10 results on '"Schuurmans, Lea"'
Search Results
2. Diverging paths: Modeling the relation between adverse effects, attitudes, perceived adherence, and treatment effect in an internet-based cognitive-behavioral intervention for obsessive-compulsive disorder
- Author
-
Baumeister, Anna, Schuurmans, Lea, Schultz, Josephine, Schröder, Johanna, Moritz, Steffen, and Jelinek, Lena
- Published
- 2025
- Full Text
- View/download PDF
3. Evaluation of randomized controlled trials: a primer and tutorial for mental health researchers
- Author
-
Harrer, Mathias, Cuijpers, Pim, Schuurmans, Lea K. J., Kaiser, Tim, Buntrock, Claudia, van Straten, Annemieke, and Ebert, David
- Published
- 2023
- Full Text
- View/download PDF
4. Randomized Controlled Trial on Imaginal Retraining for Problematic Alcohol Use: A Dismantling Study
- Author
-
Gehlenborg, Josefine, primary, Göritz, Anja S., additional, Kempken, Joana, additional, Wirtz, Janina, additional, Schuurmans, Lea, additional, Moritz, Steffen, additional, and Kühn, Simone, additional
- Published
- 2024
- Full Text
- View/download PDF
5. Reducing problematic pornography use with imaginal retraining–A randomized controlled trial
- Author
-
Baumeister, Anna, primary, Gehlenborg, Josefine, additional, Schuurmans, Lea, additional, Moritz, Steffen, additional, and Briken, Peer, additional
- Published
- 2024
- Full Text
- View/download PDF
6. Who benefits from indirect prevention and treatment of depression using an online intervention for insomnia? Results from an individual-participant data meta-analysis
- Author
-
Thielecke, Janika, primary, Kuper, Paula, additional, Lehr, Dirk, additional, Schuurmans, Lea, additional, Harrer, Mathias, additional, Ebert, David D., additional, Cuijpers, Pim, additional, Behrendt, Dörte, additional, Brückner, Hanna, additional, Horvath, Hanne, additional, Riper, Heleen, additional, and Buntrock, Claudia, additional
- Published
- 2024
- Full Text
- View/download PDF
7. Too much of a good thing? Hand hygiene and the long-term course of contamination-related obsessive-compulsive symptoms.
- Author
-
Jelinek, Lena, Göritz, Anja S., Miege, Franziska, Schuurmans, Lea, Moritz, Steffen, Yassari, Amir H., and Müller, Jana Christina
- Subjects
HAND care & hygiene ,HAND washing ,HYGIENE ,COVID-19 pandemic ,SYMPTOMS - Abstract
Increased hygiene behavior may be a factor in the development of contaminationrelated obsessive-compulsive symptoms (C-OCS). We aimed at investigating (1) the course of C-OCS over 1 year after the start of the COVID-19 pandemic and (2) the effects of changes in hand hygiene (i.e., duration and frequency of handwashing) and related distress regulation on the long-term course of C-OCS. In a longitudinal study, we assessed 1,220 individuals from the German general population at the start of the COVID-19 pandemic (t1), 3 months later (t2), and 12 months later (t3). Pre-pandemic data were available in a subsample from 2014 (n = 430). A decrease in C-OCS over the first year of the pandemic emerged with a small effect size. Thirty-six percent of the participants scored above the clinical cut-off score at t1, 31% at t2, and 27% at t3. In 2014, only 11% scored above the clinical cut-off score. Hierarchical regression showed that C-OCS at t1 was the strongest predictor of a long-term increase in C-OCS. With small effect sizes, change in the duration (not frequency) of handwashing from t1 to t2, as well as the distress-reducing effect of handwashing served as additional predictors. Implications for information on hand hygiene guidelines are discussed. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
8. Online Sleep Trainings for the Prevention and Treatment of Depression – An Individual Patient Data Meta-Analysis
- Author
-
Thielecke, Janika, Buntrock, Claudia, Harrer, Mathias, Schuurmans, Lea, Ebert, David, Lehr, Dirk, Behrendt, Dörte, Sander, Lasse, and Spanhel, Kerstin
- Subjects
IPD ,internet intervention ,prevention ,treatment ,depression ,Medicine and Health Sciences ,sleep - Abstract
Major Depression (MDD) is an important challenge in mental healthcare, as MDD is a highly prevalent mental disorder (Gutiérrez-Rojas, Porras-Segovia, Dunne, Andrade-González, & Cervilla, 2020) with considerable individual (Ferrari et al., 2013; Lépine & Briley, 2011) as well as societal (Greenberg, Fournier, Sisitsky, Pike, & Kessler, 2015; Vos et al., 2004) burden. Estimates suggest that worldwide only 21% of individuals with MDD receive adequate treatment (Scott, de Jonge, Stein, & Kessler, 2018) and even in a hypothetical scenario with full coverage of and compliance to evidenced-based treatments models suggest that only a third of MDD-related disease burden could be avoided (Chisholm, Sanderson, Ayuso-Mateos, & Saxena, 2004). Barriers for help seeking most often include attitudinal barriers, such as the wish to handle one’s own problems or a perceived stigma of mental health problems and to a lesser degree structural barriers such as financing, time or transportation constraints (Andrade et al., 2014; Mojtabai et al., 2011). While some of the structural barriers can be countered with the use of internet-based interventions, which can be used independent of time and location (Ebert et al., 2018), some attitudinal barriers, like perceived stigma might be reduced by using an indirect approach (Cuijpers, 2021). In indirect interventions, instead of focusing on depression, common everyday problems such as low self-esteem, procrastination (Cuijpers et al., 2021), stress (Harrer et al., 2021; Weisel et al., 2018) or less stigmatized conditions such as insomnia (van der Zweerde, van Straten, Effting, Kyle, & Lancee, 2019) are addressed and by improving these also reduce depressive symptoms. Addressing sleep problems seems especially promising for targeting mental health problems, due to its association with multiple other mental health disorders (Hertenstein et al., 2019). Insomnia is especially linked to MDD in terms of predicting MDD onset (Baglioni et al., 2011; Li, Wu, Gan, Qu, & Lu, 2016), often being comorbid to MDD (Staner, 2010) and outlasting depression treatment (Vargas & Perlis, 2020). Several studies already showed the effects of (online) insomnia interventions on depressive symptom reduction (Cunningham & Shapiro, 2018) both in subthreshold (Batterham et al., 2017; Cheng et al., 2019; Christensen et al., 2016; van der Zweerde et al., 2019) and clinical relevant depression (Blom et al., 2015; Blom, Jernelöv, Rück, Lindefors, & Kaldo, 2017; Chan et al., 2021; Hertenstein et al., 2022). One study reporting on depression onset after an online-insomnia treatment found no group differences (Christensen et al., 2016) while another trial showed that in individuals with an insomnia subtype with a high risk for depression (characterized by different patterns in general distress, rumination and reduced positive effect), predicted symptom worsening could be avoided (Leerssen et al., 2021).To our knowledge, no studies directly compare subthreshold and clinically relevant levels of depressive symptoms in one study, so that effects of an indirect treatment or prevention approach concerning depressive symptom severity remain unclear. In terms of factors that possibly moderate the efficacy of an indirect approach and guide researchers and practitioners to individuals who would profit most from this approach, the literature is insufficient. (Work-related) ruminations and worries are suggested to mediate the effects of online insomnia interventions on depression (Behrendt, Ebert, Spiegelhalder, & Lehr, 2020; Cheng, Kalmbach, Castelan, Murugan, & Drake, 2020). Evidence of the influence of clinical (e.g. baseline severity) and demographic characteristic (e.g. sex, age, education) is mixed (Batterham et al., 2017; Cheng et al., 2019; Christensen et al., 2016). Therefore, the individual patient data from seven studies originally evaluating the efficacy of online sleep training will be pooled and analyzed to 1) evaluate their efficacy on depressive symptom reduction in both individuals with subclinical and clinical levels of depressive symptoms and 2) identify possible moderating and 3) mediating effects of clinical as well as demographic participants and intervention characteristics. References 1) Andrade, L. H., Alonso, J., Mneimneh, Z., Wells, J. E., Al-Hamzawi, A., Borges, G., … Kessler, R. C. (2014). Barriers to mental health treatment: results from the WHO World Mental Health surveys. Psychological Medicine, 44(6), 1303–1317. https://doi.org/10.1017/S0033291713001943 2) Baglioni, C., Battagliese, G., Feige, B., Spiegelhalder, K., Nissen, C., Voderholzer, U., … Riemann, D. (2011). Insomnia as a predictor of depression: A meta-analytic evaluation of longitudinal epidemiological studies. Journal of Affective Disorders, 135(1–3), 10–19. https://doi.org/10.1016/j.jad.2011.01.011 3) Barnard, J., & Rubin, D. B. (1999). Small-sample degrees of freedom with multiple imputation. Biometrika, 86(4), 948–955. http://www.jstor.org/stable/2673599 4) Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01 5) Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Usinglme4. Journal of Statistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01 6) Batterham, P. J., Christensen, H., Mackinnon, A. J., Gosling, J. A., Thorndike, F. P., Ritterband, L. M., … Griffiths, K. M. (2017). Trajectories of change and long-term outcomes in a randomised controlled trial of internet-based insomnia treatment to prevent depression. BJPsych Open, 3(5), 228–235. https://doi.org/10.1192/bjpo.bp.117.005231 7) Behrendt, D., Ebert, D. D., Spiegelhalder, K., & Lehr, D. (2020). Efficacy of a self-help web-based recovery training in improving sleep in workers: Randomized controlled trial in the general working population. Journal of Medical Internet Research, 22(1), 1–18. https://doi.org/10.2196/13346 8) Blom, K., Jernelöv, S., Kraepelien, M., Bergdahl, M. O., Jungmarker, K., Ankartjärn, L., … Kaldo, V. (2015). Internet Treatment Addressing either Insomnia or Depression, for Patients with both Diagnoses: A Randomized Trial. Sleep, 38(2), 267–277. https://doi.org/10.5665/sleep.4412 9) Blom, K., Jernelöv, S., Rück, C., Lindefors, N., & Kaldo, V. (2017). Three-year follow-up comparing cognitive behavioral therapy for depression to cognitive behavioral therapy for insomnia, for patients with both diagnoses. Sleep, 40(8). https://doi.org/10.1093/sleep/zsx108 10) Braun, L., Titzler, I., Ebert, D. D., Buntrock, C., Terhorst, Y., Freund, J., … Baumeister, H. (2019). Clinical and cost-effectiveness of guided internet-based interventions in the indicated prevention of depression in green professions (PROD-A): study protocol of a 36-month follow-up pragmatic randomized controlled trial. BMC Psychiatry, 19(1), 278. https://doi.org/10.1186/s12888-019-2244-y 11) Braun, L., Titzler, I., Terhorst, Y., Freund, J., Thielecke, J., Ebert, D. D., & Baumeister, H. (2021). Effectiveness of guided internet-based interventions in the indicated prevention of depression in green professions (PROD-A): Results of a pragmatic randomized controlled trial. Journal of Affective Disorders, 278, 658–671. https://doi.org/10.1016/j.jad.2020.09.066 12) Bürkner, P.-C. (2017). Brms: An r package for bayesian multilevel models using stan. Journal of Statistical Software, 80(1). https://doi.org/10.18637/jss.v080.i01 13) Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M.,Guo, J., Li, P., & Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76(1). https://doi.org/10.18637/jss.v076.i01 14) Chan, C. S., Wong, C. Y. F., Yu, B. Y. M., Hui, V. K. Y., Ho, F. Y. Y., & Cuijpers, P. (2021). Treating depression with a smartphone-delivered self-help cognitive behavioral therapy for insomnia: a parallel-group randomized controlled trial. Psychological Medicine, 1–15. https://doi.org/10.1017/S0033291721003421 15) Cheng, P., Kalmbach, D. A., Castelan, A. C., Murugan, N., & Drake, C. L. (2020). Depression prevention in digital cognitive behavioral therapy for insomnia: Is rumination a mediator? Journal of Affective Disorders, 273(August 2019), 434–441. https://doi.org/10.1016/j.jad.2020.03.184 16) Cheng, P., Luik, A. I., Fellman-Couture, C., Peterson, E., Joseph, C. L. M., Tallent, G., … Drake, C. L. (2019). Efficacy of digital CBT for insomnia to reduce depression across demographic groups: A randomized trial. Psychological Medicine, 49(3), 491–500. https://doi.org/10.1017/S0033291718001113 17) Chisholm, D., Sanderson, K., Ayuso-Mateos, J. L., & Saxena, S. (2004). Reducing the global burden of depression: Population-level analysis of intervention cost-effectiveness in 14 world regions. British Journal of Psychiatry. https://doi.org/10.1192/bjp.184.5.393 18) Christensen, H., Batterham, P. J., Gosling, J. A., Ritterband, L. M., Griffiths, K. M., Thorndike, F. P., … Mackinnon, A. J. (2016). Effectiveness of an online insomnia program (SHUTi) for prevention of depressive episodes (the GoodNight Study): A randomised controlled trial. The Lancet Psychiatry, 3(4), 333–341. https://doi.org/10.1016/S2215-0366(15)00536-2 19) Chung, Y., Rabe-Hesketh, S., Dorie, V., Gelman, A., & Liu, J. (2013). A nondegenerate penalized likelihood estimator for variance parameters in multilevel models. Psychometrika, 78(4), 685–709. https://doi.org/10.1007/S11336-013-9328-2 20) Cuijpers, P. (2021). Indirect prevention and treatment of depression: An emerging paradigm? Clinical Psychology in Europe, 3(4). https://doi.org/10.32872/cpe.6847 21) Cuijpers, P., Smit, F., Aalten, P., Batelaan, N., Klein, A., Salemink, E., … Karyotaki, E. (2021). The Associations of Common Psychological Problems With Mental Disorders Among College Students. Frontiers in Psychiatry, 12(September), 1–9. https://doi.org/10.3389/fpsyt.2021.573637 22) Cuijpers, P., Turner, E. H., Koole, S. L., Van Dijke, A., & Smit, F. (2014). What is the threshold for a clinically relevant effect? the case of major depressive disorders. Depression and Anxiety, 31(5), 374–378. https://doi.org/10.1002/da.22249 23) Cunningham, J. E. A., & Shapiro, C. M. (2018). Cognitive Behavioural Therapy for Insomnia (CBT-I) to treat depression: A systematic review. Journal of Psychosomatic Research, 106(December 2017), 1–12. https://doi.org/10.1016/j.jpsychores.2017.12.012 24) Ebert, D. D., Van Daele, T., Nordgreen, T., Karekla, M., Compare, A., Zarbo, C., … Taylor, J. (2018). Erratum: Internet and mobile-based psychological interventions: Applications, efficacy and potential for improving mental health. A report of the EFPA E-Health Taskforce (European Psychologist (2018) 23 (167-187) DOI: 10.1027/1016-9040/a000318). European Psychologist, 23(3), 269. https://doi.org/10.1027/1016-9040/a000346 25) Ferrari, A. J., Charlson, F. J., Norman, R. E., Patten, S. B., Freedman, G., Murray, C. J. L., … Whiteford, H. A. (2013). Burden of Depressive Disorders by Country, Sex, Age, and Year: Findings from the Global Burden of Disease Study 2010. PLoS Medicine. https://doi.org/10.1371/journal.pmed.1001547 26) Garge, N. R., Bobashev, G., & Eggleston, B. (2013). Random forest methodology for model-based recursive partitioning: The mobforest package for R. BMC bioinformatics, 14, 125. https://doi.org/10.1186/1471-2105-14-125 27) Gerber, M., Lang, C., Lemola, S., Colledge, F., Kalak, N., Holsboer-Trachsler, E., … Brand, S. (2016). Validation of the German version of the insomnia severity index in adolescents, young adults and adult workers: Results from three cross-sectional studies. BMC Psychiatry. https://doi.org/10.1186/s12888-016-0876-8 28) Greenberg, P. E., Fournier, A. A., Sisitsky, T., Pike, C. T., & Kessler, R. C. (2015). The economic burden of adults with major depressive disorder in the United States (2005 and 2010). Journal of Clinical Psychiatry. https://doi.org/10.4088/JCP.14m09298 29) Grund, S., Lüdtke, O., & Robitzsch, A. (2016). Multiple Imputation of Multilevel Missing Data. SAGE Open, 6(4), 215824401666822. https://doi.org/10.1177/2158244016668220 30) Gutiérrez-Rojas, L., Porras-Segovia, A., Dunne, H., Andrade-González, N., & Cervilla, J. A. (2020). Prevalence and correlates of major depressive disorder: A systematic review. Brazilian Journal of Psychiatry, 42(6), 657–672. https://doi.org/10.1590/1516-4446-2020-0650 31) Harrer, M., Apolinário-Hagen, J., Fritsche, L., Salewski, C., Zarski, A. C., Lehr, D., … Ebert, D. D. (2021). Effect of an internet- and app-based stress intervention compared to online psychoeducation in university students with depressive symptoms: Results of a randomized controlled trial. Internet Interventions, 24.https://doi.org/10.1016/j.invent.2021.100374 32) Hedges, L. V., & Olkin, I. (1986). Statistical Methods for Meta-Analysis. Biometrics. https://doi.org/10.2307/2531069 33) Hertenstein, E., Feige, B., Gmeiner, T., Kienzler, C., Spiegelhalder, K., Johann, A., … Baglioni, C. (2019). Insomnia as a predictor of mental disorders: A systematic review and meta-analysis. Sleep Medicine Reviews, 43, 96–105. https://doi.org/10.1016/j.smrv.2018.10.006 34) Hertenstein, E., Trinca, E., Wunderlin, M., Schneider, C. L., Züst, M. A., Fehér, K. D., … Nissen, C. (2022). Cognitive behavioral therapy for insomnia in patients with mental disorders and comorbid insomnia: A systematic review and meta-analysis. Sleep Medicine Reviews, 101597. https://doi.org/10.1016/j.smrv.2022.101597 35) Jacobson, N. S., & Truax, P. (1991). Clinical Significance: A Statistical Approach to Defining Meaningful Change in Psychotherapy Research. Journal of Consulting and Clinical Psychology. https://doi.org/10.1037/0022-006X.59.1.12 36) Jahn, R., Baumgartner, J., van den Nest, M., Friedrich, F., Alexandrowicz, R., & Wancata, J. (2018). Kriteriumsvalidität der deutschsprachigen Version der CES-D in der Allgemeinbevölkerung. Psychiatrische Praxis, 45(08), 434–442. https://doi.org/10.1055/a-0584-9803 37) Kroenke, K., Strine, T. W., Spitzer, R. L., Williams, J. B. W., Berry, J. T., & Mokdad, A. H. (2009). The PHQ-8 as a measure of current depression in the general population. Journal of Affective Disorders, 114(1–3), 163–173. https://doi.org/10.1016/j.jad.2008.06.026 38) Leerssen, J., Lakbila-Kamal, O., Dekkers, L. M. S., Ikelaar, S. L. C., Albers, A. C. W., Blanken, T. F., … Van Someren, E. J. W. (2021). Treating Insomnia with High Risk of Depression Using Therapist-Guided Digital Cognitive, Behavioral, and Circadian Rhythm Support Interventions to Prevent Worsening of Depressive Symptoms: A Randomized Controlled Trial. Psychotherapy and Psychosomatics. https://doi.org/10.1159/000520282 39) Lépine, J. P., & Briley, M. (2011). The increasing burden of depression. Neuropsychiatric Disease and Treatment, 7(SUPPL.), 3–7. https://doi.org/10.2147/NDT.S19617 40) Li, L., Wu, C., Gan, Y., Qu, X., & Lu, Z. (2016). Insomnia and the risk of depression: A meta-analysis of prospective cohort studies. BMC Psychiatry, 16(1). https://doi.org/10.1186/s12888-016-1075-3 41) Mojtabai, R., Olfson, M., Sampson, N. a, Druss, B., Wang, P. S., Wells, K. B., … Kessler, R. C. (2011). Barriers to mental health treatment: results from the WHO World Mental Health surveys. Psychological Medicine, 41(8), 1751–1761. https://doi.org/10.1017/S0033291710002291.Barriers 42) Norell-Clarke, A., Tillfors, M., Jansson-Fröjmark, M., Holländare, F., & Engström, I. (2018). Does midtreatment insomnia severity mediate between cognitive behavioural therapy for insomnia and post-treatment depression? an investigation in a sample with comorbid insomnia and depressive symptomatology. Behavioural and Cognitive Psychotherapy, 46(6), 726–737. https://doi.org/10.1017/S1352465818000395 43) Quartagno, M., Grund, S., & Carpenter, J. (2019). jomo: A Flexible Package for Two-level Joint Modelling Multiple Imputation. The R Journal, 11(2), 205. https://doi.org/10.32614/RJ-2019-028 44) Reins, J. A., Buntrock, C., Zimmermann, J., Grund, S., Harrer, M., Lehr, D., … Ebert, D. D. (2021). Efficacy and Moderators of Internet-Based Interventions in Adults with Subthreshold Depression: An Individual Participant Data Meta-Analysis of Randomized Controlled Trials. Psychotherapy and Psychosomatics, 90(2), 94–106. https://doi.org/10.1159/000507819 45) Riley, R. D., & Fisher, D. J. (2021). Using IPD meta–analysis to examine interactions between treatment effect and participant–level covariates. In R. D. Riley, J. F. Tierney, & L. A. Stewart (Eds.), Individual participant data meta–analysis (pp. 163–198). Wiley. https://doi.org/10.1159/000507819 46) Robitzsch, A., & Grund, S. (2021). Miceadds: Some additional multiple imputation functions, especially for ’mice’ [R package version 3.11-6]. https://CRAN.R-project.org/package=miceadds 47) Rubin, D. B. (2004). Multiple imputation for nonresponse in surveys (Vol. 81). John Wiley & Sons.https://doi.org/10.1002/9780470316696 48) Schafer, J., & Yucel, R. (2012). Computational strategies for multivariate linear mixed-effects models with missing values. Journal of Computational and Graphical Statistics, 11. https://doi.org/10.1198/106186002760180608 49) Scott, K. M., de Jonge, P., Stein, D. J., & Kessler, R. C. (2018). Mental disorders around the world: Facts and figures from the WHO World Mental Health surveys. Mental Disorders Around the World: Facts and Figures from the WHO World Mental Health Surveys. Cambridge University Press. https://doi.org/10.1017/9781316336168 50) Staner, L. (2010). Comorbidity of insomnia and depression. Sleep Medicine Reviews, 14(1), 35–46. https://doi.org/10.1016/j.smrv.2009.09.003 51) van Buuren, S., & Groothuis-Oudshoorn, K. (2011). mice: Multivariate imputation by chained equations in R. Journal of Statistical Software, 45(3), 1–67. https://doi.org/10.18637/jss.v045.i03 52) van der Zweerde, T., van Straten, A., Effting, M., Kyle, S. D., & Lancee, J. (2019). Does online insomnia treatment reduce depressive symptoms? A randomized controlled trial in individuals with both insomnia and depressive symptoms. Psychological Medicine, 49(3), 501–509. https://doi.org/10.1017/S0033291718001149 53) Vargas, I., & Perlis, M. L. (2020). Insomnia and depression: clinical associations and possible mechanistic links. Current Opinion in Psychology, 34, 95–99. https://doi.org/10.1016/j.copsyc.2019.11.004 54) Vos, T., Haby, M. M., Barendregt, J. J., Kruijshaar, M., Corry, J., & Andrews, G. (2004). The burden of major depression avoidable by longer-term treatment strategies. Archives of General Psychiatry. https://doi.org/10.1001/archpsyc.61.11.1097 55) Wahl, I., Löwe, B., Bjorner, J. B., Fischer, F., Langs, G., Voderholzer, U., … Rose, M. (2014). Standardization of depression measurement: a common metric was developed for 11 self-report depression measures. Journal of Clinical Epidemiology, 67(1), 73–86. https://doi.org/10.1016/j.jclinepi.2013.04.019 56) Weisel, K. K., Lehr, D., Heber, E., Zarski, A. C., Berking, M., Riper, H., & Ebert, D. D. (2018). Severely burdened individuals do not need to be excluded from internet-based and mobile-based stress management: Effect modifiers of treatment outcomes from three randomized controlled trials. Journal of Medical Internet Research, 20(6). https://doi.org/10.2196/jmir.9387 57) White, I. R., Daniel, R., & Royston, P. (2010). Avoiding bias due to perfect prediction in multiple imputation of incomplete categorical variables. Comput Stat Data Anal, 54(10), 2267–2275. https://doi.org/10.1016/j.csda.2010.04.005 58) Zeileis, A., Hothorn, T., & Hornik, K. (2008). Model-based recursive partitioning. Journal of Computational and Graphical Statistics, 17(2), 492–514. https://doi.org/10.1198/106186008X319331
- Published
- 2022
- Full Text
- View/download PDF
9. Efficacy of an Internet-based Sleep Intervention on Depressive Symptoms in Patients with Moderate Depression - Individual Patient Data Meta-Analysis of Four Randomized-Controlled Trials
- Author
-
Schuurmans, Lea and Harrer, Mathias
- Subjects
Medicine and Health Sciences ,Psychiatry and Psychology - Abstract
Depression is one of the most common and consequential mental illnesses. According to Busch et al. (2013), the lifetime prevalence for depression is nearly 12%, while the 12-month prevalence is 6%. The disease is characterized by an increased mortality risk (Cuijpers & Smit, 2002; Walker et al., 2015), a considerable proportion of chronic trajectories, 15-20% according to the S-3 guideline for unipolar depression (DGPPN et al., 2015), a significant restriction of quality of life (IsHak et al., 2011), as well as high economic costs for society and individuals according to GBD Study 2018 and DAK-Healthreport 2020 (James et al., 2018; Storm, 2020). Depressive disorders show high comorbidity with sleep disorders; 90% of patients with major depressive disorder report having sleep problems, three quarters experience insomnia (American Psychiatric, 2013; Franzen & Buysse, 2009). Sleep problems appear to be not only a co-occurring condition but also a risk factor or warning signal for the onset of a depressive episode (Baglioni et al., 2011; Hertenstein et al., 2019; Riemann, 2007) or the relapse into one (Dombrovski et al., 2008). One of the most effective treatments for depressive disorders (Cuijpers et al., 2013; Lopez-Lopez et al., 2019) as well as for insomnia (Koffel et al., 2015; Okajima et al., 2011) is cognitive-behavioral therapy (CBT). CBT is generally the first-choice treatment for both disorders according to guidelines (DGPPN et al., 2015; Riemann et al., 2017). Studies have shown that the use of CBT interventions for sleep disorders (CBT-I) effectively contributes to the treatment of depressive symptoms and shows effects equivalent to classical interventions for the treatment of depression (CBT-D) (Ashworth et al., 2015; Blom et al., 2015; Carney et al., 2017; Cunningham & Shapiro, 2018). A recent meta-analysis by Furukawa and colleagues (2021) provided evidence that behavior therapy for insomnia is one of the most beneficial components of CBT for depression, in internet-delivered formats. However, in healthcare reality, the proportion of pharmacological monotherapy is higher than therapy with CBT or combination therapy (Lohse & Müller-Oerlinghausen, 2018; Melchior et al., 2014; Storm, 2017). This occurs although patient preference is different (Barlow, 2004; McHugh et al., 2013; van Schaik et al., 2004) and the effects of therapy with antidepressants are controversial (Cipriani et al., 2018; Kirsch et al., 2008; Munkholm et al., 2019). There are several possible explanations for the discrepancy between scientific recommendation, patient preference, and actual care reality. On the one hand, the limited availability and associated long time waiting periods (Rommel et al., 2017; Walendzik et al., 2014; Zepf et al., 2003), but on the other hand also the fear of stigmatization and the poor compatibility of therapy with work and private life, as well as limited mobility (Chekroud et al., 2018; Gulliver et al., 2010; Mohr et al., 2010; Siegel et al., 2017). Internet-based treatment (ICBT) offers an approach to reduce these problems, as it has high availability, low-threshold access, and cost-effectiveness (Andersson et al., 2019; Linardon et al., 2019). For ICBT, efficacies have been demonstrated for diverse mental disorders, particularly over the past 15 years (Andersson, 2018). These results have been shown in meta-analytic studies to be both stable over time (Andersson et al., 2019) and on the same level as traditional face-to-face therapy (Carlbring et al., 2018). In particular, the efficacy of ICBT interventions for sleep disorders is well researched. These interventions show only slightly lower effect sizes than classical face-to-face CBT (Spiegelhalder et al., 2020). However, the results on the efficacy of ICBT insomnia interventions for depressive symptomatology are rather heterogeneous to the present time, especially concerning the effect size (Christensen et al., 2016; Karyotaki et al., 2017; van der Zweerde et al., 2019). The aim of this study is to examine if: 1. an Internet-based cognitive behavioral therapy intervention for sleeping disorders is effective in reducing depressive symptoms within a sample of individuals with moderate depression; 2. long-term effects of ICBT for sleeping disorders on depressive symptoms are mediated by improvements in patients’ insomnia severity. Analyses will be conducted within an Individual Patient Data (IPD) meta-analysis framework, including the data of four randomized clinical trials (RCTs; Ebert et al. (2015); Behrendt et al. (2020); Thiart et al. (2015); Thiart (2014)). References American Academy of Sleep Medicine. (2005). International classification of sleep disorders. Diagnostic and coding manual, 51-55. American Psychiatric, A. (2013). Diagnostic and Statistical Manual of Mental Disorders. https://doi.org/10.1176/appi.books.9780890425596 Andersson, G. (2014). The internet and CBT: a clinical guide. CRC Press. Andersson, G. (2018). Internet interventions: Past, present and future. Internet Interventions, 12, 181-188. https://doi.org/10.1016/j.invent.2018.03.008 Andersson, G., Titov, N., Dear, B. F., Rozental, A., & Carlbring, P. (2019). Internet-delivered psychological treatments: from innovation to implementation. World Psychiatry, 18(1), 20-28. https://doi.org/10.1002/wps.20610 Ashworth, D. K., Sletten, T. L., Junge, M., Simpson, K., Clarke, D., Cunnington, D., & Rajaratnam, S. M. (2015). A randomized controlled trial of cognitive behavioral therapy for insomnia: an effective treatment for comorbid insomnia and depression. J Couns Psychol, 62(2), 115-123. https://doi.org/10.1037/cou0000059 Baglioni, C., Battagliese, G., Feige, B., Spiegelhalder, K., Nissen, C., Voderholzer, U., . . . Riemann, D. (2011). Insomnia as a predictor of depression: a meta-analytic evaluation of longitudinal epidemiological studies. J Affect Disord, 135(1-3), 10-19. https://doi.org/10.1016/j.jad.2011.01.011 Barlow, D. H. (2004). Psychological treatments. Am Psychol, 59(9), 869-878. https://doi.org/10.1037/0003-066X.59.9.869 Behrendt, D., Ebert, D. D., Spiegelhalder, K., & Lehr, D. (2020). Efficacy of a Self-Help Web-Based Recovery Training in Improving Sleep in Workers: Randomized Controlled Trial in the General Working Population. J Med Internet Res, 22(1), e13346. https://doi.org/10.2196/13346 Blom, K., Jernelov, S., Kraepelien, M., Bergdahl, M. O., Jungmarker, K., Ankartjarn, L., . . . Kaldo, V. (2015). Internet treatment addressing either insomnia or depression, for patients with both diagnoses: a randomized trial. Sleep, 38(2), 267-277. https://doi.org/10.5665/sleep.4412 Busch, M. A., Maske, U. E., Ryl, L., Schlack, R., & Hapke, U. (2013). Prevalence of depressive symptoms and diagnosed depression among adults in Germany: results of the German Health Interview and Examination Survey for Adults (DEGS1). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz, 56(5-6), 733-739. https://doi.org/10.1007/s00103-013-1688-3 Carlbring, P., Andersson, G., Cuijpers, P., Riper, H., & Hedman-Lagerlof, E. (2018). Internet-based vs. face-to-face cognitive behavior therapy for psychiatric and somatic disorders: an updated systematic review and meta-analysis. Cogn Behav Ther, 47(1), 1-18. https://doi.org/10.1080/16506073.2017.1401115 Carney, C. E., Edinger, J. D., Kuchibhatla, M., Lachowski, A. M., Bogouslavsky, O., Krystal, A. D., & Shapiro, C. M. (2017). Cognitive Behavioral Insomnia Therapy for Those With Insomnia and Depression: A Randomized Controlled Clinical Trial. Sleep, 40(4). https://doi.org/10.1093/sleep/zsx019 Chekroud, A. M., Foster, D., Zheutlin, A. B., Gerhard, D. M., Roy, B., Koutsouleris, N., . . . Krystal, J. H. (2018). Predicting Barriers to Treatment for Depression in a U.S. National Sample: A Cross-Sectional, Proof-of-Concept Study. Psychiatr Serv, 69(8), 927-934. https://doi.org/10.1176/appi.ps.201800094 Cheng, P., Kalmbach, D. A., Tallent, G., Joseph, C. L., Espie, C. A., & Drake, C. L. (2019). Depression prevention via digital cognitive behavioral therapy for insomnia: a randomized controlled trial. Sleep, 42(10). https://doi.org/10.1093/sleep/zsz150 Christensen, H., Batterham, P. J., Gosling, J. A., Ritterband, L. M., Griffiths, K. M., Thorndike, F. P., . . . Mackinnon, A. J. (2016). Effectiveness of an online insomnia program (SHUTi) for prevention of depressive episodes (the GoodNight Study): a randomised controlled trial. The Lancet Psychiatry, 3(4), 333-341. https://doi.org/10.1016/s2215-0366(15)00536-2 Cipriani, A., Furukawa, T. A., Salanti, G., Chaimani, A., Atkinson, L. Z., Ogawa, Y., . . . Geddes, J. R. (2018). Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. The Lancet, 391(10128), 1357-1366. https://doi.org/10.1016/s0140-6736(17)32802-7 Cuijpers, P., Berking, M., Andersson, G., Quigley, L., Kleiboer, A., & Dobson, K. S. (2013). A meta-analysis of cognitive-behavioural therapy for adult depression, alone and in comparison with other treatments. Can J Psychiatry, 58(7), 376-385. https://doi.org/10.1177/070674371305800702 Cuijpers, P., & Smit, F. (2002). Excess mortality in depression: a meta-analysis of community studies. Journal of Affective Disorders, 72(3), 227-236. https://doi.org/10.1016/s0165-0327(01)00413-x Cunningham, J. E. A., & Shapiro, C. M. (2018). Cognitive Behavioural Therapy for Insomnia (CBT-I) to treat depression: A systematic review. J Psychosom Res, 106, 1-12. https://doi.org/10.1016/j.jpsychores.2017.12.012 DGPPN, BÄK, KBV, & AWMF (Hrsg.). (2015). S3-Leitlinie/Nationale VersorgungsLeitlinie Unipolare Depression – Langfassung. Retrieved 05.05.2021 from www.depression.versorgungsleitlinien.de Dombrovski, A. Y., Cyranowski, J. M., Mulsant, B. H., Houck, P. R., Buysse, D. J., Andreescu, C., . . . Frank, E. (2008). Which symptoms predict recurrence of depression in women treated with maintenance interpersonal psychotherapy? Depress Anxiety, 25(12), 1060-1066. https://doi.org/10.1002/da.20467 Ebert, D. D., Berking, M., Thiart, H., Riper, H., Laferton, J. A. C., Cuijpers, P., . . . Lehr, D. (2015). Restoring depleted resources: Efficacy and mechanisms of change of an internet-based unguided recovery training for better sleep and psychological detachment from work. Health Psychol, 34S, 1240-1251. https://doi.org/10.1037/hea0000277 Etzelmueller, A., Vis, C., Karyotaki, E., Baumeister, H., Titov, N., Berking, M., . . . Ebert, D. D. (2020). Effects of Internet-Based Cognitive Behavioral Therapy in Routine Care for Adults in Treatment for Depression and Anxiety: Systematic Review and Meta-Analysis. J Med Internet Res, 22(8), e18100. https://doi.org/10.2196/18100 Franzen, P. L., & Buysse, D. J. (2009). Sleep disturbances and depression: risk relationships for subsequent depression and therapeutic implications. Dialogues in Clinical Neuroscience, 10(4), 473-481. https://doi.org/10.31887/DCNS.2008.10.4/plfranzen Furukawa, T. A., Suganuma, A., Ostinelli, E. G., Andersson, G., Beevers, C. G., Shumake, J., . . . Cuijpers, P. (2021). Dismantling, optimising, and personalising internet cognitive behavioural therapy for depression: a systematic review and component network meta-analysis using individual participant data. The Lancet Psychiatry. https://doi.org/10.1016/s2215-0366(21)00077-8 Gulliver, A., Griffiths, K. M., & Christensen, H. (2010). Perceived barriers and facilitators to mental health help-seeking in young people: a systematic review. BMC Psychiatry, 10, 113. https://doi.org/10.1186/1471-244X-10-113 Hertenstein, E., Feige, B., Gmeiner, T., Kienzler, C., Spiegelhalder, K., Johann, A., . . . Baglioni, C. (2019). Insomnia as a predictor of mental disorders: A systematic review and meta-analysis. Sleep Med Rev, 43, 96-105. https://doi.org/10.1016/j.smrv.2018.10.006 IsHak, W. W., Greenberg, J. M., Balayan, K., Kapitanski, N., Jeffrey, J., Fathy, H., . . . Rapaport, M. H. (2011). Quality of life: the ultimate outcome measure of interventions in major depressive disorder. Harv Rev Psychiatry, 19(5), 229-239. https://doi.org/10.3109/10673229.2011.614099 James, S. L., Abate, D., Abate, K. H., Abay, S. M., Abbafati, C., Abbasi, N., . . . Murray, C. J. L. (2018). Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet, 392(10159), 1789-1858. https://doi.org/10.1016/s0140-6736(18)32279-7 Karyotaki, E., Riper, H., Twisk, J., Hoogendoorn, A., Kleiboer, A., Mira, A., . . . Cuijpers, P. (2017). Efficacy of Self-guided Internet-Based Cognitive Behavioral Therapy in the Treatment of Depressive Symptoms: A Meta-analysis of Individual Participant Data. JAMA Psychiatry, 74(4), 351-359. https://doi.org/10.1001/jamapsychiatry.2017.0044 Kirsch, I., Deacon, B. J., Huedo-Medina, T. B., Scoboria, A., Moore, T. J., & Johnson, B. T. (2008). Initial severity and antidepressant benefits: a meta-analysis of data submitted to the Food and Drug Administration. PLoS Med, 5(2), e45. https://doi.org/10.1371/journal.pmed.0050045 Koffel, E. A., Koffel, J. B., & Gehrman, P. R. (2015). A meta-analysis of group cognitive behavioral therapy for insomnia. Sleep Med Rev, 19, 6-16. https://doi.org/10.1016/j.smrv.2014.05.001 Li, L., Wu, C., Gan, Y., Qu, X., & Lu, Z. (2016). Insomnia and the risk of depression: a meta-analysis of prospective cohort studies. BMC Psychiatry, 16(1), 375. https://doi.org/10.1186/s12888-016-1075-3 Linardon, J., Cuijpers, P., Carlbring, P., Messer, M., & Fuller-Tyszkiewicz, M. (2019). The efficacy of app-supported smartphone interventions for mental health problems: a meta-analysis of randomized controlled trials. World Psychiatry, 18(3), 325-336. https://doi.org/10.1002/wps.20673 Lohse, M. J., & Müller-Oerlinghausen, B. (2018). Psychopharmaka. In Arzneiverordnungs-Report 2018 (pp. 733-761). https://doi.org/10.1007/978-3-662-57386-0_41 Lopez-Lopez, J. A., Davies, S. R., Caldwell, D. M., Churchill, R., Peters, T. J., Tallon, D., . . . Welton, N. J. (2019). The process and delivery of CBT for depression in adults: a systematic review and network meta-analysis. Psychol Med, 49(12), 1937-1947. https://doi.org/10.1017/S003329171900120X McHugh, R. K., Whitton, S. W., Peckham, A. D., Welge, J. A., & Otto, M. W. (2013). Patient preference for psychological vs pharmacologic treatment of psychiatric disorders: a meta-analytic review. J Clin Psychiatry, 74(6), 595-602. https://doi.org/10.4088/JCP.12r07757 Melchior, H., Schulz, H., & Härter, M. (2014). Faktencheck Gesundheit - Regionale Unterschiede in der Diagnostik und Behandlung von Depressionen. Mohr, D. C., Ho, J., Duffecy, J., Baron, K. G., Lehman, K. A., Jin, L., & Reifler, D. (2010). Perceived barriers to psychological treatments and their relationship to depression. J Clin Psychol, 66(4), 394-409. https://doi.org/10.1002/jclp.20659 Munkholm, K., Paludan-Muller, A. S., & Boesen, K. (2019). Considering the methodological limitations in the evidence base of antidepressants for depression: a reanalysis of a network meta-analysis. BMJ Open, 9(6), e024886. https://doi.org/10.1136/bmjopen-2018-024886 Okajima, I., Komada, Y., & Inoue, Y. (2011). A meta-analysis on the treatment effectiveness of cognitive behavioral therapy for primary insomnia. Sleep and Biological Rhythms, 9(1), 24-34. https://doi.org/10.1111/j.1479-8425.2010.00481.x Organization, W. H. (2017). Depression and Other Common Mental Disorders: Global Health Estimates. Peters, A., Rospleszcz, S., Greiser, K. H., Dallavalle, M., & Berger, K. (2020). The Impact of the COVID-19 Pandemic on Self-Reported Health: Early Evidence From the German National Cohort. Deutsches Ärzteblatt International, 117(50), 861. Riemann, D. (2007). Insomnia and comorbid psychiatric disorders. Sleep Medicine, 8, S15-S20. https://doi.org/10.1016/s1389-9457(08)70004-2 Riemann, D., Baum, E., Cohrs, S., Crönlein, T., Hajak, G., Hertenstein, E., . . . Spiegelhalder, K. (2017). S3-Leitlinie Nicht erholsamer Schlaf/Schlafstörungen. Somnologie, 21(1), 2-44. https://doi.org/10.1007/s11818-016-0097-x Riley, R. D., Lambert, P. C., & Abo-Zaid, G. (2010). Meta-analysis of individual participant data: rationale, conduct, and reporting. BMJ, 340, c221. https://doi.org/10.1136/bmj.c221 Rommel, A., Nübel, J., Kroll, L. E., Prütz, F., & Thom, J. (2017). Inanspruchnahme psychiatrischer und psychotherapeutischer Leistungen – Individuelle Determinanten und regionale Unterschiede. Journal of Health Monitoring, 2. https://doi.org/10.17886/RKI-GBE-2017-111 Siegel, S., Rau, H., Dors, S., Brants, L., Borner, M., Mahnke, M., . . . Strohle, A. (2017). Barriers to treatment-seeking among German veterans: expert interviews. Z Evid Fortbild Qual Gesundhwes, 125, 30-37. https://doi.org/10.1016/j.zefq.2017.06.006 Spiegelhalder, K., Acker, J., Baumeister, H., Büttner-Teleaga, A., Danker-Hopfe, H., Ebert, D. D., . . . Crönlein, T. (2020). Digitale Behandlungsangebote für Insomnie – eine Übersichtsarbeit. Somnologie, 24(2), 106-114. https://doi.org/10.1007/s11818-020-00238-9 Storm, A. (2017). DAK-Healthreport 2017: Analysis of data on work disability. Update: Sleep disorders. Contributions to health economics and health services research. medhochzwei. Storm, A. (2020). DAK-Healthreport: Stress in the modern working world Special analysis: Digitization and home office in the corona crisis. medhochzwei. Thiart, H. (2014). Online sleep training for stressed employees [unpublished raw data]. https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00006223 Thiart, H., Lehr, D., Ebert, D. D., Berking, M., & Riper, H. (2015). Log in and breathe out: internet-based recovery training for sleepless employees with work-related strain - results of a randomized controlled trial. Scand J Work Environ Health, 41(2), 164-174. https://doi.org/10.5271/sjweh.3478 Trautmann, S., & Beesdo-Baum, K. (2017). The Treatment of Depression in Primary Care. Dtsch Arztebl Int, 114(43), 721-728. https://doi.org/10.3238/arztebl.2017.0721 van der Zweerde, T., van Straten, A., Effting, M., Kyle, S. D., & Lancee, J. (2019). Does online insomnia treatment reduce depressive symptoms? A randomized controlled trial in individuals with both insomnia and depressive symptoms. Psychol Med, 49(3), 501-509. https://doi.org/10.1017/S0033291718001149 van Schaik, D. J., Klijn, A. F., van Hout, H. P., van Marwijk, H. W., Beekman, A. T., de Haan, M., & van Dyck, R. (2004). Patients' preferences in the treatment of depressive disorder in primary care. Gen Hosp Psychiatry, 26(3), 184-189. https://doi.org/10.1016/j.genhosppsych.2003.12.001 Vo, T.-T., & Vansteelandt, S. (2021). Challenges in systematic reviews and meta-analyses of mediation analyses. arXiv:2103.12227. Retrieved March 01, 2021, from https://ui.adsabs.harvard.edu/abs/2021arXiv210312227V Walendzik, A., Rabe-Menssen, C., Lux, G., Wasem, J., & Jahn, R. (2014). The health-care situation in outpatient psychiatry - results of a survey among members of the Germany Association of Psychotherapists (DPtV). Gesundheitswesen, 76(3), 135-146. https://doi.org/10.1055/s-0033-1343444 Walker, E. R., McGee, R. E., & Druss, B. G. (2015). Mortality in mental disorders and global disease burden implications: a systematic review and meta-analysis. JAMA Psychiatry, 72(4), 334-341. https://doi.org/10.1001/jamapsychiatry.2014.2502 Zepf, S., Mengele, U., & Hartmann, S. (2003). Zum Stand der ambulanten psychotherapeutischen Versorgung der Erwachsenen in der Bundesrepublik Deutschland. Psychother Psychomed Med Psyc, 53, 152-162. https://doi.org/10.1055/s-2003-38004
- Published
- 2022
- Full Text
- View/download PDF
10. App-Based Psychotherapy of Panic Disorder with Self-Guided Exposure in Virtual Reality—a Randomized, Controlled Trial.
- Author
-
Schultz J, Baumeister A, Schmotz S, Schuurmans L, and Jelinek L
- Abstract
Background: Patients with panic disorder often suffer from temporary unavailability of care. The smartphone app Invirto (IVT) provides a digital treatment for panic disorder involving self-guided exposure in virtual reality. In this trial, we studied the efficacy of Invirto., Methods: In a randomized, controlled, non-blinded trial, we compared IVT with care as usual (CAU) in patients with panic disorder (pre-registration: DRKS00027585). The endpoints were assessed online before treatment (t0) and at three months (t1). The primary endpoint was a change in symptoms of anxiety as measured with the Beck Anxiety Inventory (BAI). The secondary endpoints were the patients' scores on the following assessment instruments, all in their German versions: the Panic and Agoraphobia Scale (PAS), the Beck Depression Inventory (BDI-II), a patient satisfaction questionnaire ( CSQ-8, Client-Satisfaction-Questionnaire), the Acceptance and Action Questionnaire (AAQ-II, in German FAH-II), and the quality of life as a global item in the World Health Organization Quality of Life Questionnaire (WHOQOL-BREF)., Results: 124 patients were included in the trial. The intention-to-treat analysis revealed more pronounced improvement with IVT than with CAU with respect to both the primary (BAI, d = -0.46; 95% confidence interval [-0.87; -0.04]) and the secondary endpoints (PAS, d = -0.63 [-1.05; -0.22]; BDI-II, d = -0.44 [-0.86; -0.02]; FAH-II, d = -0.42 [-0.84; -0.01]), except the WHOQOL-BREF (p = 0.216)., Conclusion: A digital treatment with virtual exposure can lessen anxiety, panic, and depressive symptoms and improve mental flexibility. In further studies, IVT should be compared with an active control group.
- Published
- 2025
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.