71 results on '"Sephton MA"'
Search Results
2. Identification of fossil worm tubes from Phanerozoic hydrothermal vents and cold seeps
- Author
-
Georgieva, MN, Little, CTS, Watson, JS, Sephton, MA, Ball, AD, and Glover, AG
- Abstract
One of the main limitations to understanding the evolutionary history of hydrothermal vent and cold seep communities is the identification of tube fossils from ancient deposits. Tube-dwelling annelids are some of the most conspicuous inhabitants of modern vent and seep ecosystems, and ancient vent and seep tubular fossils are usually considered to have been made by annelids. However, the taxonomic affinities of many tube fossils from vents and seeps are contentious, or have remained largely undetermined due to difficulties in identification. In this study, we make a detailed chemical (Fourier-transform infrared spectroscopy and pyrolysis gas-chromatography mass-spectrometry) and morphological assessment of modern annelid tubes from six families, and fossil tubes (seven tube types from the Cenozoic, 12 Mesozoic and four Palaeozoic) from hydrothermal vent and cold seep environments. Characters identified from these investigations were used to explore for the first time the systematics of ancient vent and seep tubes within a cladistic framework. Results reveal details of the compositions and ultrastructures of modern tubes, and also suggest that two types of tubes from ancient vent localities were made by the annelid family Siboglinidae, which often dominates modern vents and seeps. Our results also highlight that several vent and seep tube fossils formerly thought to have been made by annelids cannot be assigned an annelid affiliation with any certainty. The findings overall improve the level of quality control with regard to interpretations of fossil tubes, and, most importantly, suggest that siboglinids likely occupied Mesozoic vents and seeps, greatly increasing the minimum age of the clade relative to earlier molecular estimates.
- Published
- 2019
3. The Potential Science and Engineering Value of Samples Delivered to Earth by Mars Sample Return
- Author
-
Beaty, DW, Grady, MM, McSween, HY, Sefton-Nash, E, Carrier, BL, Altieri, Y, Amalin, Y, Ammannito, E, Anand, M, Benning, LG, Bishop, JL, Borg, LE, Boucher, D, Brucato, JR, Busemann, H, Campell, KA, Czaja, AD, Debaille, V, Des Marais, DJ, Dixon, M, Ehlmann, BL, Farmer, JD, Fernandez-Remolar, DC, Filiberto, J, Fogarty, J, Glavin, DP, Goreva, YS, Hallis, LJ, Harrington, AD, Hausrath, EM, Herd, CDK, Horgan, B, Humayan, M, Kleine, T, Kleinhenz, J, Mackelprang, R, Mangold, N, Mayhew, LE, McCoy, JT, McCubbin, FM, McLennan, SM, Moser, DE, Moynier, F, Mustard, JF, Niles, PB, Ori, GG, Raulin, F, Rettberg, P, Rucker, MA, Schmitz, N, Schwenzer, SP, Sephton, MA, Shaheen, R, Sharp, ZD, Shuster, DL, Silstrom, S, Smith, CL, Spry, JA, Steele, A, Swindle, TD, ten Kate, IL, Tosca, NJ, Usui, T, Van Kranendonk, MJ, Wadhwa, M, Weiss, BP, Werner, SC, Westall, F, Wheeler, RM, Zipfel, J, Zorzano, MP, Beaty, DW, Grady, MM, McSween, HY, Sefton-Nash, E, Carrier, BL, Altieri, Y, Amalin, Y, Ammannito, E, Anand, M, Benning, LG, Bishop, JL, Borg, LE, Boucher, D, Brucato, JR, Busemann, H, Campell, KA, Czaja, AD, Debaille, V, Des Marais, DJ, Dixon, M, Ehlmann, BL, Farmer, JD, Fernandez-Remolar, DC, Filiberto, J, Fogarty, J, Glavin, DP, Goreva, YS, Hallis, LJ, Harrington, AD, Hausrath, EM, Herd, CDK, Horgan, B, Humayan, M, Kleine, T, Kleinhenz, J, Mackelprang, R, Mangold, N, Mayhew, LE, McCoy, JT, McCubbin, FM, McLennan, SM, Moser, DE, Moynier, F, Mustard, JF, Niles, PB, Ori, GG, Raulin, F, Rettberg, P, Rucker, MA, Schmitz, N, Schwenzer, SP, Sephton, MA, Shaheen, R, Sharp, ZD, Shuster, DL, Silstrom, S, Smith, CL, Spry, JA, Steele, A, Swindle, TD, ten Kate, IL, Tosca, NJ, Usui, T, Van Kranendonk, MJ, Wadhwa, M, Weiss, BP, Werner, SC, Westall, F, Wheeler, RM, Zipfel, J, and Zorzano, MP
- Abstract
Return of samples from the surface of Mars has been a goal of the international Mars science community for many years. Affirmation by NASA and ESA of the importance of Mars exploration led the agencies to establish the international MSR Objectives and Samples Team (iMOST). The purpose of the team is to re-evaluate and update the sample-related science and engineering objectives of a Mars Sample Return (MSR) campaign. The iMOST team has also undertaken to define the measurements and the types of samples that can best address the objectives. Seven objectives have been defined for MSR, traceable through two decades of previously published international priorities. The first two objectives are further divided into sub-objectives. Within the main part of the report, the importance to science and/or engineering of each objective is described, critical measurements that would address the objectives are specified, and the kinds of samples that would be most likely to carry key information are identified. These seven objectives provide a framework for demonstrating how the first set of returned martian samples would impact future martian science and exploration. They also have implications for how analogous investigations might be conducted for samples returned by future missions from other solar system bodies, especially those that may harbor biologically relevant or sensitive material, such as Ocean Worlds (Europa, Enceladus, Titan) and others., This report is freely available to read and download, NHM Repository
- Published
- 2019
4. Detecting non-volatile life- and non-life-derived organics in a carbonaceous chondrite analogue with a new multiplex immunoassay and its relevance for planetary exploration
- Author
-
Moreno-Paz, M, Gómez-Cifuentes, A, Ruiz-Bermejo, M, Hosftetter, O, Maqueira, Á, Morais, S, Sephton, MA, Knopp, D, Parro, V, and Science and Technology Facilities Council (STFC)
- Subjects
Life Sciences & Biomedicine - Other Topics ,EXTRATERRESTRIAL AMINO-ACIDS ,Multiplex inhibitory/competitive immunoassay ,Kerogen type IV ,Astronomy & Astrophysics ,MOLECULES ,Planetary exploration ,0402 Geochemistry ,Geosciences, Multidisciplinary ,Biology ,Molecular biomarkers ,Science & Technology ,INSTRUMENT ,MARS ,Geology ,D- and L- aromatic amino acids ,MARKER CHIP ,MICROARRAYS ,0201 Astronomical And Space Sciences ,LINKED IMMUNOSORBENT ASSAYS ,0403 Geology ,Life detection ,Physical Sciences ,ANTIBODIES ,RADIATION ,COMMUNITIES ,Life Sciences & Biomedicine - Abstract
Among the potential martian molecular targets are those supplied by meteoritic carbonaceous chondrites such as amino acids and polyaromatic hydrocarbons (PAHs), or true biomarkers by any hypothetical Martian biota (aromatic amino acids, steroid and triterpene molecules, peptides). Heat extraction and pyrolysis based methods currently used in planetary exploration are highly aggressive and very often modify the target molecules making a cumbersome task their identification. We have developed and validated a mild, non-destructive, multiplex competitive/inhibitory microarray immunoassay and its implementation in the SOLID (Signs of Life Detector) instrument for simultaneous detection of several organic molecules relevant for Mars exploration and environmental monitoring. A multiplex inhibitory immunoassay with a set of highly specific and sensitive antibodies capable to distinguish between D and L aromatic amino acids (Phe, Tyr, Trp), benzo[a]pyrene (BAP), pentachlorophenol or sulfone-containing aromatics, was validated in SOLID instrument for the analysis of kerogen samples as analogues of refractory organic material in carbonaceous chondrites or even Mars organics. Most of the antibodies exhibited sensitivities at 1-10 ppb level and some of them even at ppt. The multiplex immunoassay allowed the detection of BAP as well as aromatic sulfones in a water/methanol extract of an early cretaceous sample (c.a. 100 My) enriched in type IV kerogen. No L/D aromatic amino acids were detected, reflecting the high maturity and the absence of chemical groups. The results demonstrated once more the feasibility of multiplex inhibitory immunoassays and its potential use for in situ analytical instruments in planetary exploration and environmental monitoring.
- Published
- 2018
5. Effect of hydration state of Martian perchlorate salts on their decomposition temperatures during thermal extraction
- Author
-
Royle, SH, Montgomery, W, Kounaves, SP, Sephton, MA, and Science and Technology Facilities Council (STFC)
- Subjects
Geochemistry & Geophysics ,Science & Technology ,DELIQUESCENCE ,PHASE ,water ,MARS ,SITE ,ROVER ,perchlorate ,pyrolysis ,SOIL ,SAM ,Physical Sciences ,AQUEOUS-SOLUTIONS ,MISSIONS ,MSL ,GALE CRATER - Abstract
Three Mars missions have analyzed the composition of surface samples using thermal extraction techniques. The temperatures of decomposition have been used as diagnostic information for the materials present. One compound of great current interest is perchlorate, a relatively recently discovered component of Mars' surface geochemistry that leads to deleterious effects on organic matter during thermal extraction. Knowledge of the thermal decomposition behavior of perchlorate salts is essential for mineral identification and possible avoidance of confounding interactions with organic matter. We have performed a series of experiments which reveal that the hydration state of magnesium perchlorate has a significant effect on decomposition temperature, with differing temperature releases of oxygen corresponding to different perchlorate hydration states (peak of O2 release shifts from 500 to 600°C as the proportion of the tetrahydrate form in the sample increases). Changes in crystallinity/crystal size may also have a secondary effect on the temperature of decomposition, and although these surface effects appear to be minor for our samples further investigation may be warranted. A less than full appreciation of the hydration state of perchlorate salts during thermal extraction analyses could lead to misidentification of the number and the nature of perchlorate phases present.
- Published
- 2017
6. Identification of fossil worm tubes from Phanerozoic hydrothermal vents and cold seeps
- Author
-
Georgieva, MN, Little, CTS, Watson, JS, Sephton, MA, Ball, AD, Glover, AG, Georgieva, MN, Little, CTS, Watson, JS, Sephton, MA, Ball, AD, and Glover, AG
- Published
- 2017
7. Multiple cosmic sources for meteorite macromolecular materials?
- Author
-
Sephton, MA, Watson, JS, Meredith, W, Love, GD, Gilmour, I, and Snape, CE
- Published
- 2015
8. Heat, clay and aromatic units: a mechanism for making macromolecules in the early solar system
- Author
-
Watson, JS and Sephton, MA
- Published
- 2015
9. Perchlorate-induced combustion of organic matter with variable molecular weights: implications for Mars missions
- Author
-
Sephton, MA, Lewis, JMT, Watson, JS, Montgomery, W, and Garnier, C
- Published
- 2014
10. A parent body association for the carbonaceous chondrite groups
- Author
-
Bland, PA, Sephton, MA, Young, ED, Hoffman, E, Franchi, IA, and Berry, FJ
- Abstract
Accepted version
- Published
- 2000
11. Rapid habitability assessment of Mars samples by pyrolysis-FTIR
- Author
-
Gordon, PR, Sephton, MA, and Science and Technology Facilities Council (STFC)
- Subjects
0201 Astronomical And Space Sciences ,FTIR ,Life ,Space and Planetary Science ,Habitability ,technology, industry, and agriculture ,Mars ,Astronomy and Astrophysics ,Astronomy & Astrophysics ,Astrobiology ,Pyrolysis - Abstract
Pyrolysis Fourier transform infrared spectroscopy (pyrolysis FTIR) is a potential sample selection method for Mars Sample Return missions. FTIR spectroscopy can be performed on solid and liquid samples but also on gases following preliminary thermal extraction, pyrolysis or gasification steps. The detection of hydrocarbon and non-hydrocarbon gases can reveal information on sample mineralogy and past habitability of the environment in which the sample was created. The absorption of IR radiation at specific wavenumbers by organic functional groups can indicate the presence and type of any organic matter present.Here we assess the utility of pyrolysis-FTIR to release water, carbon dioxide, sulfur dioxide and organic matter from Mars relevant materials to enable a rapid habitability assessment of target rocks for sample return. For our assessment a range of minerals were analyzed by attenuated total reflectance FTIR. Subsequently, the mineral samples were subjected to single step pyrolysis and multi step pyrolysis and the products characterised by gas phase FTIR.Data from both single step and multi step pyrolysis-FTIR provide the ability to identify minerals that reflect habitable environments through their water and carbon dioxide responses. Multi step pyrolysis-FTIR can be used to gain more detailed information on the sources of the liberated water and carbon dioxide owing to the characteristic decomposition temperatures of different mineral phases. Habitation can be suggested when pyrolysis-FTIR indicates the presence of organic matter within the sample. Pyrolysis-FTIR, therefore, represents an effective method to assess whether Mars Sample Return target rocks represent habitable conditions and potential records of habitation and can play an important role in sample triage operations.
- Full Text
- View/download PDF
12. Predicting Stability of Barley Straw-Derived Biochars Using Fourier Transform Infrared Spectroscopy.
- Author
-
McCall MA, Watson JS, and Sephton MA
- Abstract
In order to estimate the ability of biochar to sequester carbon as part of greenhouse gas removal technology, there is a need for rapid and accessible estimations of biochar stability. This study employs a novel method using Fourier transform infrared spectroscopy (FTIR) to predict common stability indicators, namely H:C and O:C molar ratios. Biochars derived from barley straw were produced at temperatures from 150 to 700 °C. The greatest compositional changes of the biochars occurred between 200 and 400 °C. All biochars produced at ≥400 °C achieved H:C < 0.7 and O:C < 0.4, indicative of biochars suitable for soil application. Regression models were built using FTIR data to predict H:C and O:C molar ratios. The H:C model produced a coefficient of determination ( R
2 ) of 0.99, mean absolute percentage error (MAPE) 6.86%, and root-mean-square error (RMSE) of 0.07. The O:C model achieved the same R2 (0.99), MAPE of 9.02%, and RMSE of 0.03. Our results demonstrate that combining FTIR data with modeling is a promising rapid and accessible method for attaining biochar stability data., Competing Interests: The authors declare no competing financial interest., (© 2024 The Authors. Published by American Chemical Society.)- Published
- 2024
- Full Text
- View/download PDF
13. Thresholds of Temperature and Time for Mars Sample Return: Final Report of the Mars Sample Return Temperature-Time Tiger Team.
- Author
-
Sephton MA, Freeman K, Hays L, Thiessen F, Benison K, Carrier B, Dworkin JP, Glamoclija M, Gough R, Onofri S, Peterson R, Quinn R, Russell S, Stüeken EE, Velbel M, and Zolotov M
- Subjects
- Time Factors, Space Flight, Mars, Temperature, Extraterrestrial Environment, Exobiology methods
- Published
- 2024
- Full Text
- View/download PDF
14. Present-day thermal and water activity environment of the Mars Sample Return collection.
- Author
-
Zorzano MP, Martínez G, Polkko J, Tamppari LK, Newman C, Savijärvi H, Goreva Y, Viúdez-Moreiras D, Bertrand T, Smith M, Hausrath EM, Siljeström S, Benison K, Bosak T, Czaja AD, Debaille V, Herd CDK, Mayhew L, Sephton MA, Shuster D, Simon JI, Weiss B, Randazzo N, Mandon L, Brown A, Hecht MH, and Martínez-Frías J
- Abstract
The Mars Sample Return mission intends to retrieve a sealed collection of rocks, regolith, and atmosphere sampled from Jezero Crater, Mars, by the NASA Perseverance rover mission. For all life-related research, it is necessary to evaluate water availability in the samples and on Mars. Within the first Martian year, Perseverance has acquired an estimated total mass of 355 g of rocks and regolith, and 38 μmoles of Martian atmospheric gas. Using in-situ observations acquired by the Perseverance rover, we show that the present-day environmental conditions at Jezero allow for the hydration of sulfates, chlorides, and perchlorates and the occasional formation of frost as well as a diurnal atmospheric-surface water exchange of 0.5-10 g water per m
2 (assuming a well-mixed atmosphere). At night, when the temperature drops below 190 K, the surface water activity can exceed 0.5, the lowest limit for cell reproduction. During the day, when the temperature is above the cell replication limit of 245 K, water activity is less than 0.02. The environmental conditions at the surface of Jezero Crater, where these samples were acquired, are incompatible with the cell replication limits currently known on Earth., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF
15. Organic Biosignature Degradation in Hydrothermal and Serpentinizing Environments: Implications for Life Detection on Icy Moons and Mars.
- Author
-
Tan JSW, Salter TL, Watson JS, Waite JH, and Sephton MA
- Abstract
Evidence of liquid water is a primary indicator of habitability on the icy moons in our outer solar system as well as on terrestrial planets such as Mars. If liquid water-containing environments host life, some of its organic remains can be fossilized and preserved as organic biosignatures. However, inorganic materials may also be present and water-assisted organic-inorganic reactions can transform the organic architecture of biological remains. Our understanding of the fate of these organic remains can be assisted by experimental simulations that monitor the chemical changes that occur in microbial organic matter due to the presence of water and minerals. We performed hydrothermal experiments at temperatures between 100°C and 300°C involving lipid-rich microbes and natural serpentinite mineral mixtures generated by the subaqueous hydrothermal alteration of ultramafic rock. The products reveal what the signals of life may look like when subjected to water-organic-inorganic reactions. Straight- and branched-chain lipids in unaltered samples are joined by cyclization and aromatization products in hydrothermally altered samples. Hydrothermal reactions produce distinct products that are not present in the starting materials, including small, single-ring, heteroatomic, and aromatic compounds such as indoles and phenols. Hydrothermal reactions in the presence of serpentinite minerals lead to significant reduction of these organic structures and their replacement by diketopiperazines (DKPs) and dihydropyrazines (DHPs), which may be compounds that are distinct to organic-inorganic reactions. Given that the precursors of DKPs and DHPs are normally lost during early diagenesis, the presence of these compounds can be an indicator of coexisting recent life and hydrothermal processing in the presence of minerals. However, laboratory experiments reveal that the formation and preservation of these compounds can only occur within a distinct temperature window. Our findings are relevant to life detection missions that aim to access hydrothermal and serpentinizing environments in the subsurfaces of icy moons and Mars.
- Published
- 2023
- Full Text
- View/download PDF
16. Solid-Phase Microextraction for Organic Contamination Control Throughout Assembly and Operational Phases of Space Missions.
- Author
-
Royle SH, Cropper L, Watson JS, Sinibaldi S, Entwisle M, and Sephton MA
- Subjects
- Gas Chromatography-Mass Spectrometry methods, Spacecraft, Solid Phase Microextraction methods, Exobiology
- Abstract
Space missions concerned with life detection contain highly sensitive instruments for the detection of organics. Terrestrial contamination can interfere with signals of indigenous organics in samples and has the potential to cause false-positive biosignature detections, which may lead to incorrect suggestions of the presence of life elsewhere in the solar system. This study assessed the capability of solid-phase microextraction (SPME) as a method for monitoring organic contamination encountered by spacecraft hardware during assembly and operation. SPME-gas chromatography-mass spectrometry (SPME-GC-MS) analysis was performed on potential contaminant source materials, which are commonly used in spacecraft construction. The sensitivity of SPME-GC-MS to organics was assessed in the context of contaminants identified in molecular wipes taken from hardware surfaces on the ExoMars Rosalind Franklin rover. SPME was found to be effective at detecting a wide range of common organic contaminants that include aromatic hydrocarbons, aliphatic hydrocarbons, nitrogen-containing compounds, alcohols, and carbonyls. A notable example of correlation of contaminant with source material was the detection of benzenamine compounds in an epoxy adhesive analyzed by SPME-GC-MS and in the ExoMars rover surface wipe samples. The current form of SPME-GC-MS does not enable quantitative evaluation of contaminants, nor is it suitable for the detection of every group of organic molecules relevant to astrobiological contamination concerns, namely large and/or polar molecules such as amino acids. However, it nonetheless represents an effective new monitoring method for rapid, easy identification of organic contaminants commonly present on spacecraft hardware and could thus be utilized in future space missions as part of their contamination control and mitigation protocols.
- Published
- 2023
- Full Text
- View/download PDF
17. Characteristics of fine and ultrafine aerosols in the London underground.
- Author
-
Kumar P, Zavala-Reyes JC, Kalaiarasan G, Abubakar-Waziri H, Young G, Mudway I, Dilliway C, Lakhdar R, Mumby S, Kłosowski MM, Pain CC, Adcock IM, Watson JS, Sephton MA, Chung KF, and Porter AE
- Subjects
- Particulate Matter analysis, Particle Size, London, Aerosols, Environmental Monitoring, Air Pollutants analysis, Polycyclic Aromatic Hydrocarbons analysis
- Abstract
Underground railway systems are recognised spaces of increased personal pollution exposure. We studied the number-size distribution and physico-chemical characteristics of ultrafine (PM
0.1 ), fine (PM0.1 - 2.5 ) and coarse (PM2.5 - 10 ) particles collected on a London underground platform. Particle number concentrations gradually increased throughout the day, with a maximum concentration between 18:00 h and 21:00 h (local time). There was a maximum decrease in mass for the PM2.5 , PM2.5 - 10 and black carbon of 3.9, 4.5 and ~ 21-times, respectively, between operable (OpHrs) and non-operable (N-OpHrs) hours. Average PM10 (52 μg m-3 ) and PM2.5 (34 μg m-3 ) concentrations over the full data showed levels above the World Health Organization Air Quality Guidelines. Respiratory deposition doses of particle number and mass concentrations were calculated and found to be two- and four-times higher during OpHrs compared with N-OpHrs, reflecting events such as train arrival/departure during OpHrs. Organic compounds were composed of aromatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) which are known to be harmful to health. Specific ratios of PAHs were identified for underground transport that may reflect an interaction between PAHs and fine particles. Scanning transmission electron microscopy (STEM) chemical maps of fine and ultrafine fractions show they are composed of Fe and O in the form of magnetite and nanosized mixtures of metals including Cr, Al, Ni and Mn. These findings, and the low air change rate (0.17 to 0.46 h-1 ), highlight the need to improve the ventilation conditions., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
18. Investigating Europa's Habitability with the Europa Clipper.
- Author
-
Vance SD, Craft KL, Shock E, Schmidt BE, Lunine J, Hand KP, McKinnon WB, Spiers EM, Chivers C, Lawrence JD, Wolfenbarger N, Leonard EJ, Robinson KJ, Styczinski MJ, Persaud DM, Steinbrügge G, Zolotov MY, Quick LC, Scully JEC, Becker TM, Howell SM, Clark RN, Dombard AJ, Glein CR, Mousis O, Sephton MA, Castillo-Rogez J, Nimmo F, McEwen AS, Gudipati MS, Jun I, Jia X, Postberg F, Soderlund KM, and Elder CM
- Abstract
The habitability of Europa is a property within a system, which is driven by a multitude of physical and chemical processes and is defined by many interdependent parameters, so that its full characterization requires collaborative investigation. To explore Europa as an integrated system to yield a complete picture of its habitability, the Europa Clipper mission has three primary science objectives: (1) characterize the ice shell and ocean including their heterogeneity, properties, and the nature of surface-ice-ocean exchange; (2) characterize Europa's composition including any non-ice materials on the surface and in the atmosphere, and any carbon-containing compounds; and (3) characterize Europa's geology including surface features and localities of high science interest. The mission will also address several cross-cutting science topics including the search for any current or recent activity in the form of thermal anomalies and plumes, performing geodetic and radiation measurements, and assessing high-resolution, co-located observations at select sites to provide reconnaissance for a potential future landed mission. Synthesizing the mission's science measurements, as well as incorporating remote observations by Earth-based observatories, the James Webb Space Telescope, and other space-based resources, to constrain Europa's habitability, is a complex task and is guided by the mission's Habitability Assessment Board (HAB)., Competing Interests: Competing InterestsThe authors have no competing interests to declare that are relevant to the content of this article., (© The Author(s) 2023.)
- Published
- 2023
- Full Text
- View/download PDF
19. Aqueous alteration processes in Jezero crater, Mars-implications for organic geochemistry.
- Author
-
Scheller EL, Razzell Hollis J, Cardarelli EL, Steele A, Beegle LW, Bhartia R, Conrad P, Uckert K, Sharma S, Ehlmann BL, Abbey WJ, Asher SA, Benison KC, Berger EL, Beyssac O, Bleefeld BL, Bosak T, Brown AJ, Burton AS, Bykov SV, Cloutis E, Fairén AG, DeFlores L, Farley KA, Fey DM, Fornaro T, Fox AC, Fries M, Hickman-Lewis K, Hug WF, Huggett JE, Imbeah S, Jakubek RS, Kah LC, Kelemen P, Kennedy MR, Kizovski T, Lee C, Liu Y, Mandon L, McCubbin FM, Moore KR, Nixon BE, Núñez JI, Rodriguez Sanchez-Vahamonde C, Roppel RD, Schulte M, Sephton MA, Sharma SK, Siljeström S, Shkolyar S, Shuster DL, Simon JI, Smith RJ, Stack KM, Steadman K, Weiss BP, Werynski A, Williams AJ, Wiens RC, Williford KH, Winchell K, Wogsland B, Yanchilina A, Yingling R, and Zorzano MP
- Abstract
The Perseverance rover landed in Jezero crater, Mars, in February 2021. We used the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) instrument to perform deep-ultraviolet Raman and fluorescence spectroscopy of three rocks within the crater. We identify evidence for two distinct ancient aqueous environments at different times. Reactions with liquid water formed carbonates in an olivine-rich igneous rock. A sulfate-perchlorate mixture is present in the rocks, which probably formed by later modifications of the rocks by brine. Fluorescence signatures consistent with aromatic organic compounds occur throughout these rocks and are preserved in minerals related to both aqueous environments.
- Published
- 2022
- Full Text
- View/download PDF
20. The Winchcombe meteorite, a unique and pristine witness from the outer solar system.
- Author
-
King AJ, Daly L, Rowe J, Joy KH, Greenwood RC, Devillepoix HAR, Suttle MD, Chan QHS, Russell SS, Bates HC, Bryson JFJ, Clay PL, Vida D, Lee MR, O'Brien Á, Hallis LJ, Stephen NR, Tartèse R, Sansom EK, Towner MC, Cupak M, Shober PM, Bland PA, Findlay R, Franchi IA, Verchovsky AB, Abernethy FAJ, Grady MM, Floyd CJ, Van Ginneken M, Bridges J, Hicks LJ, Jones RH, Mitchell JT, Genge MJ, Jenkins L, Martin PE, Sephton MA, Watson JS, Salge T, Shirley KA, Curtis RJ, Warren TJ, Bowles NE, Stuart FM, Di Nicola L, Györe D, Boyce AJ, Shaw KMM, Elliott T, Steele RCJ, Povinec P, Laubenstein M, Sanderson D, Cresswell A, Jull AJT, Sýkora I, Sridhar S, Harrison RJ, Willcocks FM, Harrison CS, Hallatt D, Wozniakiewicz PJ, Burchell MJ, Alesbrook LS, Dignam A, Almeida NV, Smith CL, Clark B, Humphreys-Williams ER, Schofield PF, Cornwell LT, Spathis V, Morgan GH, Perkins MJ, Kacerek R, Campbell-Burns P, Colas F, Zanda B, Vernazza P, Bouley S, Jeanne S, Hankey M, Collins GS, Young JS, Shaw C, Horak J, Jones D, James N, Bosley S, Shuttleworth A, Dickinson P, McMullan I, Robson D, Smedley ARD, Stanley B, Bassom R, McIntyre M, Suttle AA, Fleet R, Bastiaens L, Ihász MB, McMullan S, Boazman SJ, Dickeson ZI, Grindrod PM, Pickersgill AE, Weir CJ, Suttle FM, Farrelly S, Spencer I, Naqvi S, Mayne B, Skilton D, Kirk D, Mounsey A, Mounsey SE, Mounsey S, Godfrey P, Bond L, Bond V, Wilcock C, Wilcock H, and Wilcock R
- Abstract
Direct links between carbonaceous chondrites and their parent bodies in the solar system are rare. The Winchcombe meteorite is the most accurately recorded carbonaceous chondrite fall. Its pre-atmospheric orbit and cosmic-ray exposure age confirm that it arrived on Earth shortly after ejection from a primitive asteroid. Recovered only hours after falling, the composition of the Winchcombe meteorite is largely unmodified by the terrestrial environment. It contains abundant hydrated silicates formed during fluid-rock reactions, and carbon- and nitrogen-bearing organic matter including soluble protein amino acids. The near-pristine hydrogen isotopic composition of the Winchcombe meteorite is comparable to the terrestrial hydrosphere, providing further evidence that volatile-rich carbonaceous asteroids played an important role in the origin of Earth's water.
- Published
- 2022
- Full Text
- View/download PDF
21. Hydrothermal Processing of Microorganisms: Mass Spectral Signals of Degraded Biosignatures for Life Detection on Icy Moons.
- Author
-
Salter TL, Watson JS, Waite JH, and Sephton MA
- Abstract
Life detection missions to the outer solar system are concentrating on the icy moons of Jupiter and Saturn and their inferred subsurface oceans. Access to evidence of habitability, and possibly even life, is facilitated by the ejection of subsurface material in plumes and outgassing fissures. Orbiting spacecraft can intersect the plume material or detect past sputtered remnants of outgassed products and analyze the contents using instruments such as mass spectrometers. Hydrothermalism has been proposed for the subsurface environments of icy moons, and the organic remains of any associated life would be expected to suffer some degradation through hydrothermalism, radiolysis, or spacecraft flyby impact fragmentation. Hydrothermalism is treated here for the first time in the context of the Europa Clipper mission. To assess the influence of hydrothermalism on the ability of orbiting mass spectrometers to detect degrading signals of life, we have subjected Earth microorganisms to laboratory hydrothermal processing. The processed microorganism samples were then analyzed using gas chromatography-mass spectrometry (GC-MS), and mass spectra were generated. Certain compound classes, such as carbohydrates and proteins, are significantly altered by hydrothermal processing, resulting in small one-ring and two-ring aromatic compounds such as indoles and phenols. However, lipid fragments, such as fatty acids, retain their fidelity, and their provenance is easily recognized as biological in origin. Our data indicate that mass spectrometry measurements in the plumes of icy moons, using instruments such as the MAss Spectrometer for Planetary Exploration (MASPEX) onboard the upcoming Europa Clipper mission, can reveal the presence of life even after significant degradation by hydrothermal processing has taken place., Competing Interests: The authors declare no competing financial interest., (© 2022 The Authors. Published by American Chemical Society.)
- Published
- 2022
- Full Text
- View/download PDF
22. Aqueously altered igneous rocks sampled on the floor of Jezero crater, Mars.
- Author
-
Farley KA, Stack KM, Shuster DL, Horgan BHN, Hurowitz JA, Tarnas JD, Simon JI, Sun VZ, Scheller EL, Moore KR, McLennan SM, Vasconcelos PM, Wiens RC, Treiman AH, Mayhew LE, Beyssac O, Kizovski TV, Tosca NJ, Williford KH, Crumpler LS, Beegle LW, Bell JF 3rd, Ehlmann BL, Liu Y, Maki JN, Schmidt ME, Allwood AC, Amundsen HEF, Bhartia R, Bosak T, Brown AJ, Clark BC, Cousin A, Forni O, Gabriel TSJ, Goreva Y, Gupta S, Hamran SE, Herd CDK, Hickman-Lewis K, Johnson JR, Kah LC, Kelemen PB, Kinch KB, Mandon L, Mangold N, Quantin-Nataf C, Rice MS, Russell PS, Sharma S, Siljeström S, Steele A, Sullivan R, Wadhwa M, Weiss BP, Williams AJ, Wogsland BV, Willis PA, Acosta-Maeda TA, Beck P, Benzerara K, Bernard S, Burton AS, Cardarelli EL, Chide B, Clavé E, Cloutis EA, Cohen BA, Czaja AD, Debaille V, Dehouck E, Fairén AG, Flannery DT, Fleron SZ, Fouchet T, Frydenvang J, Garczynski BJ, Gibbons EF, Hausrath EM, Hayes AG, Henneke J, Jørgensen JL, Kelly EM, Lasue J, Le Mouélic S, Madariaga JM, Maurice S, Merusi M, Meslin PY, Milkovich SM, Million CC, Moeller RC, Núñez JI, Ollila AM, Paar G, Paige DA, Pedersen DAK, Pilleri P, Pilorget C, Pinet PC, Rice JW Jr, Royer C, Sautter V, Schulte M, Sephton MA, Sharma SK, Sholes SF, Spanovich N, St Clair M, Tate CD, Uckert K, VanBommel SJ, Yanchilina AG, and Zorzano MP
- Abstract
The Perseverance rover landed in Jezero crater, Mars, to investigate ancient lake and river deposits. We report observations of the crater floor, below the crater's sedimentary delta, finding that the floor consists of igneous rocks altered by water. The lowest exposed unit, informally named Séítah, is a coarsely crystalline olivine-rich rock, which accumulated at the base of a magma body. Magnesium-iron carbonates along grain boundaries indicate reactions with carbon dioxide-rich water under water-poor conditions. Overlying Séítah is a unit informally named Máaz, which we interpret as lava flows or the chemical complement to Séítah in a layered igneous body. Voids in these rocks contain sulfates and perchlorates, likely introduced by later near-surface brine evaporation. Core samples of these rocks have been stored aboard Perseverance for potential return to Earth.
- Published
- 2022
- Full Text
- View/download PDF
23. COSPAR Sample Safety Assessment Framework (SSAF).
- Author
-
Kminek G, Benardini JN, Brenker FE, Brooks T, Burton AS, Dhaniyala S, Dworkin JP, Fortman JL, Glamoclija M, Grady MM, Graham HV, Haruyama J, Kieft TL, Koopmans M, McCubbin FM, Meyer MA, Mustin C, Onstott TC, Pearce N, Pratt LM, Sephton MA, Siljeström S, Sugahara H, Suzuki S, Suzuki Y, van Zuilen M, and Viso M
- Subjects
- Bayes Theorem, Extraterrestrial Environment, Space Research, Mars, Space Flight, Safety
- Abstract
The Committee on Space Research (COSPAR) Sample Safety Assessment Framework (SSAF) has been developed by a COSPAR appointed Working Group. The objective of the sample safety assessment would be to evaluate whether samples returned from Mars could be harmful for Earth's systems ( e.g., environment, biosphere, geochemical cycles). During the Working Group's deliberations, it became clear that a comprehensive assessment to predict the effects of introducing life in new environments or ecologies is difficult and practically impossible, even for terrestrial life and certainly more so for unknown extraterrestrial life. To manage expectations, the scope of the SSAF was adjusted to evaluate only whether the presence of martian life can be excluded in samples returned from Mars. If the presence of martian life cannot be excluded, a Hold & Critical Review must be established to evaluate the risk management measures and decide on the next steps. The SSAF starts from a positive hypothesis (there is martian life in the samples), which is complementary to the null-hypothesis (there is no martian life in the samples) typically used for science. Testing the positive hypothesis includes four elements: (1) Bayesian statistics, (2) subsampling strategy, (3) test sequence, and (4) decision criteria. The test sequence capability covers self-replicating and non-self-replicating biology and biologically active molecules. Most of the investigations associated with the SSAF would need to be carried out within biological containment. The SSAF is described in sufficient detail to support planning activities for a Sample Receiving Facility (SRF) and for preparing science announcements, while at the same time acknowledging that further work is required before a detailed Sample Safety Assessment Protocol (SSAP) can be developed. The three major open issues to be addressed to optimize and implement the SSAF are (1) setting a value for the level of assurance to effectively exclude the presence of martian life in the samples, (2) carrying out an analogue test program, and (3) acquiring relevant contamination knowledge from all Mars Sample Return (MSR) flight and ground elements. Although the SSAF was developed specifically for assessing samples from Mars in the context of the currently planned NASA-ESA MSR Campaign, this framework and the basic safety approach are applicable to any other Mars sample return mission concept, with minor adjustments in the execution part related to the specific nature of the samples to be returned. The SSAF is also considered a sound basis for other COSPAR Planetary Protection Category V, restricted Earth return missions beyond Mars. It is anticipated that the SSAF will be subject to future review by the various MSR stakeholders.
- Published
- 2022
- Full Text
- View/download PDF
24. Mineral Matrix Effects on Pyrolysis Products of Kerogens Infer Difficulties in Determining Biological Provenance of Macromolecular Organic Matter at Mars.
- Author
-
Royle SH, Salter TL, Watson JS, and Sephton MA
- Subjects
- Extraterrestrial Environment, Iron analysis, Macromolecular Substances, Minerals analysis, Pyrolysis, Exobiology methods, Mars
- Abstract
Ancient martian organic matter is likely to take the form of kerogen-like recalcitrant macromolecular organic matter (MOM), existing in close association with reactive mineral surfaces, especially iron oxides. Detecting and identifying a biological origin for martian MOM will therefore be of utmost importance for life-detection efforts at Mars. We show that Type I and Type IV kerogens provide effective analogues for putative martian MOM of biological and abiological (meteoric) provenances, respectively. We analyze the pyrolytic breakdown products when these kerogens are mixed with mineral matrices highly relevant for the search for life on Mars. We demonstrate that, using traditional thermal techniques as generally used by the Sample Analysis at Mars and Mars Organic Molecule Analyser instruments, even the breakdown products of highly recalcitrant MOM are transformed during analysis in the presence of reactive mineral surfaces, particularly iron. Analytical transformation reduces the diagnostic ability of this technique, as detected transformation products of both biological and abiological MOM may be identical (low molecular weight gas phases and benzene) and indistinguishable. The severity of transformational effects increased through calcite < kaolinite < hematite < nontronite < magnetite < goethite. Due to their representation of various habitable aqueous environments and the preservation potential of organic matter by iron, it is not advisable to completely avoid iron-rich strata. We conclude that hematite-rich localities, with evidence of extensive aqueous alteration of originally reducing phases, such as the Vera Rubin Ridge, may be relatively promising targets for identifying martian biologically sourced MOM.
- Published
- 2022
- Full Text
- View/download PDF
25. Mass Spectrometric Fingerprints of Bacteria and Archaea for Life Detection on Icy Moons.
- Author
-
Salter TL, Magee BA, Waite JH, and Sephton MA
- Subjects
- Archaea, Bacteria, Extraterrestrial Environment chemistry, Mass Spectrometry, Exobiology methods, Moon
- Abstract
The icy moons of the outer Solar System display evidence of subsurface liquid water and, therefore, potential habitability for life. Flybys of Saturn's moon Enceladus by the Cassini spacecraft have provided measurements of material from plumes that suggest hydrothermal activity and the presence of organic matter. Jupiter's moon Europa may have similar plumes and is the target for the forthcoming Europa Clipper mission that carries a high mass resolution and high sensitivity mass spectrometer, called the MAss Spectrometer for Planetary EXploration (MASPEX), with the capability for providing detailed characterization of any organic materials encountered. We have performed a series of experiments using pyrolysis-gas chromatography-mass spectrometry to characterize the mass spectrometric fingerprints of microbial life. A range of extremophile Archaea and Bacteria have been analyzed and the laboratory data converted to MASPEX-type signals. Molecular characteristics of protein, carbohydrate, and lipid structures were detected, and the characteristic fragmentation patterns corresponding to these different biological structures were identified. Protein pyrolysis fragments included phenols, nitrogen heterocycles, and cyclic dipeptides. Oxygen heterocycles, such as furans, were detected from carbohydrates. Our data reveal how mass spectrometry on Europa Clipper can aid in the identification of the presence of life, by looking for characteristic bacterial fingerprints that are similar to those from simple Earthly organisms.
- Published
- 2022
- Full Text
- View/download PDF
26. Transformation of Cyanobacterial Biomolecules by Iron Oxides During Flash Pyrolysis: Implications for Mars Life-Detection Missions.
- Author
-
Royle SH, Watson JS, and Sephton MA
- Subjects
- Exobiology, Extraterrestrial Environment, Ferric Compounds, Iron, Oxides, Pyrolysis, Mars, Spirulina
- Abstract
Answering the question of whether life ever existed on Mars is a key goal of both NASA's and ESA's imminent Mars rover missions. The obfuscatory effects of oxidizing salts, such as perchlorates and sulfates, on organic matter during thermal decomposition analysis techniques are well established. Less well studied are the transformative effects of iron oxides and (oxy)hydroxides, which are present in great abundances in the martian regolith. We examined the products of flash pyrolysis-gas chromatography-mass spectrometry (a technique analogous to the thermal techniques employed by past, current, and future landed Mars missions) which form when the cyanobacteria Arthrospira platensis are heated in the presence of a variety of Mars-relevant iron-bearing minerals. We found that iron oxides/(oxy)hydroxides have transformative effects on the pyrolytic products of cyanobacterial biomolecules. Both the abundance and variety of molecular species detected were decreased as iron substrates transformed biomolecules, by both oxidative and reductive processes, into lower fidelity alkanes, aromatic and aryl-bonded hydrocarbons. Despite the loss of fidelity, a suite that contains mid-length alkanes and polyaromatic hydrocarbons and/or aryl-bonded molecules in iron-rich samples subjected to pyrolysis may allude to the transformation of cyanobacterially derived mid-long chain length fatty acids (particularly unsaturated fatty acids) originally present in the sample. Hematite was found to be the iron oxide with the lowest transformation potential, and because this iron oxide has a high affinity for codeposition of organic matter and preservation over geological timescales, sampling at Mars should target sediments/strata that have undergone a diagenetic history encouraging the dehydration, dihydroxylation, and oxidation of more reactive iron-bearing phases to hematite by looking for (mineralogical) evidence of the activity of oxidizing, acidic/neutral, and either hot or long-lived fluids.
- Published
- 2021
- Full Text
- View/download PDF
27. Quantifying Preservation Potential: Lipid Degradation in a Mars-Analog Circumneutral Iron Deposit.
- Author
-
Tan JSW and Sephton MA
- Subjects
- Exobiology, Extraterrestrial Environment, Lipids, Minerals, Iron, Mars
- Abstract
Comparisons between the preservation potential of Mars-analog environments have historically been qualitative rather than quantitative. Recently, however, laboratory-based artificial maturation combined with kinetic modeling techniques have emerged as a potential means by which the preservation potential of solvent-soluble organic matter can be quantified in various Mars-analog environments. These methods consider how elevated temperatures, pressures, and organic-inorganic interactions influence the degradation of organic biomarkers post-burial. We used these techniques to investigate the preservation potential of deposits from a circumneutral iron-rich groundwater system. These deposits are composed of ferrihydrite (Fe
5 HO8 · 4H2 O), an amorphous iron hydroxide mineral that is a common constituent of rocks found in ancient lacustrine environments on Mars, such as those observed in Gale Crater. Both natural and synthetic ferrihydrite samples were subjected to hydrous pyrolysis to observe the effects of long-term burial on the mineralogy and organic content of the samples. Our experiments revealed that organic-inorganic interactions in the samples are dominated by the transformation of iron minerals. As amorphous ferrihydrite transforms into more crystalline species, the decrease in surface area results in the desorption of organic matter, potentially rendering them more susceptible to degradation. We also find that circumneutral iron-rich deposits provide unfavorable conditions for the preservation of solvent-soluble organic matter. Quantitative comparisons between preservation potentials as calculated when using kinetic parameters show that circumneutral iron-rich deposits are ∼25 times less likely to preserve solvent-soluble organic matter compared with acidic, iron-rich environments. Our results suggest that circumneutral iron-rich deposits should be deprioritized in favor of acidic iron- and sulfur-rich deposits when searching for evidence of life with solvent extraction techniques.- Published
- 2021
- Full Text
- View/download PDF
28. Pyrolysis of Carboxylic Acids in the Presence of Iron Oxides: Implications for Life Detection on Missions to Mars.
- Author
-
Royle SH, Tan JSW, Watson JS, and Sephton MA
- Subjects
- Carboxylic Acids, Extraterrestrial Environment, Ferric Compounds, Iron, Oxides, Pyrolysis, Exobiology, Mars
- Abstract
The search for, and characterization of, organic matter on Mars is central to efforts in identifying habitable environments and detecting evidence of life in the martian surface and near surface. Iron oxides are ubiquitous in the martian regolith and are known to be associated with the deposition and preservation of organic matter in certain terrestrial environments, thus iron oxide-rich sediments are potential targets for life-detection missions. The most frequently used protocol for martian organic matter characterization (also planned for use on ExoMars) has been thermal extraction for the transfer of organic matter to gas chromatography-mass spectrometry (GC-MS) detectors. For the effective use of thermal extraction for martian samples, it is necessary to explore how potential biomarker organic molecules evolve during this process in the presence of iron oxides. We have thermally decomposed iron oxides simultaneously with (z)-octadec-9-enoic and n -octadecanoic acids and analyzed the products through pyrolysis-GC-MS. We found that the thermally driven dehydration, reduction, and recrystallization of iron oxides transformed fatty acids. Overall detectability of products greatly reduced, molecular diversity decreased, unsaturated products decreased, and aromatization increased. The severity of this effect increased as reduction potential of the iron oxide and inferred free radical formation increased. Of the iron oxides tested hematite showed the least transformative effects, followed by magnetite, goethite, then ferrihydrite. It was possible to identify the saturation state of the parent carboxylic acid at high (0.5 wt %) concentrations by the distribution of n -alkylbenzenes in the pyrolysis products. When selecting life-detection targets on Mars, localities where hematite is the dominant iron oxide could be targeted preferentially, otherwise thermal analysis of carboxylic acids, or similar biomarker molecules, will lead to enhanced polymerization, aromatization, and breakdown, which will in turn reduce the fidelity of the original biomarker, similar to changes normally observed during thermal maturation.
- Published
- 2021
- Full Text
- View/download PDF
29. Artificial Maturation of Iron- and Sulfur-Rich Mars Analogues: Implications for the Diagenetic Stability of Biopolymers and Their Detection with Pyrolysis-Gas Chromatography-Mass Spectrometry.
- Author
-
Tan JSW, Royle SH, and Sephton MA
- Subjects
- Biopolymers, Extraterrestrial Environment, Gas Chromatography-Mass Spectrometry, Iron, Pyrolysis, Sulfur, Exobiology, Mars
- Abstract
Acidic iron- and sulfur-rich streams are appropriate analogues for the late Noachian and early Hesperian periods of martian history, when Mars exhibited extensive habitable environments. Any past life on Mars may have left behind diagnostic evidence of life that could be detected at the present day. For effective preservation, these remains must have avoided the harsh radiation flux at the martian surface, survived geological storage for billions of years, and remained detectable within their geochemical environment by analytical instrument suites used on Mars today, such as thermal extraction techniques. We investigated the detectability of organic matter within sulfur stream sediments that had been subjected to artificial maturation by hydrous pyrolysis. After maturation, the samples were analyzed by pyrolysis-gas chromatography-mass spectrometry (py-GC-MS) to determine whether organic matter could be detected with this commonly used technique. We find that macromolecular organic matter can survive the artificial maturation process in the presence of iron- and sulfur-rich minerals but cannot be unambiguously distinguished from abiotic organic matter. However, if jarosite and goethite are present in the sulfur stream environment, they interfere with the py-GC-MS detection of organic compounds in these samples. Clay reduces the obfuscating effect of the oxidizing minerals by providing nondeleterious adsorption sites. We also find that after a simple alkali and acid leaching process that removes oxidizing minerals such as iron sulfates, oxides, and oxyhydroxides, the sulfur stream samples exhibit much greater organic responses during py-GC-MS in terms of both abundance and diversity of organic compounds, such as the detection of hopanes in all leached samples. Our results suggest that insoluble organic matter can be preserved over billions of years of geological storage while still retaining diagnostic organic information, but sample selection strategies must either avoid jarosite- and goethite-rich outcrops or conduct preparative chemistry steps to remove these oxidants prior to analysis by thermal extraction techniques.
- Published
- 2021
- Full Text
- View/download PDF
30. Organic Records of Early Life on Mars: The Role of Iron, Burial, and Kinetics on Preservation.
- Author
-
Tan J and Sephton MA
- Subjects
- Clay chemistry, Fatty Acids analysis, Kinetics, Lipids analysis, Models, Theoretical, Rivers chemistry, Exobiology, Extraterrestrial Environment, Iron analysis, Mars
- Abstract
Samples that are likely to contain evidence of past life on Mars must have been deposited when and where environments exhibited habitable conditions. Mars analog sites provide the opportunity to study how life could have exploited such habitable conditions. Acidic iron- and sulfur-rich streams are good geochemical analogues for the late Noachian and early Hesperian, periods of martian history where habitable conditions were widespread. Past life on Mars would have left behind fossilized microbial organic remains. These are often-sought diagnostic evidence, but they must be shielded from the harsh radiation flux at the martian surface and its deleterious effect on organic matter. One mechanism that promotes such preservation is burial, which raises questions about how organic biomarkers are influenced by the postburial effects of diagenesis. We investigated the kinetics of organic degradation in the subsurface of Mars. Natural mixtures of acidic iron- and sulfur-rich stream sediments and their associated microbial populations and remains were subjected to hydrous pyrolysis, which simulated the increased temperatures and pressures of burial alongside any promoted organic/mineral interactions. Calculations were made to extrapolate the observed changes over martian history. Our experiments indicate that low carbon contents, high water-to-rock ratios, and the presence of iron-rich minerals combine to provide unfavorable conditions for the preservation of soluble organic matter over the billions of years necessary to produce present-day organic records of late Noachian and early Hesperian life on Mars. Successful sample selection strategies must therefore consider the pre-, syn-, and postburial histories of sedimentary records on Mars and the balance between the production of biomass and the long-term preservation of organic biomarkers over geological time.
- Published
- 2020
- Full Text
- View/download PDF
31. Solid Phase Micro Extraction: Potential for Organic Contamination Control for Planetary Protection of Life-Detection Missions to the Icy Moons of the Outer Solar System.
- Author
-
Royle SH, Watson JS, Zhang Y, Chatzitheoklitos G, and Sephton MA
- Subjects
- Gas Chromatography-Mass Spectrometry, Organic Chemicals chemistry, Reference Standards, Exobiology, Ice, Moon, Organic Chemicals analysis, Planets, Solid Phase Microextraction methods, Spacecraft
- Abstract
Conclusively detecting, or ruling out the possibility of, life on the icy moons of the outer Solar System will require spacecraft missions to undergo rigorous planetary protection and contamination control procedures to achieve extremely low levels of organic terrestrial contamination. Contamination control is necessary to avoid forward contamination of the body of interest and to avoid the detection of false-positive signals, which could either mask indigenous organic chemistry of interest or cause an astrobiological false alarm. Here we test a new method for rapidly and inexpensively assessing the organic cleanliness of spaceflight hardware surfaces using solid phase micro extraction (SPME) fibers to directly swab surfaces. The results suggest that the method is both time and cost efficient. The SPME-gas chromatography-mass spectrometry (SPME-GC-MS) method is sensitive to common midweight, nonpolar contaminant compounds, for example, aliphatic and aromatic hydrocarbons, which are common contaminants in laboratory settings. While we demonstrate the potential of SPME for surface sampling, the GC-MS instrumentation restricts the SPME-GC-MS technique's sensitivity to larger polar and nonvolatile compounds. Although not used in this study, to increase the potential range of detectable compounds, SPME can also be used in conjunction with high-performance liquid chromatography/liquid chromatography-mass spectrometry systems suitable for polar analytes (Kataoka et al., 2000). Thus, our SPME method presents an opportunity to monitor organic contamination in a relatively rapid and routine way that produces information-rich data sets.
- Published
- 2019
- Full Text
- View/download PDF
32. Effects of Oxygen-Containing Salts on the Detection of Organic Biomarkers on Mars and in Terrestrial Analog Soils.
- Author
-
Montgomery W, Jaramillo EA, Royle SH, Kounaves SP, Schulze-Makuch D, and Sephton MA
- Subjects
- Desert Climate, Exobiology methods, Gas Chromatography-Mass Spectrometry, Organic Chemicals chemistry, Oxidation-Reduction, Soil chemistry, Environmental Biomarkers, Extraterrestrial Environment chemistry, Mars, Organic Chemicals analysis, Perchlorates chemistry
- Abstract
The detection of chlorinated hydrocarbons by Curiosity on Mars has been attributed to the presence of unidentified indigenous organic matter. Similarly, oxychlorines on Earth have been proposed to be responsible for the apparent lack of organics in the Atacama Desert. The presence of perchlorate (ClO
4 - ) poses a unique challenge to the measurement of organic matter due to the oxidizing power of oxychlorines during commonly used pyrolysis-gas chromatography-mass spectrometry (py-GC-MS) methods. Here, we show that perchlorates and other oxyanion salts inhibit the detection of organic compounds but that removing these problematic species prior to pyrolysis by using an optimal sample extraction duration and suitable ratios of water to sample mass enables analysis. We have characterized leached and unleached samples containing perchlorates from the Atacama Desert and have found that after leaching, the py-GC-MS chromatograms of the dried mineral residues show identifiable biomarkers associated with indigenous cyanobacteria. Samples which were pyrolyzed without leaching showed no detectable organic matter other than background siloxane and very weak or no trace of detectable polychlorinated benzenes. Dried sample residues remaining after leaching, the mineral matrix and water-insoluble organic matter, showed a strong organic response in all cases when analyzed by py-GC-MS. These residues are most likely the product of the pyrolysis of water-insoluble organics originally present in the samples. In addition, our results imply that previous soil analyses which contained high levels of oxyanions and concluded that organics were either not present or were present at extremely low levels should be reexamined.- Published
- 2019
- Full Text
- View/download PDF
33. Detecting Nonvolatile Life- and Nonlife-Derived Organics in a Carbonaceous Chondrite Analogue with a New Multiplex Immunoassay and Its Relevance for Planetary Exploration.
- Author
-
Moreno-Paz M, Gómez-Cifuentes A, Ruiz-Bermejo M, Hofstetter O, Maquieira Á, Manchado JM, Morais S, Sephton MA, Niessner R, Knopp D, and Parro V
- Subjects
- Amino Acids, Aromatic analysis, Antibodies analysis, Benzo(a)pyrene chemistry, Calibration, Models, Molecular, Volatilization, Exobiology, Immunoassay methods, Meteoroids, Organic Chemicals analysis, Planets
- Abstract
Potential martian molecular targets include those supplied by meteoritic carbonaceous chondrites such as amino acids and polycyclic aromatic hydrocarbons and true biomarkers stemming from any hypothetical martian biota (organic architectures that can be directly related to once living organisms). Heat extraction and pyrolysis-based methods currently used in planetary exploration are highly aggressive and very often modify the target molecules making their identification a cumbersome task. We have developed and validated a mild, nondestructive, multiplex inhibitory microarray immunoassay and demonstrated its implementation in the SOLID (Signs of Life Detector) instrument for simultaneous detection of several nonvolatile life- and nonlife-derived organic molecules relevant in planetary exploration and environmental monitoring. By utilizing a set of highly specific antibodies that recognize D- or L- aromatic amino acids (Phe, Tyr, Trp), benzo[a]pyrene (B[a]P), pentachlorophenol, and sulfone-containing aromatic compounds, respectively, the assay was validated in the SOLID instrument for the analysis of carbon-rich samples used as analogues of the organic material in carbonaceous chondrites or even Mars samples. Most of the antibodies enabled sensitivities at the 1-10 ppb level and some even at the ppt level. The multiplex immunoassay allowed the detection of B[a]P as well as aromatic sulfones in a water/methanol extract of an Early Cretaceous lignite sample (c.a., 140 Ma) representing type IV kerogen. No L- or D-aromatic amino acids were detected, reflecting the advanced diagenetic stage and the fossil nature of the sample. The results demonstrate the ability of the liquid extraction by ultrasonication and the versatility of the multiplex inhibitory immunoassays in the SOLID instrument to discriminate between organic matter derived from life and nonlife processes, an essential step toward life detection outside Earth.
- Published
- 2018
- Full Text
- View/download PDF
34. How to Detect Life on Icy Moons.
- Author
-
Sephton MA, Waite JH, and Brockwell TG
- Subjects
- Exobiology instrumentation, Ice, Jupiter, Mass Spectrometry instrumentation, Pyrolysis, Exobiology methods, Extraterrestrial Environment chemistry, Life, Mass Spectrometry methods, Organic Chemicals analysis
- Abstract
The icy moons of the outer Solar System present the possibility of subsurface water, habitable conditions, and potential abodes for life. Access to evidence that reveals the presence of life on the icy moons can be facilitated by plumes that eject material from the subsurface out into space. One instrument capable of performing life-search investigations at the icy moons is the MAss SPectrometer for Planetary EXploration/Europa (MASPEX), which constitutes a high-resolution, high-sensitivity multibounce time-of-flight mass spectrometer capable of measuring trace amounts (ppb) of organic compounds. MASPEX has been selected for the NASA Europa Clipper mission and will sample any plumes and the surface-sputtered atmosphere to assess any evidence for habitability and life. MASPEX is capable of similar investigations targeted at other icy moons. Data may be forthcoming from direct sampling but also impact dissociation because of the high speed of some analytes. Impact dissociation is analogous to the dissociation provided by modern analytical pyrolysis methods. Radiolytic dissociation on the europan surface before or during the sputtering process can also induce fragmentation similar to pyrolysis. In this study, we have compiled pyrolysis mass spectrometry data from a variety of biological and nonbiological materials to demonstrate the ability of MASPEX to recognize habitability and detect life in any plumes and atmospheres of icy moons. Key Words: Europa-Icy moons-Life detection-Mass spectrometry-Organic matter. Astrobiology 18, 843-855.
- Published
- 2018
- Full Text
- View/download PDF
35. The Fate of Lipid Biosignatures in a Mars-Analogue Sulfur Stream.
- Author
-
Tan J, Lewis JMT, and Sephton MA
- Abstract
Past life on Mars will have generated organic remains that may be preserved in present day Mars rocks. The most recent period in the history of Mars that retained widespread surface waters was the late Noachian and early Hesperian and thus possessed the potential to sustain the most evolved and widely distributed martian life. Guidance for investigating late Noachian and early Hesperian rocks is provided by studies of analogous acidic and sulfur-rich environments on Earth. Here we report organic responses for an acid stream containing acidophilic organisms whose post-mortem remains are entombed in iron sulphates and iron oxides. We find that, if life was present in the Hesperian, martian organic records will comprise microbial lipids. Lipids are a potential sizeable reservoir of fossil carbon on Mars, and can be used to distinguish between different domains of life. Concentrations of lipids, and particularly alkanoic or "fatty" acids, are highest in goethite layers that reflect high water-to-rock ratios and thus a greater potential for habitability. Goethite can dehydrate to hematite, which is widespread on Mars. Mars missions should seek to detect fatty acids or their diagenetic products in the oxides and hydroxides of iron associated with sulphur-rich environments.
- Published
- 2018
- Full Text
- View/download PDF
36. A Method for Choosing the Best Samples for Mars Sample Return.
- Author
-
Gordon PR and Sephton MA
- Subjects
- Carbon Dioxide analysis, Space Flight, Sulfates analysis, Water analysis, Exobiology methods, Extraterrestrial Environment chemistry, Mars, Minerals analysis, Specimen Handling methods
- Abstract
Success of a future Mars Sample Return mission will depend on the correct choice of samples. Pyrolysis-FTIR can be employed as a triage instrument for Mars Sample Return. The technique can thermally dissociate minerals and organic matter for detection. Identification of certain mineral types can determine the habitability of the depositional environment, past or present, while detection of organic matter may suggest past or present habitation. In Mars' history, the Theiikian era represents an attractive target for life search missions and the acquisition of samples. The acidic and increasingly dry Theiikian may have been habitable and followed a lengthy neutral and wet period in Mars' history during which life could have originated and proliferated to achieve relatively abundant levels of biomass with a wide distribution. Moreover, the sulfate minerals produced in the Theiikian are also known to be good preservers of organic matter. We have used pyrolysis-FTIR and samples from a Mars analog ferrous acid stream with a thriving ecosystem to test the triage concept. Pyrolysis-FTIR identified those samples with the greatest probability of habitability and habitation. A three-tier scoring system was developed based on the detection of (i) organic signals, (ii) carbon dioxide and water, and (iii) sulfur dioxide. The presence of each component was given a score of A, B, or C depending on whether the substance had been detected, tentatively detected, or not detected, respectively. Single-step (for greatest possible sensitivity) or multistep (for more diagnostic data) pyrolysis-FTIR methods informed the assignments. The system allowed the highest-priority samples to be categorized as AAA (or A*AA if the organic signal was complex), while the lowest-priority samples could be categorized as CCC. Our methods provide a mechanism with which to rank samples and identify those that should take the highest priority for return to Earth during a Mars Sample Return mission. Key Words: Mars-Astrobiology-Search for Mars' organics-Infrared spectroscopy-Planetary habitability and biosignatures. Astrobiology 18, 556-570.
- Published
- 2018
- Full Text
- View/download PDF
37. The Search for Hesperian Organic Matter on Mars: Pyrolysis Studies of Sediments Rich in Sulfur and Iron.
- Author
-
Lewis JMT, Najorka J, Watson JS, and Sephton MA
- Subjects
- Extraterrestrial Environment chemistry, Ferric Compounds analysis, Gas Chromatography-Mass Spectrometry, Hot Temperature, Iron Compounds analysis, Minerals analysis, Sulfates analysis, X-Ray Diffraction, Geologic Sediments chemistry, Iron analysis, Mars, Organic Chemicals analysis, Sulfur analysis
- Abstract
Jarosite on Mars is of significant geological and astrobiological interest, as it forms in acidic aqueous conditions that are potentially habitable for acidophilic organisms. Jarosite can provide environmental context and may host organic matter. The most common extraction technique used to search for organic compounds on the surface of Mars is pyrolysis. However, thermal decomposition of jarosite releases oxygen into pyrolysis ovens, which degrades organic signals. Jarosite has a close association with the iron oxyhydroxide goethite in many depositional/diagenetic environments. Hematite can form by dehydration of goethite or directly from jarosite under certain aqueous conditions. Goethite and hematite are significantly more amenable than jarosite for pyrolysis experiments employed to search for organic matter. Analysis of the mineralogy and organic chemistry of samples from a natural acidic stream revealed a diverse response for organic compounds during pyrolysis of goethite-rich layers but a poor response for jarosite-rich or mixed jarosite-goethite samples. Goethite units that are associated with jarosite, but do not contain jarosite themselves, should be targeted for organic detection pyrolysis experiments on Mars. These findings are extremely timely, as exploration targets for Mars Science Laboratory include Vera Rubin Ridge (formerly known as "Hematite Ridge"), which may have formed from goethite precursors. Key Words: Mars-Pyrolysis-Jarosite-Goethite-Hematite-Biosignatures. Astrobiology 18, 454-464.
- Published
- 2018
- Full Text
- View/download PDF
38. Transitory microbial habitat in the hyperarid Atacama Desert.
- Author
-
Schulze-Makuch D, Wagner D, Kounaves SP, Mangelsdorf K, Devine KG, de Vera JP, Schmitt-Kopplin P, Grossart HP, Parro V, Kaupenjohann M, Galy A, Schneider B, Airo A, Frösler J, Davila AF, Arens FL, Cáceres L, Cornejo FS, Carrizo D, Dartnell L, DiRuggiero J, Flury M, Ganzert L, Gessner MO, Grathwohl P, Guan L, Heinz J, Hess M, Keppler F, Maus D, McKay CP, Meckenstock RU, Montgomery W, Oberlin EA, Probst AJ, Sáenz JS, Sattler T, Schirmack J, Sephton MA, Schloter M, Uhl J, Valenzuela B, Vestergaard G, Wörmer L, and Zamorano P
- Subjects
- Bacteria classification, Bacteria genetics, Biodiversity, Desert Climate, Soil chemistry, South America, Bacteria isolation & purification, Ecosystem, Soil Microbiology
- Abstract
Traces of life are nearly ubiquitous on Earth. However, a central unresolved question is whether these traces always indicate an active microbial community or whether, in extreme environments, such as hyperarid deserts, they instead reflect just dormant or dead cells. Although microbial biomass and diversity decrease with increasing aridity in the Atacama Desert, we provide multiple lines of evidence for the presence of an at times metabolically active, microbial community in one of the driest places on Earth. We base this observation on four major lines of evidence: ( i ) a physico-chemical characterization of the soil habitability after an exceptional rain event, ( ii ) identified biomolecules indicative of potentially active cells [e.g., presence of ATP, phospholipid fatty acids (PLFAs), metabolites, and enzymatic activity], ( iii ) measurements of in situ replication rates of genomes of uncultivated bacteria reconstructed from selected samples, and ( iv ) microbial community patterns specific to soil parameters and depths. We infer that the microbial populations have undergone selection and adaptation in response to their specific soil microenvironment and in particular to the degree of aridity. Collectively, our results highlight that even the hyperarid Atacama Desert can provide a habitable environment for microorganisms that allows them to become metabolically active following an episodic increase in moisture and that once it decreases, so does the activity of the microbiota. These results have implications for the prospect of life on other planets such as Mars, which has transitioned from an earlier wetter environment to today's extreme hyperaridity., Competing Interests: The authors declare no conflict of interest., (Copyright © 2018 the Author(s). Published by PNAS.)
- Published
- 2018
- Full Text
- View/download PDF
39. Pollen and spores as biological recorders of past ultraviolet irradiance.
- Author
-
Jardine PE, Fraser WT, Lomax BH, Sephton MA, Shanahan TM, Miller CS, and Gosling WD
- Subjects
- Fossils, Linear Models, Poaceae growth & development, Pollen radiation effects, Spectroscopy, Fourier Transform Infrared, Pollen chemistry, Ultraviolet Rays
- Abstract
Solar ultraviolet (UV) irradiance is a key driver of climatic and biotic change. Ultraviolet irradiance modulates stratospheric warming and ozone production, and influences the biosphere from ecosystem-level processes through to the largest scale patterns of diversification and extinction. Yet our understanding of ultraviolet irradiance is limited because no method has been validated to reconstruct its flux over timescales relevant to climatic or biotic processes. Here, we show that a recently developed proxy for ultraviolet irradiance based on spore and pollen chemistry can be used over long (10
5 years) timescales. Firstly we demonstrate that spatial variations in spore and pollen chemistry correlate with known latitudinal solar irradiance gradients. Using this relationship we provide a reconstruction of past changes in solar irradiance based on the pollen record from Lake Bosumtwi in Ghana. As anticipated, variations in the chemistry of grass pollen from the Lake Bosumtwi record show a link to multiple orbital precessional cycles (19-21 thousand years). By providing a unique, local proxy for broad spectrum solar irradiance, the chemical analysis of spores and pollen offers unprecedented opportunities to decouple solar variability, climate and vegetation change through geologic time and a new proxy with which to probe the Earth system.- Published
- 2016
- Full Text
- View/download PDF
40. Organic Matter Responses to Radiation under Lunar Conditions.
- Author
-
Matthewman R, Crawford IA, Jones AP, Joy KH, and Sephton MA
- Subjects
- Amino Acids analysis, Biomarkers analysis, Gas Chromatography-Mass Spectrometry, Hydrocarbons analysis, Polymers analysis, Solvents, Extraterrestrial Environment, Moon, Organic Chemicals analysis, Radiation
- Abstract
Large bodies, such as the Moon, that have remained relatively unaltered for long periods of time have the potential to preserve a record of organic chemical processes from early in the history of the Solar System. A record of volatiles and impactors may be preserved in buried lunar regolith layers that have been capped by protective lava flows. Of particular interest is the possible preservation of prebiotic organic materials delivered by ejected fragments of other bodies, including those originating from the surface of early Earth. Lava flow layers would shield the underlying regolith and any carbon-bearing materials within them from most of the effects of space weathering, but the encapsulated organic materials would still be subject to irradiation before they were buried by regolith formation and capped with lava. We have performed a study to simulate the effects of solar radiation on a variety of organic materials mixed with lunar and meteorite analog substrates. A fluence of ∼3 × 10
13 protons cm-2 at 4-13 MeV, intended to be representative of solar energetic particles, has little detectable effect on low-molecular-weight (≤C30 ) hydrocarbon structures that can be used to indicate biological activity (biomarkers) or the high-molecular-weight hydrocarbon polymer poly(styrene-co-divinylbenzene), and has little apparent effect on a selection of amino acids (≤C9 ). Inevitably, more lengthy durations of exposure to solar energetic particles may have more deleterious effects, and rapid burial and encapsulation will always be more favorable to organic preservation. Our data indicate that biomarker compounds that may be used to infer biological activity on their parent planet can be relatively resistant to the effects of radiation and may have a high preservation potential in paleoregolith layers on the Moon. Key Words: Radiation-Moon-Regolith-Amino acids-Biomarkers. Astrobiology 16, 900-912., Competing Interests: Statement No competing financial interests exist.- Published
- 2016
- Full Text
- View/download PDF
41. Organic Matter Detection on Mars by Pyrolysis-FTIR: An Analysis of Sensitivity and Mineral Matrix Effects.
- Author
-
Gordon PR and Sephton MA
- Subjects
- Aluminum Silicates chemistry, Clay, Hydrocarbons analysis, Logistic Models, Lycopodium, Probability, Extraterrestrial Environment, Mars, Minerals analysis, Organic Chemicals analysis, Spectroscopy, Fourier Transform Infrared methods, Temperature
- Abstract
Returning samples from Mars will require an effective method to assess and select the highest-priority geological materials. The ideal instrument for sample triage would be simple in operation, limited in its demand for resources, and rich in produced diagnostic information. Pyrolysis-Fourier infrared spectroscopy (pyrolysis-FTIR) is a potentially attractive triage instrument that considers both the past habitability of the sample depositional environment and the presence of organic matter that may reflect actual habitation. An important consideration for triage protocols is the sensitivity of the instrumental method. Experimental data indicate pyrolysis-FTIR sensitivities for organic matter at the tens of parts per million level. The mineral matrix in which the organic matter is hosted also has an influence on organic detection. To provide an insight into matrix effects, we mixed well-characterized organic matter with a variety of dry minerals, to represent the various inorganic matrices of Mars samples, prior to analysis. During pyrolysis-FTIR, serpentinites analogous to those on Mars indicative of the Phyllocian Era led to no negative effects on organic matter detection; sulfates analogous to those of the Theiikian Era led, in some instances, to the combustion of organic matter; and palagonites, which may represent samples from the Siderikian Era, led, in some instances, to the chlorination of organic matter. Any negative consequences brought about by these mineral effects can be mitigated by the correct choice of thermal extraction temperature. Our results offer an improved understanding of how pyrolysis-FTIR can perform during sample triage on Mars. Key Words: Mars-Life-detection instruments-Search for Mars' organics-Biosignatures. Astrobiology 16, 831-845., Competing Interests: Author Disclosure Statement The authors state that no competing financial interests exist.
- Published
- 2016
- Full Text
- View/download PDF
42. The nature of organic records in impact excavated rocks on Mars.
- Author
-
Montgomery W, Bromiley GD, and Sephton MA
- Abstract
Impact ejected rocks are targets for life detection missions to Mars. The Martian subsurface is more favourable to organic preservation than the surface owing to an attenuation of radiation and physical separation from oxidising materials with increasing depth. Impact events bring materials to the surface where they may be accessed without complicated drilling procedures. On Earth, different assemblages of organic matter types are derived from varying depositional environments. Here we assess whether these different types of organic materials can survive impact events without corruption. We subjected four terrestrial organic matter types to elevated pressures and temperatures in piston-cylinder experiments followed by chemical characterisation using whole-rock pyrolysis-gas chromatography-mass spectrometry. Our data reveal that long chain hydrocarbon-dominated organic matter (types I and II; mainly microbial or algal) are unresistant to pressure whereas aromatic hydrocarbon-dominated organic matter types (types III and IV; mainly land plant, metamorphosed or degraded, displaying some superficial chemical similarities to abiotic meteoritic organic matter) are relatively resistant. This suggests that the impact excavated record of potential biology on Mars will be unavoidably biased, with microbial organic matter underrepresented while metamorphosed, degraded or abiotic meteoritic organic matter types will be selectively preserved.
- Published
- 2016
- Full Text
- View/download PDF
43. Heat, Aromatic Units, and Iron-Rich Phyllosilicates: A Mechanism for Making Macromolecules in the Early Solar System.
- Author
-
Watson JS and Sephton MA
- Subjects
- Aluminum Silicates chemistry, Catalysis, Cations, Chromatography, Gas, Clay, Cobalt chemistry, Gas Chromatography-Mass Spectrometry, Metals, Nickel chemistry, Silicates chemistry, Bentonite chemistry, Hot Temperature, Hydrocarbons, Aromatic chemistry, Iron chemistry, Macromolecular Substances chemical synthesis, Meteoroids, Solar System
- Abstract
The major organic component in carbonaceous chondrites is a highly aromatic macromolecular material. Aromatic organic matter and phyllosilicates are colocated in these meteorites, and it is possible that the physical association represents a synthetic chemical relationship. To explore the potential reactions that could take place to produce the aromatic macromolecular material, we heated various simple aromatic units in the presence of montmorillonite with different exchanged cations. The majority of cation-exchanged montmorillonites tested, sodium-, aluminum-, iron-, nickel-, and cobalt-rich montmorillonites, do not produce polymerization products. By contrast, Fe(3+) cation-exchanged montmorillonite readily facilitates addition reactions between aromatic hydrocarbons. A feasible mechanism for the process is oxidative coupling, which involves a corresponding reduction of the Fe(3+) cation to its Fe(2+) counterpart. A similar reduction process for the other metal cations does not take place, highlighting the importance of iron. This simple process is one feasible mechanism for the construction of aromatic macromolecules such as those found in carbonaceous chondrites. The search for a relationship between Fe(3+)-rich phyllosilicates and aromatic organic structures (particularly dimers, trimers, and more polymerized forms) in carbonaceous chondrites would represent an effective test for constraining the role of clay catalysis in the early Solar System.
- Published
- 2015
- Full Text
- View/download PDF
44. Multiple Cosmic Sources for Meteorite Macromolecules?
- Author
-
Sephton MA, Watson JS, Meredith W, Love GD, Gilmour I, and Snape CE
- Subjects
- Carbon Isotopes chemistry, Gas Chromatography-Mass Spectrometry, Hydrocarbons, Aromatic chemistry, Macromolecular Substances chemistry, Meteoroids
- Abstract
The major organic component in carbonaceous meteorites is an organic macromolecular material. The Murchison macromolecular material comprises aromatic units connected by aliphatic and heteroatom-containing linkages or occluded within the wider structure. The macromolecular material source environment remains elusive. Traditionally, attempts to determine source have strived to identify a single environment. Here, we apply a highly efficient hydrogenolysis method to liberate units from the macromolecular material and use mass spectrometric techniques to determine their chemical structures and individual stable carbon isotope ratios. We confirm that the macromolecular material comprises a labile fraction with small aromatic units enriched in (13)C and a refractory fraction made up of large aromatic units depleted in (13)C. Our findings suggest that the macromolecular material may be derived from at least two separate environments. Compound-specific carbon isotope trends for aromatic compounds with carbon number may reflect mixing of the two sources. The story of the quantitatively dominant macromolecular material in meteorites appears to be made up of more than one chapter.
- Published
- 2015
- Full Text
- View/download PDF
45. Subcritical water extraction of organic matter from sedimentary rocks.
- Author
-
Luong D, Sephton MA, and Watson JS
- Subjects
- Chemical Fractionation methods, Environmental Monitoring methods, Equipment Design, Hot Temperature, Polycyclic Aromatic Hydrocarbons isolation & purification, Solvents chemistry, Water Pollutants, Chemical isolation & purification, Alkanes isolation & purification, Chemical Fractionation instrumentation, Environmental Monitoring instrumentation, Geologic Sediments analysis, Hydrocarbons, Aromatic isolation & purification, Water chemistry
- Abstract
Subcritical water extraction of organic matter containing sedimentary rocks at 300°C and 1500 psi produces extracts comparable to conventional solvent extraction. Subcritical water extraction of previously solvent extracted samples confirms that high molecular weight organic matter (kerogen) degradation is not occurring and that only low molecular weight organic matter (free compounds) are being accessed in analogy to solvent extraction procedures. The sedimentary rocks chosen for extraction span the classic geochemical organic matter types. A type I organic matter-containing sedimentary rock produces n-alkanes and isoprenoidal hydrocarbons at 300°C and 1500 psi that indicate an algal source for the organic matter. Extraction of a rock containing type II organic matter at the same temperature and pressure produces aliphatic hydrocarbons but also aromatic compounds reflecting the increased contributions from terrestrial organic matter in this sample. A type III organic matter-containing sample produces a range of non-polar and polar compounds including polycyclic aromatic hydrocarbons and oxygenated aromatic compounds at 300°C and 1500 psi reflecting a dominantly terrestrial origin for the organic materials. Although extraction at 300°C and 1500 psi produces extracts that are comparable to solvent extraction, lower temperature steps display differences related to organic solubility. The type I organic matter produces no products below 300°C and 1500 psi, reflecting its dominantly aliphatic character, while type II and type III organic matter contribute some polar components to the lower temperature steps, reflecting the chemical heterogeneity of their organic inventory. The separation of polar and non-polar organic compounds by using different temperatures provides the potential for selective extraction that may obviate the need for subsequent preparative chromatography steps. Our results indicate that subcritical water extraction can act as a suitable replacement for conventional solvent extraction of sedimentary rocks, but can also be used for any organic matter containing mineral matrix, including soils and recent sediments, and has the added benefit of tailored extraction for analytes of specific polarities., (Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
46. Sulfate minerals: a problem for the detection of organic compounds on Mars?
- Author
-
Lewis JM, Watson JS, Najorka J, Luong D, and Sephton MA
- Subjects
- Gas Chromatography-Mass Spectrometry, Hot Temperature, X-Ray Diffraction, Extraterrestrial Environment chemistry, Mars, Minerals chemistry, Organic Chemicals analysis, Sulfates chemistry
- Abstract
The search for in situ organic matter on Mars involves encounters with minerals and requires an understanding of their influence on lander and rover experiments. Inorganic host materials can be helpful by aiding the preservation of organic compounds or unhelpful by causing the destruction of organic matter during thermal extraction steps. Perchlorates are recognized as confounding minerals for thermal degradation studies. On heating, perchlorates can decompose to produce oxygen, which then oxidizes organic matter. Other common minerals on Mars, such as sulfates, may also produce oxygen upon thermal decay, presenting an additional complication. Different sulfate species decompose within a large range of temperatures. We performed a series of experiments on a sample containing the ferric sulfate jarosite. The sulfate ions within jarosite break down from 500 °C. Carbon dioxide detected during heating of the sample was attributed to oxidation of organic matter. A laboratory standard of ferric sulfate hydrate released sulfur dioxide from 550 °C, and an oxygen peak was detected in the products. Calcium sulfate did not decompose below 1000 °C. Oxygen released from sulfate minerals may have already affected organic compound detection during in situ thermal experiments on Mars missions. A combination of preliminary mineralogical analyses and suitably selected pyrolysis temperatures may increase future success in the search for past or present life on Mars.
- Published
- 2015
- Full Text
- View/download PDF
47. Minimising hydrogen sulphide generation during steam assisted production of heavy oil.
- Author
-
Montgomery W, Sephton MA, Watson JS, Zeng H, and Rees AC
- Abstract
The majority of global petroleum is in the form of highly viscous heavy oil. Traditionally heavy oil in sands at shallow depths is accessed by large scale mining activities. Recently steam has been used to allow heavy oil extraction with greatly reduced surface disturbance. However, in situ thermal recovery processes can generate hydrogen sulphide, high levels of which are toxic to humans and corrosive to equipment. Avoiding hydrogen sulphide production is the best possible mitigation strategy. Here we use laboratory aquathermolysis to reproduce conditions that may be experienced during thermal extraction. The results indicate that hydrogen sulphide generation occurs within a specific temperature and pressure window and corresponds to chemical and physical changes in the oil. Asphaltenes are identified as the major source of sulphur. Our findings reveal that for high sulphur heavy oils, the generation of hydrogen sulphide during steam assisted thermal recovery is minimal if temperature and pressure are maintained within specific criteria. This strict pressure and temperature dependence of hydrogen sulphide release can allow access to the world's most voluminous oil deposits without generating excessive amounts of this unwanted gas product.
- Published
- 2015
- Full Text
- View/download PDF
48. The Moon as a recorder of organic evolution in the early solar system: a lunar regolith analog study.
- Author
-
Matthewman R, Court RW, Crawford IA, Jones AP, Joy KH, and Sephton MA
- Subjects
- Earth, Planet, Gas Chromatography-Mass Spectrometry, Geology, Hot Temperature, Hydroxybutyrates chemistry, Meteoroids, Minor Planets, Planets, Solvents, Temperature, Volcanic Eruptions, Evolution, Chemical, Exobiology methods, Moon, Solar System
- Abstract
The organic record of Earth older than ∼3.8 Ga has been effectively erased. Some insight is provided to us by meteorites as well as remote and direct observations of asteroids and comets left over from the formation of the Solar System. These primitive objects provide a record of early chemical evolution and a sample of material that has been delivered to Earth's surface throughout the past 4.5 billion years. Yet an effective chronicle of organic evolution on all Solar System objects, including that on planetary surfaces, is more difficult to find. Fortunately, early Earth would not have been the only recipient of organic matter-containing objects in the early Solar System. For example, a recently proposed model suggests the possibility that volatiles, including organic material, remain archived in buried paleoregolith deposits intercalated with lava flows on the Moon. Where asteroids and comets allow the study of processes before planet formation, the lunar record could extend that chronicle to early biological evolution on the planets. In this study, we use selected free and polymeric organic materials to assess the hypothesis that organic matter can survive the effects of heating in the lunar regolith by overlying lava flows. Results indicate that the presence of lunar regolith simulant appears to promote polymerization and, therefore, preservation of organic matter. Once polymerized, the mineral-hosted newly formed organic network is relatively protected from further thermal degradation. Our findings reveal the thermal conditions under which preservation of organic matter on the Moon is viable.
- Published
- 2015
- Full Text
- View/download PDF
49. In-situ vibrational optical rotatory dispersion of molecular organic crystals at high pressures.
- Author
-
Montgomery W, Lerch P, and Sephton MA
- Subjects
- Crystallization, Equipment Design, Pressure, Stereoisomerism, Alanine chemistry, Optical Rotatory Dispersion instrumentation, Spectroscopy, Fourier Transform Infrared instrumentation
- Abstract
Organic structures respond to pressure with a variety of mechanisms including degradation, intramolecular transformation and intermolecular bonding. The effects of pressure on chiral organic structures are of particular interest because of the potential steric controls on the fate of pressurized molecules. Despite representing a range of opportunities, the simultaneous study of high pressures on different forms of chiral structures is poorly explored. We have combined synchrotron-source vibrational optical rotatory dispersion, micro-Fourier transform infrared spectroscopy and the use of a diamond anvil cell to simultaneously monitor the effects of pressure on the two enantiomers of the simple amino acid, alanine., (Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2014
- Full Text
- View/download PDF
50. Searching for life on Mars: degradation of surfactant solutions used in organic extraction experiments.
- Author
-
Court RW, Sims MR, Cullen DC, and Sephton MA
- Subjects
- Electric Conductivity, Electromagnetic Radiation, Hydrogen-Ion Concentration, Organic Chemistry Phenomena, Soil chemistry, Solutions, Space Flight, Surface-Active Agents, Exobiology, Extraterrestrial Environment, Mars
- Abstract
Life-detection instruments on future Mars missions may use surfactant solutions to extract organic matter from samples of martian rocks. The thermal and radiation environments of space and Mars are capable of degrading these solutions, thereby reducing their ability to dissolve organic species. Successful extraction and detection of biosignatures on Mars requires an understanding of how degradation in extraterrestrial environments can affect surfactant performance. We exposed solutions of the surfactants polysorbate 80 (PS80), Zonyl FS-300, and poly[dimethylsiloxane-co-[3-(2-(2-hydroxyethoxy)ethoxy)propyl]methylsiloxane] (PDMSHEPMS) to elevated radiation and heat levels, combined with prolonged storage. Degradation was investigated by measuring changes in pH and electrical conductivity and by using the degraded solutions to extract a suite of organic compounds spiked onto grains of the martian soil simulant JSC Mars-1. Results indicate that the proton fluences expected during a mission to Mars do not cause significant degradation of surfactant compounds. Solutions of PS80 or PDMSHEPMS stored at -20 °C are able to extract the spiked standards with acceptable recovery efficiencies. Extraction efficiencies for spiked standards decrease progressively with increasing temperature, and prolonged storage at 60°C renders the surfactant solutions ineffective. Neither the presence of ascorbic acid nor the choice of solvent unequivocally alters the efficiency of extraction of the spiked standards. Since degradation of polysorbates has the potential to produce organic compounds that could be mistaken for indigenous martian organic matter, the polysiloxane PDMSHEPMS may be a superior choice of surfactant for the exploration of Mars.
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.