana M. M., additional, Pattiaratchi, Charitha B., additional, and Meekan, Mark G., additional
- Published
- 2021
- Full Text
- View/download PDF
29. A standardisation framework for bio-logging data to advance ecological research and conservation
- Author
-
Sequeira, Ana M. M., O'Toole, Malcolm, Keates, Theresa R., McDonnell, Laura H., Braun, Camrin D., Hoenner, Xavier, Jaine, Fabrice R. A., Jonsen, Ian, Newman, Peggy, Pye, Jonathan, Bograd, Steven, Hays, Graeme, Hazen, Elliott L., Holland, Melinda, Tsontos, Vardis, Blight, Clint, Cagnacci, Francesca, Davidson, Sarah C., Dettki, Holger, Duarte, Carlos M., Dunn, Daniel C., Eguíluz, Víctor M., Fedak, Michael, Gleiss, Adrian C., Hammerschlag, Neil, Hindell, Mark, Holland, Kim, Janekovic, Ivica, McKinzie, Megan K., Muelbert, Monica M. C., Pattiaratchi, Charitha, Rutz, Christian, Sims, David W., Simmons, Samantha E., Townsend, Brendal, Whoriskey, Frederick G., Woodward, Bill, Costa, Daniel P., Heupel, Michelle R., McMahon, Clive R., Harcourt, Robert, Weise, Michael, Sequeira, Ana M. M., O'Toole, Malcolm, Keates, Theresa R., McDonnell, Laura H., Braun, Camrin D., Hoenner, Xavier, Jaine, Fabrice R. A., Jonsen, Ian, Newman, Peggy, Pye, Jonathan, Bograd, Steven, Hays, Graeme, Hazen, Elliott L., Holland, Melinda, Tsontos, Vardis, Blight, Clint, Cagnacci, Francesca, Davidson, Sarah C., Dettki, Holger, Duarte, Carlos M., Dunn, Daniel C., Eguíluz, Víctor M., Fedak, Michael, Gleiss, Adrian C., Hammerschlag, Neil, Hindell, Mark, Holland, Kim, Janekovic, Ivica, McKinzie, Megan K., Muelbert, Monica M. C., Pattiaratchi, Charitha, Rutz, Christian, Sims, David W., Simmons, Samantha E., Townsend, Brendal, Whoriskey, Frederick G., Woodward, Bill, Costa, Daniel P., Heupel, Michelle R., McMahon, Clive R., Harcourt, Robert, and Weise, Michael
- Abstract
© The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sequeira, A. M. M., O'Toole, M., Keates, T. R., McDonnell, L. H., Braun, C. D., Hoenner, X., Jaine, F. R. A., Jonsen, I. D., Newman, P., Pye, J., Bograd, S. J., Hays, G. C., Hazen, E. L., Holland, M., Tsontos, V. M., Blight, C., Cagnacci, F., Davidson, S. C., Dettki, H., Duarte, C. M., Dunn, D. C., Eguiluz, V. M., Fedak, M., Gleiss, A. C., Hammerschlag, N., Hindell, M. A., Holland, K., Janekovic, I., McKinzie, M. K., Muelbert, M. M. C., Pattiaratchi, C., Rutz, C., Sims, D. W., Simmons, S. E., Townsend, B., Whoriskey, F., Woodward, B., Costa, D. P., Heupel, M. R., McMahon, C. R., Harcourt, R., & Weise, M. A standardisation framework for bio-logging data to advance ecological research and conservation. Methods in Ecology and Evolution, 12, (2021): 996–1007, https://doi.org/10.1111/2041-210X.13593., 1. Bio-logging data obtained by tagging animals are key to addressing global conservation challenges. However, the many thousands of existing bio-logging datasets are not easily discoverable, universally comparable, nor readily accessible through existing repositories and across platforms, slowing down ecological research and effective management. A set of universal standards is needed to ensure discoverability, interoperability and effective translation of bio-logging data into research and management recommendations. 2. We propose a standardisation framework adhering to existing data principles (FAIR: Findable, Accessible, Interoperable and Reusable; and TRUST: Transparency, Responsibility, User focus, Sustainability and Technology) and involving the use of simple templates to create a data flow from manufacturers and researchers to compliant repositories, where automated procedures should be in place to prepare data availability into four standardised levels: (a) decoded raw data, (b) curated data, (c) interpolated data and (d) gridded data. Our framework allows for integration of simple tabular arrays (e.g. csv files) and creation of sharable and interoperable network Common Data Form (netCDF) files containing all the needed information for accuracy-of-use, rightful attribution (ensuring data providers keep ownership through the entire process) and data preservation security. 3. We show the standardisation benefits for all stakeholders involved, and illustrate the application of our framework by focusing on marine animals and by providing examples of the workflow across all data levels, including filled templates and code to process data between levels, as well as templates to prepare netCDF files ready for sharing. 4. Adoption of our framework will facilitate collection of Essential Ocean Variables (EOVs) in support of the Global Ocean Observing System (GOOS) and inter-governmental assessments (e.g. the World Ocean Assessment), and will provide a starting point, We are thankful to ONR and UWA OI for funding the workshop, and to ARC for DP210103091. A.M.M.S. was funded by a 2020 Pew Fellowship in Marine Conservation, and also supported by AIMS. C.R. was the recipient of a Radcliffe Fellowship at the Radcliffe Institute for Advanced Study, Harvard University.
- Published
- 2021
30. Animal Borne Ocean Sensors – AniBOS – An Essential Component of the Global Ocean Observing System
- Author
-
Mcmahon, Clive R., Roquet, Fabien, Baudel, Sophie, Belbeoch, Mathieu, Bestley, Sophie, Blight, Clint, Boehme, Lars, Carse, Fiona, Costa, Daniel P., Fedak, Michael A., Guinet, Christophe, Harcourt, Robert, Heslop, Emma, Hindell, Mark A., Hoenner, Xavier, Holland, Kim, Holland, Mellinda, Jaine, Fabrice R. A., Jeanniard Du Dot, Tiphaine, Jonsen, Ian, Keates, Theresa R., Kovacs, Kit M., Labrousse, Sara, Lovell, Philip, Lydersen, Christian, March, David, Mazloff, Matthew, Mckinzie, Megan K., Muelbert, Mônica M. C., O’brien, Kevin, Phillips, Lachlan, Portela Rodriguez, Esther, Pye, Jonathan, Rintoul, Stephen, Sato, Katsufumi, Sequeira, Ana M. M., Simmons, Samantha E., Tsontos, Vardis M., Turpin, Victor, Van Wijk, Esmee, Vo, Danny, Wege, Mia, Whoriskey, Frederick Gilbert, Wilson, Kenady, Woodward, Bill, Mcmahon, Clive R., Roquet, Fabien, Baudel, Sophie, Belbeoch, Mathieu, Bestley, Sophie, Blight, Clint, Boehme, Lars, Carse, Fiona, Costa, Daniel P., Fedak, Michael A., Guinet, Christophe, Harcourt, Robert, Heslop, Emma, Hindell, Mark A., Hoenner, Xavier, Holland, Kim, Holland, Mellinda, Jaine, Fabrice R. A., Jeanniard Du Dot, Tiphaine, Jonsen, Ian, Keates, Theresa R., Kovacs, Kit M., Labrousse, Sara, Lovell, Philip, Lydersen, Christian, March, David, Mazloff, Matthew, Mckinzie, Megan K., Muelbert, Mônica M. C., O’brien, Kevin, Phillips, Lachlan, Portela Rodriguez, Esther, Pye, Jonathan, Rintoul, Stephen, Sato, Katsufumi, Sequeira, Ana M. M., Simmons, Samantha E., Tsontos, Vardis M., Turpin, Victor, Van Wijk, Esmee, Vo, Danny, Wege, Mia, Whoriskey, Frederick Gilbert, Wilson, Kenady, and Woodward, Bill
- Abstract
Marine animals equipped with biological and physical electronic sensors have produced long-term data streams on key marine environmental variables, hydrography, animal behavior and ecology. These data are an essential component of the Global Ocean Observing System (GOOS). The Animal Borne Ocean Sensors (AniBOS) network aims to coordinate the long-term collection and delivery of marine data streams, providing a complementary capability to other GOOS networks that monitor Essential Ocean Variables (EOVs), essential climate variables (ECVs) and essential biodiversity variables (EBVs). AniBOS augments observations of temperature and salinity within the upper ocean, in areas that are under-sampled, providing information that is urgently needed for an improved understanding of climate and ocean variability and for forecasting. Additionally, measurements of chlorophyll fluorescence and dissolved oxygen concentrations are emerging. The observations AniBOS provides are used widely across the research, modeling and operational oceanographic communities. High latitude, shallow coastal shelves and tropical seas have historically been sampled poorly with traditional observing platforms for many reasons including sea ice presence, limited satellite coverage and logistical costs. Animal-borne sensors are helping to fill that gap by collecting and transmitting in near real time an average of 500 temperature-salinity-depth profiles per animal annually and, when instruments are recovered (∼30% of instruments deployed annually, n = 103 ± 34), up to 1,000 profiles per month in these regions. Increased observations from under-sampled regions greatly improve the accuracy and confidence in estimates of ocean state and improve studies of climate variability by delivering data that refine climate prediction estimates at regional and global scales. The GOOS Observations Coordination Group (OCG) reviews, advises on and coordinates activities across the global ocean observing networks to stren
- Published
- 2021
- Full Text
- View/download PDF
31. A standardisation framework for bio-logging data to advance ecological research and conservation
- Author
-
The Pew Charitable Trusts, Harvard University, Sequeira, Ana M. M., O'Toole, Malcolm, Keates, Theresa R., McDonnell, Laura H, Braun, Camrin D., Hoenner, Xavier, Jaine, Fabrice R. A., Jonsen, Ian D., Newman, Peggy, Pye, Jonathan, Bograd, Steven J., Hays, Graeme C., Hazen, Elliott L., Holland, Melinda, Tsontos, Vardis M., Blight, Clint, Cagnacci, Francesca, Davidson, Sarah C., Dettki, Holger, Duarte, Carlos M., Dunn, Daniel C., Eguíluz, Víctor M., Fedak, Michael, Gleiss, Adrian C., Hammerschlag, Neil, Hindell, Mark A., Holland, Kim, Janekovic, Ivica, McKinzie, Megan K., Muelbert, Monica M. C., Pattiaratchi, Chari, Rutz, Christian, Sims, David W., Simmons, Samantha E., Townsend, Brendal, Whoriskey, Frederick, Woodward, Bill, Costa, Daniel P., Heupel, Michelle R., McMahon, Clive R., Harcourt, Rob, Weise, Michael, The Pew Charitable Trusts, Harvard University, Sequeira, Ana M. M., O'Toole, Malcolm, Keates, Theresa R., McDonnell, Laura H, Braun, Camrin D., Hoenner, Xavier, Jaine, Fabrice R. A., Jonsen, Ian D., Newman, Peggy, Pye, Jonathan, Bograd, Steven J., Hays, Graeme C., Hazen, Elliott L., Holland, Melinda, Tsontos, Vardis M., Blight, Clint, Cagnacci, Francesca, Davidson, Sarah C., Dettki, Holger, Duarte, Carlos M., Dunn, Daniel C., Eguíluz, Víctor M., Fedak, Michael, Gleiss, Adrian C., Hammerschlag, Neil, Hindell, Mark A., Holland, Kim, Janekovic, Ivica, McKinzie, Megan K., Muelbert, Monica M. C., Pattiaratchi, Chari, Rutz, Christian, Sims, David W., Simmons, Samantha E., Townsend, Brendal, Whoriskey, Frederick, Woodward, Bill, Costa, Daniel P., Heupel, Michelle R., McMahon, Clive R., Harcourt, Rob, and Weise, Michael
- Abstract
Bio-logging data obtained by tagging animals are key to addressing global conservation challenges. However, the many thousands of existing bio-logging datasets are not easily discoverable, universally comparable, nor readily accessible through existing repositories and across platforms, slowing down ecological research and effective management. A set of universal standards is needed to ensure discoverability, interoperability and effective translation of bio-logging data into research and management recommendations. We propose a standardisation framework adhering to existing data principles (FAIR: Findable, Accessible, Interoperable and Reusable; and TRUST: Transparency, Responsibility, User focus, Sustainability and Technology) and involving the use of simple templates to create a data flow from manufacturers and researchers to compliant repositories, where automated procedures should be in place to prepare data availability into four standardised levels: (a) decoded raw data, (b) curated data, (c) interpolated data and (d) gridded data. Our framework allows for integration of simple tabular arrays (e.g. csv files) and creation of sharable and interoperable network Common Data Form (netCDF) files containing all the needed information for accuracy-of-use, rightful attribution (ensuring data providers keep ownership through the entire process) and data preservation security. We show the standardisation benefits for all stakeholders involved, and illustrate the application of our framework by focusing on marine animals and by providing examples of the workflow across all data levels, including filled templates and code to process data between levels, as well as templates to prepare netCDF files ready for sharing. Adoption of our framework will facilitate collection of Essential Ocean Variables (EOVs) in support of the Global Ocean Observing System (GOOS) and inter-governmental assessments (e.g. the World Ocean Assessment), and will provide a starting point for broader
- Published
- 2021
32. Comprehensive analytical approaches reveal species-specific search strategies in sympatric apex predatory sharks
- Author
-
Australian Government, Ministerio de Ciencia e Innovación (España), Australian Research Council, European Commission, Batchelor Foundation, Disney Conservation Fund, Wells Fargo, Guy Harvey Ocean Foundation, West Coast Inland Navigation District, Calich, Hannah J., Rodríguez-García, Jorge Pablo, Eguíluz, Víctor M., Hammerschlag, Neil, Pattiaratchi, Charitha, Duarte, Carlos M., Sequeira, Ana M. M., Australian Government, Ministerio de Ciencia e Innovación (España), Australian Research Council, European Commission, Batchelor Foundation, Disney Conservation Fund, Wells Fargo, Guy Harvey Ocean Foundation, West Coast Inland Navigation District, Calich, Hannah J., Rodríguez-García, Jorge Pablo, Eguíluz, Víctor M., Hammerschlag, Neil, Pattiaratchi, Charitha, Duarte, Carlos M., and Sequeira, Ana M. M.
- Abstract
Animals follow specific movement patterns and search strategies to maximize encounters with essential resources (e.g. prey, favourable habitat) while minimizing exposures to suboptimal conditions (e.g. competitors, predators). While describing spatiotemporal patterns in animal movement from tracking data is common, understanding the associated search strategies employed continues to be a key challenge in ecology. Moreover, studies in marine ecology commonly focus on singular aspects of species' movements, however using multiple analytical approaches can further enable researchers to identify ecological phenomena and resolve fundamental ecological questions relating to movement. Here, we used a set of statistical physics-based methods to analyze satellite tracking data from three co-occurring apex predators (tiger, great hammerhead and bull sharks) that predominantly inhabit productive coastal regions of the northwest Atlantic Ocean and Gulf of Mexico. We analyzed data from 96 sharks and calculated a range of metrics, including each species' displacements, turning angles, dispersion, space-use and community-wide movement patterns to characterize each species' movements and identify potential search strategies. Our comprehensive approach revealed high interspecific variability in shark movement patterns and search strategies. Tiger sharks displayed near-random movements consistent with a Brownian strategy commonly associated with movements through resource-rich habitats. Great hammerheads showed a mixed-movement strategy including Brownian and resident-type movements, suggesting adaptation to widespread and localized high resource availability. Bull sharks followed a resident movement strategy with restricted movements indicating localized high resource availability. We hypothesize that the species-specific search strategies identified here may help foster the co-existence of these sympatric apex predators. Following this comprehensive approach provided novel insights
- Published
- 2021
33. A standardisation framework for bio‐logging data to advance ecological research and conservation
- Author
-
Sequeira, Ana M. M., primary, O'Toole, Malcolm, additional, Keates, Theresa R., additional, McDonnell, Laura H., additional, Braun, Camrin D., additional, Hoenner, Xavier, additional, Jaine, Fabrice R. A., additional, Jonsen, Ian D., additional, Newman, Peggy, additional, Pye, Jonathan, additional, Bograd, Steven J., additional, Hays, Graeme C., additional, Hazen, Elliott L., additional, Holland, Melinda, additional, Tsontos, Vardis M., additional, Blight, Clint, additional, Cagnacci, Francesca, additional, Davidson, Sarah C., additional, Dettki, Holger, additional, Duarte, Carlos M., additional, Dunn, Daniel C., additional, Eguíluz, Victor M., additional, Fedak, Michael, additional, Gleiss, Adrian C., additional, Hammerschlag, Neil, additional, Hindell, Mark A., additional, Holland, Kim, additional, Janekovic, Ivica, additional, McKinzie, Megan K., additional, Muelbert, Mônica M. C., additional, Pattiaratchi, Chari, additional, Rutz, Christian, additional, Sims, David W., additional, Simmons, Samantha E., additional, Townsend, Brendal, additional, Whoriskey, Frederick, additional, Woodward, Bill, additional, Costa, Daniel P., additional, Heupel, Michelle R., additional, McMahon, Clive R., additional, Harcourt, Rob, additional, and Weise, Michael, additional
- Published
- 2021
- Full Text
- View/download PDF
34. Future Distribution of Suitable Habitat for Pelagic Sharks in Australia Under Climate Change Models.
- Author
-
Birkmanis, Charlotte A., Freer, Jennifer, Simmons, Leigh W., Partridge, Julian C., Sequeira, Ana M. M., Birkmanis, Charlotte A., Freer, Jennifer, Simmons, Leigh W., Partridge, Julian C., and Sequeira, Ana M. M.
- Abstract
Global oceans are absorbing over 90% of the heat trapped in our atmosphere due to accumulated anthropogenic greenhouse gases, resulting in increasing ocean temperatures. Such changes may influence marine ectotherms, such as sharks, as their body temperature concurrently increases toward their upper thermal limits. Sharks are high trophic level predators that play a key role in the regulation of ecosystem structure and health. Because many sharks are already threatened, it is especially important to understand the impact of climate change on these species. We used shark occurrence records collected by commercial fisheries within the Australian continental Exclusive Economic Zone (EEZ) to predict changes in future (2050-2099) relative to current (1956-2005) habitat suitability for pelagic sharks based on an ensemble of climate models and emission scenarios. Our predictive models indicate that future sea temperatures are likely to shift the location of suitable shark habitat within the Australian EEZ. On average, suitable habitat is predicted to decrease within the EEZ for requiem and increase for mackerel sharks, however, the direction and severity of change was highly influenced by the choice of climate model. Our results indicate the need to consider climate change scenarios as part of future shark management and suggest that more broad -scale studies are needed for these pelagic species.
- Published
- 2020
35. Quantifying effects of tracking data bias on species distribution models
- Author
-
O'Toole, Malcolm, primary, Queiroz, Nuno, additional, Humphries, Nicolas E., additional, Sims, David W., additional, and Sequeira, Ana M. M., additional
- Published
- 2020
- Full Text
- View/download PDF
36. Asymptotic Growth of Whale Sharks Suggests Sex-Specific Life-History Strategies
- Author
-
Meekan, Mark G., primary, Taylor, Brett M., additional, Lester, Emily, additional, Ferreira, Luciana C., additional, Sequeira, Ana M. M., additional, Dove, Alistair D. M., additional, Birt, Matthew J., additional, Aspinall, Alex, additional, Brooks, Kim, additional, and Thums, Michele, additional
- Published
- 2020
- Full Text
- View/download PDF
37. Future Distribution of Suitable Habitat for Pelagic Sharks in Australia Under Climate Change Models
- Author
-
Birkmanis, Charlotte A., primary, Freer, Jennifer J., additional, Simmons, Leigh W., additional, Partridge, Julian C., additional, and Sequeira, Ana M. M., additional
- Published
- 2020
- Full Text
- View/download PDF
38. Appendices 1-3 from The importance of migratory connectivity for global ocean policy
- Author
-
Dunn, Daniel C., Autumn-Lynn Harrison, Curtice, Corrie, DeLand, Sarah, Donnelly, Ben, Fujioka, Ei, Heywood, Eleanor, Kot, Connie Y., Poulin, Sarah, Whitten, Meredith, Åkesson, Susanne, Alberini, Amalia, Appeltans, Ward, Arcos, José Manuel, Bailey, Helen, Ballance, Lisa T., Block, Barbara, Blondin, Hannah, Boustany, Andre M., Brenner, Jorge, Catry, Paulo, Cejudo, Daniel, Cleary, Jesse, Corkeron, Peter, Costa, Daniel P., Coyne, Michael, Crespo, Guillermo Ortuño, Davies, Tammy E., Dias, Maria P., Douvere, Fanny, Ferretti, Francesco, Formia, Angela, Freestone, David, Friedlaender, Ari S., Frisch-Nwakanma, Heidrun, Froján, Christopher Barrio, Gjerde, Kristina M., Glowka, Lyle, Godley, Brendan J., Gonzalez-Solis, Jacob, Granadeiro, José Pedro, Gunn, Vikki, Hashimoto, Yuriko, Hawkes, Lucy, Hays, Graeme C., Hazin, Carolina, Jimenez, Jorge, Johnson, David E., Luschi, Paolo, Maxwell, Sara M., McClellan, Catherine, Modest, Michelle, Sciara, Giuseppe Notarbartolo Di, Palacio, Alejandro Herrero, Palacios, Daniel M., Pauly, Andrea, Rayner, Matt, ALan Rees, Salazar, Erick Ross, Secor, David, Sequeira, Ana M. M., Spalding, Mark, Spina, Fernando, Parijs, Sofie Van, Wallace, Bryan, Varo-Cruz, Nuria, Virtue, Melanie, Weimerskirch, Henri, Wilson, Laurie, Woodward, Bill, and Halpin, Patrick N.
- Abstract
(1) Search string to identify papers related to migratory connectivity in the ocean, (2) MiCO Species List, and (3) Weblinks for online resources
- Published
- 2019
- Full Text
- View/download PDF
39. Outstanding challenges in the transferability of ecological models
- Author
-
Yates, Katherine L., Bouchet, Phil J., Caley, M Julian, Mengersen, Kerrie, Randin, Christophe F., Parnell, Stephen, Fielding, Alan H., Bamford, Andrew J., Ban, Stephen, Barbosa, A Márcia, Dormann, Carsten F., Elith, Jane, Embling, Clare B., Ervin, Gary N., Fisher, Rebecca, Gould, Susan, Graf, Roland Felix, Gregr, Edward J., Halpin, Patrick N., Heikkinen, Risto K., Heinänen, Stefan, Jones, Alice R., Krishnakumar, Periyadan K., Lauria, Valentina, Lozano-Montes, Hector, Mannocci, Laura, Mellin, Camille, Mesgaran, Mohsen B., Moreno-Amat, Elena, Mormede, Sophie, Novaczek, Emilie, Oppel, Steffen, Ortuño Crespo, Guillermo, Peterson, A. Townsend, Rapacciuolo, Giovanni, Roberts, Jason J., Ross, Rebecca E., Scales, Kylie L., Schoeman, David, Snelgrove, Paul, Sundblad, Göran, Thuiller, Wilfried, Torres, Leigh G., Verbruggen, Heroen, Wang, Lifei, Wenger, Seth, Whittingham, Mark J., Zharikov, Yuri, Zurell, Damaris, Sequeira, Ana M. M., Yates, Katherine L., Bouchet, Phil J., Caley, M Julian, Mengersen, Kerrie, Randin, Christophe F., Parnell, Stephen, Fielding, Alan H., Bamford, Andrew J., Ban, Stephen, Barbosa, A Márcia, Dormann, Carsten F., Elith, Jane, Embling, Clare B., Ervin, Gary N., Fisher, Rebecca, Gould, Susan, Graf, Roland Felix, Gregr, Edward J., Halpin, Patrick N., Heikkinen, Risto K., Heinänen, Stefan, Jones, Alice R., Krishnakumar, Periyadan K., Lauria, Valentina, Lozano-Montes, Hector, Mannocci, Laura, Mellin, Camille, Mesgaran, Mohsen B., Moreno-Amat, Elena, Mormede, Sophie, Novaczek, Emilie, Oppel, Steffen, Ortuño Crespo, Guillermo, Peterson, A. Townsend, Rapacciuolo, Giovanni, Roberts, Jason J., Ross, Rebecca E., Scales, Kylie L., Schoeman, David, Snelgrove, Paul, Sundblad, Göran, Thuiller, Wilfried, Torres, Leigh G., Verbruggen, Heroen, Wang, Lifei, Wenger, Seth, Whittingham, Mark J., Zharikov, Yuri, Zurell, Damaris, and Sequeira, Ana M. M.
- Abstract
Predictive models are central to many scientific disciplines and vital for informing management in a rapidly changing world. However, limited understanding of the accuracy and precision of models transferred to novel conditions (their 'transferability') undermines confidence in their predictions. Here, 50 experts identified priority knowledge gaps which, if filled, will most improve model transfers. These are summarized into six technical and six fundamental challenges, which underlie the combined need to intensify research on the determinants of ecological predictability, including species traits and data quality, and develop best practices for transferring models. Of high importance is the identification of a widely applicable set of transferability metrics, with appropriate tools to quantify the sources and impacts of prediction uncertainty under novel conditions.
- Published
- 2019
40. The importance of sample size in marine megafauna tagging studies
- Author
-
Australian Research Council, Australian Institute of Marine Science, Australian Government, University of Western Australia, King Abdullah University of Science and Technology, Sequeira, Ana M. M., Heupel, M. R., Lea, M. A., Eguíluz, Víctor M., Duarte, Carlos M., Meekan, Mark G., Thums, M., Calich, H. J., Carmichael, R. H., Costa, Daniel P., Ferreira, L. C., Fernández-Gracia, Juan, Harcourt, R., Harrison, A. L., Jonsen, Ian D., McMahon, Clive R., Sims, David W., Wilson, R. P., Hays, Graeme C., Australian Research Council, Australian Institute of Marine Science, Australian Government, University of Western Australia, King Abdullah University of Science and Technology, Sequeira, Ana M. M., Heupel, M. R., Lea, M. A., Eguíluz, Víctor M., Duarte, Carlos M., Meekan, Mark G., Thums, M., Calich, H. J., Carmichael, R. H., Costa, Daniel P., Ferreira, L. C., Fernández-Gracia, Juan, Harcourt, R., Harrison, A. L., Jonsen, Ian D., McMahon, Clive R., Sims, David W., Wilson, R. P., and Hays, Graeme C.
- Abstract
Telemetry is a key, widely used tool to understand marine megafauna distribution, habitat use, behavior, and physiology; however, a critical question remains: “How many animals should be tracked to acquire meaningful data sets?” This question has wide-ranging implications including considerations of statistical power, animal ethics, logistics, and cost. While power analyses can inform sample sizes needed for statistical significance, they require some initial data inputs that are often unavailable. To inform the planning of telemetry and biologging studies of marine megafauna where few or no data are available or where resources are limited, we reviewed the types of information that have been obtained in previously published studies using different sample sizes. We considered sample sizes from one to >100 individuals and synthesized empirical findings, detailing the information that can be gathered with increasing sample sizes. We complement this review with simulations, using real data, to show the impact of sample size when trying to address various research questions in movement ecology of marine megafauna. We also highlight the value of collaborative, synthetic studies to enhance sample sizes and broaden the range, scale, and scope of questions that can be answered.
- Published
- 2019
41. Global spatial risk assessment of sharks under the footprint of fisheries
- Author
-
Natural Environment Research Council (UK), Save Our Seas Foundation, European Commission, Fundação para a Ciência e a Tecnologia (Portugal), Fundação de Apoio à Pesquisa do Rio Grande do Norte, Xunta de Galicia, Australian Respiratory Council, Australian Institute of Marine Science, Queiroz, Nuno, Humphries, Nicolas E., Couto, Ana, Vedor, Marisa, Costa, Ivo da, Sequeira, Ana M. M., Mucientes, Gonzalo, Santos, António M., Abascal, Francisco J., Abercrombie, Debra L., Abrantes, Katya, McAuley, Rory, White, Timothy D., Block, Barbara A., Bradford, Russel W., Brooks, Annabelle, Cortés, Daniel Devia, Macena, Bruno C. L., Rogers, Paul J., Bessudo Lion, Sandra, Berumen, Michael L., Hazin, Fábio H. V., Marshall, Heather, Shillinger, George, Travassos, Paulo, Barnett, Adam, Carlisle, Aaron B., Harcourt, Robert, Campana, Steven E., Fischer, G. Chris, Bezerra, Natalia P. A., Brown, Judith, Doyle, Thomas K., Chapman, Demian D., Bond, Mark E., Southall, Emily J., Braun, Camrin D., Dagorn, Laurent, Richardson, Andrew J., Cochran, Jesse E. M., Bruce, Barry D., Goldsworthy, Simon D., Watanabe, Yuuki Y., Fowler, Mark, Chapple, Taylor K., Sheaves, Marcus, Bonfil, Ramón, Crochelet, Estelle C., Duarte, Carlos M., Brooks, Edward J., Ferreira, Luciana C., Quintero, Lina Maria, Smale, Malcolm J., Pierce, Simon J., Semmens, Jayson M., Ferretti, Francesco, Thums, Michele, Wetherbee, Bradley M., Gennari, Enrico, Forget, Fabian, Chisholm, John, Clarke, Christopher R., Stehfest, Kilian M., Drew, Michael, Klimley, Peter A., Peñaherrera-Palma, Cesar, Harman, Luke, Hammerschlag, Neil, Daly, Ryan, Poisson, Francois, Filmalter, John D., Duffy, Clinton A. J., Heard, Matthew, Erikson, Thor, Zárate, Patricia M., Hussey, Nigel E., Hearn, Alex R., Soria, Marc, Samoilys, Melita, Guttridge, Tristan L., Espinoza, Eduardo, Green, Jonathan R., Fitzpatrick, Richard, Gustafson, Johan A., Hueter, Robert E., Skomal, Gregory B., Patterson, Toby A., Simpson, Samantha J., Gollock, Matthew J., Kock, Alison A., Fontes, Jorges, Guzman, Hector M., Huveneers, Charlie, Lea, James S. E., Vandeperre, Frederic, Francis, Malcolm P., Gallagher, Austin J., Lana, Fernando O., Eguíluz, Víctor M., Pepperell, Julian G., Tolotti, Mariana T., Jewell, Oliver J. D., Meekan, Mark G., Nelson, Emily R., Singh, Sarika, Joyce, Warran, MacDonnell, Anna, Johnson, Ryan, McAllister, Jaime D., Ketchum, James T., Blaison, Antonin V., Holdsworth, John C., Meÿer, Michael A., Jordan, Lance K. B., Holmes, Bonnie J., Thorrold, Simon R., Howey, Lucy A., Keating Daly, Clare A., Bernal, Diego, Jorgensen, Salvador J., Ladino, Felipe, Hoyos, Hoyos, Rowat, David R. L., Sims, David W., Shivji, Mahmood, Morris, John J., Irion, David T., Llewellyn, Fiona, Arauz, Randall, Stevens, John D., Araujo, Gonzalo, Jacoby, David M. P., Tyminski, John P., Papastamatiou, Yannis P., Bach, Pascal, Soler, German, Lyon, Warrick S., Rohner, Christoph A., Sousa, Lara L., Weber, Sam B., Byrne, Michael E., Afonso, Pedro, Koen, Pieter, Acuña-Marrero, David, Towner, Alison, Afonso, André S., Irigoien, Xabier, Williams, Sean, Hays, Graeme C., Snyders, Laurenne B., Clua, Eric, Anders, Darrell, Vaudo, Jeremy J., Natural Environment Research Council (UK), Save Our Seas Foundation, European Commission, Fundação para a Ciência e a Tecnologia (Portugal), Fundação de Apoio à Pesquisa do Rio Grande do Norte, Xunta de Galicia, Australian Respiratory Council, Australian Institute of Marine Science, Queiroz, Nuno, Humphries, Nicolas E., Couto, Ana, Vedor, Marisa, Costa, Ivo da, Sequeira, Ana M. M., Mucientes, Gonzalo, Santos, António M., Abascal, Francisco J., Abercrombie, Debra L., Abrantes, Katya, McAuley, Rory, White, Timothy D., Block, Barbara A., Bradford, Russel W., Brooks, Annabelle, Cortés, Daniel Devia, Macena, Bruno C. L., Rogers, Paul J., Bessudo Lion, Sandra, Berumen, Michael L., Hazin, Fábio H. V., Marshall, Heather, Shillinger, George, Travassos, Paulo, Barnett, Adam, Carlisle, Aaron B., Harcourt, Robert, Campana, Steven E., Fischer, G. Chris, Bezerra, Natalia P. A., Brown, Judith, Doyle, Thomas K., Chapman, Demian D., Bond, Mark E., Southall, Emily J., Braun, Camrin D., Dagorn, Laurent, Richardson, Andrew J., Cochran, Jesse E. M., Bruce, Barry D., Goldsworthy, Simon D., Watanabe, Yuuki Y., Fowler, Mark, Chapple, Taylor K., Sheaves, Marcus, Bonfil, Ramón, Crochelet, Estelle C., Duarte, Carlos M., Brooks, Edward J., Ferreira, Luciana C., Quintero, Lina Maria, Smale, Malcolm J., Pierce, Simon J., Semmens, Jayson M., Ferretti, Francesco, Thums, Michele, Wetherbee, Bradley M., Gennari, Enrico, Forget, Fabian, Chisholm, John, Clarke, Christopher R., Stehfest, Kilian M., Drew, Michael, Klimley, Peter A., Peñaherrera-Palma, Cesar, Harman, Luke, Hammerschlag, Neil, Daly, Ryan, Poisson, Francois, Filmalter, John D., Duffy, Clinton A. J., Heard, Matthew, Erikson, Thor, Zárate, Patricia M., Hussey, Nigel E., Hearn, Alex R., Soria, Marc, Samoilys, Melita, Guttridge, Tristan L., Espinoza, Eduardo, Green, Jonathan R., Fitzpatrick, Richard, Gustafson, Johan A., Hueter, Robert E., Skomal, Gregory B., Patterson, Toby A., Simpson, Samantha J., Gollock, Matthew J., Kock, Alison A., Fontes, Jorges, Guzman, Hector M., Huveneers, Charlie, Lea, James S. E., Vandeperre, Frederic, Francis, Malcolm P., Gallagher, Austin J., Lana, Fernando O., Eguíluz, Víctor M., Pepperell, Julian G., Tolotti, Mariana T., Jewell, Oliver J. D., Meekan, Mark G., Nelson, Emily R., Singh, Sarika, Joyce, Warran, MacDonnell, Anna, Johnson, Ryan, McAllister, Jaime D., Ketchum, James T., Blaison, Antonin V., Holdsworth, John C., Meÿer, Michael A., Jordan, Lance K. B., Holmes, Bonnie J., Thorrold, Simon R., Howey, Lucy A., Keating Daly, Clare A., Bernal, Diego, Jorgensen, Salvador J., Ladino, Felipe, Hoyos, Hoyos, Rowat, David R. L., Sims, David W., Shivji, Mahmood, Morris, John J., Irion, David T., Llewellyn, Fiona, Arauz, Randall, Stevens, John D., Araujo, Gonzalo, Jacoby, David M. P., Tyminski, John P., Papastamatiou, Yannis P., Bach, Pascal, Soler, German, Lyon, Warrick S., Rohner, Christoph A., Sousa, Lara L., Weber, Sam B., Byrne, Michael E., Afonso, Pedro, Koen, Pieter, Acuña-Marrero, David, Towner, Alison, Afonso, André S., Irigoien, Xabier, Williams, Sean, Hays, Graeme C., Snyders, Laurenne B., Clua, Eric, Anders, Darrell, and Vaudo, Jeremy J.
- Abstract
Effective ocean management and the conservation of highly migratory species depend on resolving the overlap between animal movements and distributions, and fishing effort. However, this information is lacking at a global scale. Here we show, using a big-data approach that combines satellite-tracked movements of pelagic sharks and global fishing fleets, that 24% of the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries. Space-use hotspots of commercially valuable sharks and of internationally protected species had the highest overlap with longlines (up to 76% and 64%, respectively), and were also associated with significant increases in fishing effort. We conclude that pelagic sharks have limited spatial refuge from current levels of fishing effort in marine areas beyond national jurisdictions (the high seas). Our results demonstrate an urgent need for conservation and management measures at high-seas hotspots of shark space use, and highlight the potential of simultaneous satellite surveillance of megafauna and fishers as a tool for near-real-time, dynamic management.
- Published
- 2019
42. Animal-borne telemetry: An integral component of the ocean observing toolkit
- Author
-
Harcourt, Rob, Sequeira, Ana M. M., Zhang, Xuelei, Roquet, Fabien, Komatsu, Kosei, Heupel, Michelle, McMahon, Clive R., Whoriskey, Fred, Meekan, Mark G., Carroll, Gemma, Brodie, Stephanie, Simpfendorfer, Colin, Hindell, Mark, Jonsen, Ian D., Costa, Daniel P., Block, Barbara A., Muelbert, Monica M. C., Woodward, Bill, Weise, Mike, Aarestrup, Kim, Biuw, Mark, Boehme, Lars, Bograd, Steven J., Cazau, Dorian, Charrassin, Jean-Benoit, Cooke, Steven J., Cowley, Paul, Bruyn, P. J. Nico de, Jeanniard du Dot, Tiphanie, Duarte, Carlos M., Eguíluz, Víctor M., Ferreira, Luciana C., Fernández-Gracia, Juan, Goetz, Kimberly, Goto, Yusuke, Guinet, Christophe, Hammill, Mike, Hays, Graeme C., Hazen, Elliott L., Hückstädt, Luis A., Huveneers, Charlie, Iverson, Sara, Jaaman, Saifullah Arifin, Kittiwattanawong, Kongkiat, Kovacs, Kit M., Lydersen, Christian, Moltmann, Tim, Naruoka, Masaru, Phillips, Lachlan, Picard, Baptiste, Queiroz, Nuno, Reverdin, Gilles, Sato, Katsufumi, Sims, David W., Thorstad, Eva M., Michele Thums, Michele, Treasure, Anne M., Trites, Andrew W., Williams, Guys D., Yonehara, Yoshinari, Fedak, Mike A., Harcourt, Rob, Sequeira, Ana M. M., Zhang, Xuelei, Roquet, Fabien, Komatsu, Kosei, Heupel, Michelle, McMahon, Clive R., Whoriskey, Fred, Meekan, Mark G., Carroll, Gemma, Brodie, Stephanie, Simpfendorfer, Colin, Hindell, Mark, Jonsen, Ian D., Costa, Daniel P., Block, Barbara A., Muelbert, Monica M. C., Woodward, Bill, Weise, Mike, Aarestrup, Kim, Biuw, Mark, Boehme, Lars, Bograd, Steven J., Cazau, Dorian, Charrassin, Jean-Benoit, Cooke, Steven J., Cowley, Paul, Bruyn, P. J. Nico de, Jeanniard du Dot, Tiphanie, Duarte, Carlos M., Eguíluz, Víctor M., Ferreira, Luciana C., Fernández-Gracia, Juan, Goetz, Kimberly, Goto, Yusuke, Guinet, Christophe, Hammill, Mike, Hays, Graeme C., Hazen, Elliott L., Hückstädt, Luis A., Huveneers, Charlie, Iverson, Sara, Jaaman, Saifullah Arifin, Kittiwattanawong, Kongkiat, Kovacs, Kit M., Lydersen, Christian, Moltmann, Tim, Naruoka, Masaru, Phillips, Lachlan, Picard, Baptiste, Queiroz, Nuno, Reverdin, Gilles, Sato, Katsufumi, Sims, David W., Thorstad, Eva M., Michele Thums, Michele, Treasure, Anne M., Trites, Andrew W., Williams, Guys D., Yonehara, Yoshinari, and Fedak, Mike A.
- Abstract
Animal telemetry is a powerful tool for observing marine animals and the physical environments that they inhabit, from coastal and continental shelf ecosystems to polar seas and open oceans. Satellite-linked biologgers and networks of acoustic receivers allow animals to be reliably monitored over scales of tens of meters to thousands of kilometers, giving insight into their habitat use, home range size, the phenology of migratory patterns and the biotic and abiotic factors that drive their distributions. Furthermore, physical environmental variables can be collected using animals as autonomous sampling platforms, increasing spatial and temporal coverage of global oceanographic observation systems. The use of animal telemetry, therefore, has the capacity to provide measures from a suite of essential ocean variables (EOVs) for improved monitoring of Earth's oceans. Here we outline the design features of animal telemetry systems, describe current applications and their benefits and challenges, and discuss future directions. We describe new analytical techniques that improve our ability to not only quantify animal movements but to also provide a powerful framework for comparative studies across taxa. We discuss the application of animal telemetry and its capacity to collect biotic and abiotic data, how the data collected can be incorporated into ocean observing systems, and the role these data can play in improved ocean management.
- Published
- 2019
43. Animal-Borne Telemetry: An Integral Component of the Ocean Observing Toolkit
- Author
-
Harcourt, Rob, primary, Sequeira, Ana M. M., additional, Zhang, Xuelei, additional, Roquet, Fabien, additional, Komatsu, Kosei, additional, Heupel, Michelle, additional, McMahon, Clive, additional, Whoriskey, Fred, additional, Meekan, Mark, additional, Carroll, Gemma, additional, Brodie, Stephanie, additional, Simpfendorfer, Colin, additional, Hindell, Mark, additional, Jonsen, Ian, additional, Costa, Daniel P., additional, Block, Barbara, additional, Muelbert, Mônica, additional, Woodward, Bill, additional, Weise, Mike, additional, Aarestrup, Kim, additional, Biuw, Martin, additional, Boehme, Lars, additional, Bograd, Steven J., additional, Cazau, Dorian, additional, Charrassin, Jean-Benoit, additional, Cooke, Steven J., additional, Cowley, Paul, additional, de Bruyn, P. J. Nico, additional, Jeanniard du Dot, Tiphaine, additional, Duarte, Carlos, additional, Eguíluz, Víctor M., additional, Ferreira, Luciana C., additional, Fernández-Gracia, Juan, additional, Goetz, Kimberly, additional, Goto, Yusuke, additional, Guinet, Christophe, additional, Hammill, Mike, additional, Hays, Graeme C., additional, Hazen, Elliott L., additional, Hückstädt, Luis A., additional, Huveneers, Charlie, additional, Iverson, Sara, additional, Jaaman, Saifullah Arifin, additional, Kittiwattanawong, Kongkiat, additional, Kovacs, Kit M., additional, Lydersen, Christian, additional, Moltmann, Tim, additional, Naruoka, Masaru, additional, Phillips, Lachlan, additional, Picard, Baptiste, additional, Queiroz, Nuno, additional, Reverdin, Gilles, additional, Sato, Katsufumi, additional, Sims, David W., additional, Thorstad, Eva B., additional, Thums, Michele, additional, Treasure, Anne M., additional, Trites, Andrew W., additional, Williams, Guy D., additional, Yonehara, Yoshinari, additional, and Fedak, Mike A., additional
- Published
- 2019
- Full Text
- View/download PDF
44. Outstanding Challenges in the Transferability of Ecological Models
- Author
-
Yates, Katherine L., Bouchet, Phil J., Caley, M. Julian, Mengersen, Kerrie, Randin, Christophe F., Parnell, Stephen, Fielding, Alan H., Bamford, Andrew J., Ban, Stephen, Marcia Barbosa, A., Dormann, Carsten F., Elith, Jane, Embling, Clare B., Ervin, Gary N., Fisher, Rebecca, Gould, Susan, Graf, Roland F., Gregr, Edward J., Halpin, Patrick N., Heikkinen, Risto K., Heinanen, Stefan, Jones, Alice R, Krishnakumar, Periyadan K., Lauria, Valentina, Lozano-montes, Hector, Mannocci, Laura, Mellin, Camille, Mesgaran, Mohsen B., Moreno-amat, Elena, Mormede, Sophie, Novaczek, Emilie, Oppel, Steffen, Crespo, Guillermo Ortuno, Peterson, A. Townsend, Rapacciuolo, Giovanni, Roberts, Jason J., Ross, Rebecca E., Scales, Kylie L., Schoeman, David, Snelgrove, Paul, Sundblad, Goran, Thuiller, Wilfried, Torres, Leigh G., Verbruggen, Heroen, Wang, Lifei, Wenger, Seth, Whittingham, Mark J., Zharikov, Yuri, Zurell, Damaris, Sequeira, Ana M. M., Yates, Katherine L., Bouchet, Phil J., Caley, M. Julian, Mengersen, Kerrie, Randin, Christophe F., Parnell, Stephen, Fielding, Alan H., Bamford, Andrew J., Ban, Stephen, Marcia Barbosa, A., Dormann, Carsten F., Elith, Jane, Embling, Clare B., Ervin, Gary N., Fisher, Rebecca, Gould, Susan, Graf, Roland F., Gregr, Edward J., Halpin, Patrick N., Heikkinen, Risto K., Heinanen, Stefan, Jones, Alice R, Krishnakumar, Periyadan K., Lauria, Valentina, Lozano-montes, Hector, Mannocci, Laura, Mellin, Camille, Mesgaran, Mohsen B., Moreno-amat, Elena, Mormede, Sophie, Novaczek, Emilie, Oppel, Steffen, Crespo, Guillermo Ortuno, Peterson, A. Townsend, Rapacciuolo, Giovanni, Roberts, Jason J., Ross, Rebecca E., Scales, Kylie L., Schoeman, David, Snelgrove, Paul, Sundblad, Goran, Thuiller, Wilfried, Torres, Leigh G., Verbruggen, Heroen, Wang, Lifei, Wenger, Seth, Whittingham, Mark J., Zharikov, Yuri, Zurell, Damaris, and Sequeira, Ana M. M.
- Abstract
Predictive models are central to many scientific disciplines and vital for informing management in a rapidly changing world. However, limited understanding of the accuracy and precision of models transferred to novel conditions (their 'transferability') undermines confidence in their predictions. Here, 50 experts identified priority knowledge gaps which, if filled, will most improve model transfers. These are summarized into six technical and six fundamental challenges, which underlie the combined need to intensify research on the determinants of ecological predictability, including species traits and data quality, and develop best practices for transferring models. Of high importance is the identification of a widely applicable set of transferability metrics, with appropriate tools to quantify the sources and impacts of prediction uncertainty under novel conditions.
- Published
- 2018
- Full Text
- View/download PDF
45. Convergence of marine megafauna movement patterns in coastal and open oceans
- Author
-
Sequeira, Ana M. M., Rodríguez, Jorge P., Eguíluz, Víctor M., Harcourt, Robert, Hindell, Mark, Sims, David W., Duarte, Carlos M., Costa, Daniel P., Fernández-Gracia, Juan, Ferreira, Luciana C., Hays, Graeme, Heupel, Michelle R., Meekan, Mark G., Aven, Allen, Bailleul, Frédéric, Baylis, Alastair M. M., Berumen, Michael L., Braun, Camrin D., Burns, Jennifer, Caley, M. Julian, Campbell, R., Carmichael, Ruth H., Clua, Eric, Einoder, Luke D., Friedlaender, Ari S., Goebel, Michael E., Goldsworthy, Simon D., Guinet, Christophe, Gunn, John, Hamer, D., Hammerschlag, Neil, Hammill, Mike O., Hückstädt, Luis A., Humphries, Nicolas E., Lea, Mary-Anne, Lowther, Andrew D., Mackay, Alice, McHuron, Elizabeth, McKenzie, J., McLeay, Lachlan, McMahon, Cathy R., Mengersen, Kerrie, Muelbert, Monica M. C., Pagano, Anthony M., Page, B., Queiroz, N., Robinson, Patrick W., Shaffer, Scott A., Shivji, Mahmood, Skomal, Gregory B., Thorrold, Simon R., Villegas-Amtmann, Stella, Weise, Michael, Wells, Randall S., Wetherbee, Bradley M., Wiebkin, A., Wienecke, Barbara, Thums, Michele, Sequeira, Ana M. M., Rodríguez, Jorge P., Eguíluz, Víctor M., Harcourt, Robert, Hindell, Mark, Sims, David W., Duarte, Carlos M., Costa, Daniel P., Fernández-Gracia, Juan, Ferreira, Luciana C., Hays, Graeme, Heupel, Michelle R., Meekan, Mark G., Aven, Allen, Bailleul, Frédéric, Baylis, Alastair M. M., Berumen, Michael L., Braun, Camrin D., Burns, Jennifer, Caley, M. Julian, Campbell, R., Carmichael, Ruth H., Clua, Eric, Einoder, Luke D., Friedlaender, Ari S., Goebel, Michael E., Goldsworthy, Simon D., Guinet, Christophe, Gunn, John, Hamer, D., Hammerschlag, Neil, Hammill, Mike O., Hückstädt, Luis A., Humphries, Nicolas E., Lea, Mary-Anne, Lowther, Andrew D., Mackay, Alice, McHuron, Elizabeth, McKenzie, J., McLeay, Lachlan, McMahon, Cathy R., Mengersen, Kerrie, Muelbert, Monica M. C., Pagano, Anthony M., Page, B., Queiroz, N., Robinson, Patrick W., Shaffer, Scott A., Shivji, Mahmood, Skomal, Gregory B., Thorrold, Simon R., Villegas-Amtmann, Stella, Weise, Michael, Wells, Randall S., Wetherbee, Bradley M., Wiebkin, A., Wienecke, Barbara, and Thums, Michele
- Abstract
Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 115 (2018): 3072-3077, doi:10.1073/pnas.1716137115., The extent of increasing anthropogenic impacts on large marine vertebrates partly depends on the animals’ movement patterns. Effective conservation requires identification of the key drivers of movement including intrinsic properties and extrinsic constraints associated with the dynamic nature of the environments the animals inhabit. However, the relative importance of intrinsic versus extrinsic factors remains elusive. We analyse a global dataset of 2.8 million locations from > 2,600 tracked individuals across 50 marine vertebrates evolutionarily separated by millions of years and using different locomotion modes (fly, swim, walk/paddle). Strikingly, movement patterns show a remarkable convergence, being strongly conserved across species and independent of body length and mass, despite these traits ranging over 10 orders of magnitude among the species studied. This represents a fundamental difference between marine and terrestrial vertebrates not previously identified, likely linked to the reduced costs of locomotion in water. Movement patterns were primarily explained by the interaction between species-specific traits and the habitat(s) they move through, resulting in complex movement patterns when moving close to coasts compared to more predictable patterns when moving in open oceans. This distinct difference may be associated with greater complexity within coastal micro-habitats, highlighting a critical role of preferred habitat in shaping marine vertebrate global movements. Efforts to develop understanding of the characteristics of vertebrate movement should consider the habitat(s) through which they move to identify how movement patterns will alter with forecasted severe ocean changes, such as reduced Arctic sea ice cover, sea level rise and declining oxygen content., Workshops funding granted by the UWA Oceans Institute, AIMS, and KAUST. AMMS was supported by an ARC Grant DE170100841 and an IOMRC (UWA, AIMS, CSIRO) fellowship; JPR by MEDC (FPU program, Spain); DWS by UK NERC and Save Our Seas Foundation; NQ by FCT (Portugal); MMCM by a CAPES fellowship (Ministry of Education).
- Published
- 2018
46. Convergence of marine megafauna movement patterns in coastal and open oceans
- Author
-
University of Western Australia, UWA Oceans Institute, Australian Institute of Marine Science, King Abdullah University of Science and Technology, Australian Research Council, Indian Ocean Marine Research Centre, Ministerio de Economía y Competitividad (España), European Commission, Ministerio de Educación, Cultura y Deporte (España), Natural Environment Research Council (UK), Save Our Seas Foundation, Fundação para a Ciência e a Tecnologia (Portugal), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Brasil), Sequeira, Ana M. M., Rodríguez-García, Jorge Pablo, Eguíluz, Víctor M., Harcourt, Robert G., Hindell, Mark A., Sims, David W., Duarte, Carlos M., Costa, Daniel P., Fernández-Gracia, Juan, Ferreira, Luciana, Hays, Graeme C., Heupel, Michelle R., Meekan, Mark G., Aven, Allen M., Bailleul, Fred, Baylis, Alastair, Berumen, Michael L., Braun, Camrin D., Burns, Jennifer, Caley, M. Julian, Campbell, Richard, Carmichael, Ruth H., Clua, Eric, Einoder, Luke, Friedlaender, Ari, Goebel, Mike E., Goldsworthy, Simon D., Guinet, Christophe, Gunn, John, Hamer, Derek, Hammerschlag, Neil, Hammill, Mike O., Hückstädt, Luis A., Humphries, Nicolas E., Lea, Mary-Anne, Lowther, Andrew, Mackay, Alice, McHuron, Elizabeth, McKenzie, Jane, McLeay, Lachlan, McMahon, Clive R., Mengersen, Kerrie R., Muelbert, Monica M. C., Pagano, Anthony M., Page, Bradley, Queiroz, Nuno, Robinson, Patrick W., Shaffer, Scott A., Shivji, Mahmood S., Skomal, Gregory B., Thorrold, Simon R., Villegas-Amtmann, Stella, Weise, Michael, Wells, Randall S., Wetherbee, Bradley M., Wiebkin, Annalise, Wienecke, Barbara, Thums, Michael, University of Western Australia, UWA Oceans Institute, Australian Institute of Marine Science, King Abdullah University of Science and Technology, Australian Research Council, Indian Ocean Marine Research Centre, Ministerio de Economía y Competitividad (España), European Commission, Ministerio de Educación, Cultura y Deporte (España), Natural Environment Research Council (UK), Save Our Seas Foundation, Fundação para a Ciência e a Tecnologia (Portugal), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Brasil), Sequeira, Ana M. M., Rodríguez-García, Jorge Pablo, Eguíluz, Víctor M., Harcourt, Robert G., Hindell, Mark A., Sims, David W., Duarte, Carlos M., Costa, Daniel P., Fernández-Gracia, Juan, Ferreira, Luciana, Hays, Graeme C., Heupel, Michelle R., Meekan, Mark G., Aven, Allen M., Bailleul, Fred, Baylis, Alastair, Berumen, Michael L., Braun, Camrin D., Burns, Jennifer, Caley, M. Julian, Campbell, Richard, Carmichael, Ruth H., Clua, Eric, Einoder, Luke, Friedlaender, Ari, Goebel, Mike E., Goldsworthy, Simon D., Guinet, Christophe, Gunn, John, Hamer, Derek, Hammerschlag, Neil, Hammill, Mike O., Hückstädt, Luis A., Humphries, Nicolas E., Lea, Mary-Anne, Lowther, Andrew, Mackay, Alice, McHuron, Elizabeth, McKenzie, Jane, McLeay, Lachlan, McMahon, Clive R., Mengersen, Kerrie R., Muelbert, Monica M. C., Pagano, Anthony M., Page, Bradley, Queiroz, Nuno, Robinson, Patrick W., Shaffer, Scott A., Shivji, Mahmood S., Skomal, Gregory B., Thorrold, Simon R., Villegas-Amtmann, Stella, Weise, Michael, Wells, Randall S., Wetherbee, Bradley M., Wiebkin, Annalise, Wienecke, Barbara, and Thums, Michael
- Abstract
The extent of increasing anthropogenic impacts on large marine vertebrates partly depends on the animals’ movement patterns. Effective conservation requires identification of the key drivers of movement including intrinsic properties and extrinsic constraints associated with the dynamic nature of the environments the animals inhabit. However, the relative importance of intrinsic versus extrinsic factors remains elusive. We analyze a global dataset of ∼2.8 million locations from >2,600 tracked individuals across 50 marine vertebrates evolutionarily separated by millions of years and using different locomotion modes (fly, swim, walk/paddle). Strikingly, movement patterns show a remarkable convergence, being strongly conserved across species and independent of body length and mass, despite these traits ranging over 10 orders of magnitude among the species studied. This represents a fundamental difference between marine and terrestrial vertebrates not previously identified, likely linked to the reduced costs of locomotion in water. Movement patterns were primarily explained by the interaction between species-specific traits and the habitat(s) they move through, resulting in complex movement patterns when moving close to coasts compared with more predictable patterns when moving in open oceans. This distinct difference may be associated with greater complexity within coastal microhabitats, highlighting a critical role of preferred habitat in shaping marine vertebrate global movements. Efforts to develop understanding of the characteristics of vertebrate movement should consider the habitat(s) through which they move to identify how movement patterns will alter with forecasted severe ocean changes, such as reduced Arctic sea ice cover, sea level rise, and declining oxygen content.
- Published
- 2018
47. Quantifying effects of tracking data bias on species distribution models.
- Author
-
O'Toole, Malcolm, Queiroz, Nuno, Humphries, Nicolas E., Sims, David W., Sequeira, Ana M. M., and Freckleton, Robert
- Subjects
SPECIES distribution ,ZOOGEOGRAPHY ,DATA distribution ,TRACKING & trailing ,GLOBAL Positioning System ,SPATIAL variation - Abstract
Telemetry datasets are becoming increasingly large and covering a wider range of species using different technologies (GPS, Argos, light‐based geolocation). Together, such datasets hold tremendous potential to understand species' space use at broad spatial scale, through the development of species distribution or habitat suitability models (SDMs) to predict environmental dependencies of species across space and time. However, tracking datasets can be heavily biased and an assessment of how such biases affect SDM predictions, and therefore, our interpretation of animal distributions is lacking.We generated simulated tracks based on predetermined environmental values for a random predator and a central place forager, and then sampled positions from those tracks based on a combination of five common biases in tracking datasets: (a) tagging location; (b) tracking device; (c) data gaps within tracks; (d) premature tag detachment (or failure) and (e) different processing methods. We then used 240 combinations of the resulting biased simulated datasets to develop binomial generalised linear (GLM) and additive (GAM) models to estimate habitat suitability in different environmental sets (cool deep, cool coastal, warm deep and warm coastal environments).Our results show that tagging location and length of tracks have the largest effects in decreasing model performance, but that these biases can be overcome by adding a small percentage of additional, relatively less biased tracks to the dataset. In comparison, the effects from all other biases were almost negligible, including for low resolution tracking datasets for which sufficient tracks are available. We also highlight the need for a cautionary approach when using processing methods that can introduce other biases (e.g. interpolated locations). Similar trends were obtained for the random predator and the central place forager, but with relatively lower model performance for the latter.We provide evidence that even non‐GPS tracking datasets can be readily used to improve the knowledge of large‐scale space use by species without the need for detailed processing and tracking reconstruction. This is especially relevant in the current context of rapid increase in data acquisition and the urgent need to address the large spatial scale ecological consequences of global change. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
48. Transferring biodiversity models for conservation: Opportunities and challenges
- Author
-
Sequeira, Ana M. M., primary, Bouchet, Phil J., additional, Yates, Katherine L., additional, Mengersen, Kerrie, additional, and Caley, M. Julian, additional
- Published
- 2018
- Full Text
- View/download PDF
49. How Big Data Fast Tracked Human Mobility Research and the Lessons for Animal Movement Ecology
- Author
-
Thums, Michele, primary, Fernández-Gracia, Juan, additional, Sequeira, Ana M. M., additional, Eguíluz, Víctor M., additional, Duarte, Carlos M., additional, and Meekan, Mark G., additional
- Published
- 2018
- Full Text
- View/download PDF
50. The Ecology of Human Mobility
- Author
-
King Abdullah University of Science and Technology, Australian Institute of Marine Science, Standford University, Indian Ocean Marine Research Centre, National Institutes of Health (US), European Commission, Ministerio de Economía y Competitividad (España), Meekan, Mark G., Duarte, Carlos M., Fernández-Gracia, Juan, Thums, Michael, Sequeira, Ana M. M., Harcourt, Robert G., Eguíluz, Víctor M., King Abdullah University of Science and Technology, Australian Institute of Marine Science, Standford University, Indian Ocean Marine Research Centre, National Institutes of Health (US), European Commission, Ministerio de Economía y Competitividad (España), Meekan, Mark G., Duarte, Carlos M., Fernández-Gracia, Juan, Thums, Michael, Sequeira, Ana M. M., Harcourt, Robert G., and Eguíluz, Víctor M.
- Abstract
Mobile phones and other geolocated devices have produced unprecedented volumes of data on human movement. Analysis of pooled individual human trajectories using big data approaches has revealed a wealth of emergent features that have ecological parallels in animals across a diverse array of phenomena including commuting, epidemics, the spread of innovations and culture, and collective behaviour. Movement ecology, which explores how animals cope with and optimize variability in resources, has the potential to provide a theoretical framework to aid an understanding of human mobility and its impacts on ecosystems. In turn, big data on human movement can be explored in the context of animal movement ecology to provide solutions for urgent conservation problems and management challenges.
- Published
- 2017
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.