1. Unveiling the Cutting-Edge Impact of Polarized Macrophage-Derived Extracellular Vesicles and MiRNA Signatures on TGF-β Regulation within Lung Fibroblasts.
- Author
-
Casara A, Conti M, Bernardinello N, Tinè M, Baraldo S, Turato G, Semenzato U, Celi A, Spagnolo P, Saetta M, Cosio MG, Neri T, Biondini D, and Bazzan E
- Subjects
- Humans, Macrophage Activation genetics, Cells, Cultured, Gene Expression Regulation, MicroRNAs genetics, MicroRNAs metabolism, Fibroblasts metabolism, Extracellular Vesicles metabolism, Extracellular Vesicles genetics, Transforming Growth Factor beta metabolism, Macrophages metabolism, Lung metabolism, Lung cytology
- Abstract
Depending on local cues, macrophages can polarize into classically activated (M1) or alternatively activated (M2) phenotypes. This study investigates the impact of polarized macrophage-derived Extracellular Vesicles (EVs) (M1 and M2) and their cargo of miRNA-19a-3p and miRNA-425-5p on TGF-β production in lung fibroblasts. EVs were isolated from supernatants of M0, M1, and M2 macrophages and quantified using nanoscale flow cytometry prior to fibroblast stimulation. The concentration of TGF-β in fibroblast supernatants was measured using ELISA assays. The expression levels of miRNA-19a-3p and miRNA-425-5p were assessed via TaqMan-qPCR. TGF-β production after stimulation with M0-derived EVs and with M1-derived EVs increased significantly compared to untreated fibroblasts. miRNA-425-5p, but not miRNA-19a-3p, was significantly upregulated in M2-derived EVs compared to M0- and M1-derived EVs. This study demonstrates that EVs derived from both M0 and M1 polarized macrophages induce the production of TGF-β in fibroblasts, with potential regulation by miRNA-425-5p.
- Published
- 2024
- Full Text
- View/download PDF