17 results on '"Schulze‐Brüninghoff, Damian"'
Search Results
2. Methods for LiDAR-based estimation of extensive grassland biomass
- Author
-
Schulze-Brüninghoff, Damian, Hensgen, Frank, Wachendorf, Michael, and Astor, Thomas
- Published
- 2019
- Full Text
- View/download PDF
3. Drohnenbasierte Schätzung der räumlichen Variabilität von Luzerne-Ertragsanteilen in Luzerne-Gras-Gemengen
- Author
-
Wengert, Matthias, Schulze-Brüninghoff, Damian, Weigelt, Leon, Wachendorf, Michael, Wijesingha, Jayan, Wengert, Matthias, Schulze-Brüninghoff, Damian, Weigelt, Leon, Wachendorf, Michael, and Wijesingha, Jayan
- Abstract
Mithilfe drohnebasierter multispektraler Aufnahmen wurde die räumliche Variabilität des Luzerneanteils in Luzerne-Gras-Gemenge auf zwei Schlägen in Hessen, Deutschland, mit hoher Genauigkeit geschätzt. Daraus erstellte Karten ermöglichen die räumliche Analyse der Bestände hinsichtlich N-Fixierungpotenzial.
- Published
- 2023
4. Multisite and Multitemporal Grassland Yield Estimation Using UAV-Borne Hyperspectral Data
- Author
-
Wengert, Matthias, primary, Wijesingha, Jayan, additional, Schulze-Brüninghoff, Damian, additional, Wachendorf, Michael, additional, and Astor, Thomas, additional
- Published
- 2022
- Full Text
- View/download PDF
5. Potentials and Limitations of WorldView-3 Data for the Detection of Invasive Lupinus polyphyllus Lindl. in Semi-Natural Grasslands
- Author
-
Schulze-Brüninghoff, Damian, primary, Wachendorf, Michael, additional, and Astor, Thomas, additional
- Published
- 2021
- Full Text
- View/download PDF
6. Global application of an unoccupied aerial vehicle photogrammetry protocol for predicting aboveground biomass in non‐forest ecosystems
- Author
-
Cunliffe, Andrew M., primary, Anderson, Karen, additional, Boschetti, Fabio, additional, Brazier, Richard E., additional, Graham, Hugh A., additional, Myers‐Smith, Isla H., additional, Astor, Thomas, additional, Boer, Matthias M., additional, Calvo, Leonor G., additional, Clark, Patrick E., additional, Cramer, Michael D., additional, Encinas‐Lara, Miguel S., additional, Escarzaga, Stephen M., additional, Fernández‐Guisuraga, José M., additional, Fisher, Adrian G., additional, Gdulová, Kateřina, additional, Gillespie, Breahna M., additional, Griebel, Anne, additional, Hanan, Niall P., additional, Hanggito, Muhammad S., additional, Haselberger, Stefan, additional, Havrilla, Caroline A., additional, Heilman, Phil, additional, Ji, Wenjie, additional, Karl, Jason W., additional, Kirchhoff, Mario, additional, Kraushaar, Sabine, additional, Lyons, Mitchell B., additional, Marzolff, Irene, additional, Mauritz, Marguerite E., additional, McIntire, Cameron D., additional, Metzen, Daniel, additional, Méndez‐Barroso, Luis A., additional, Power, Simon C., additional, Prošek, Jiří, additional, Sanz‐Ablanedo, Enoc, additional, Sauer, Katherine J., additional, Schulze‐Brüninghoff, Damian, additional, Šímová, Petra, additional, Sitch, Stephen, additional, Smit, Julian L., additional, Steele, Caiti M., additional, Suárez‐Seoane, Susana, additional, Vargas, Sergio A., additional, Villarreal, Miguel, additional, Visser, Fleur, additional, Wachendorf, Michael, additional, Wirnsberger, Hannes, additional, and Wojcikiewicz, Robert, additional
- Published
- 2021
- Full Text
- View/download PDF
7. Global application of an unoccupied aerial vehicle photogrammetry protocol for predicting aboveground biomass in non-forest ecosystems
- Author
-
Cunliffe, Andrew M., Anderson, Karen, Boschetti, Fabio, Brazier, Richard E., Graham, Hugh A., Myers‐Smith, Isla H., Astor, Thomas, Boer, Matthias M., Calvo, Leonor G., Clark, Patrick E., Cramer, Michael D., Encinas‐Lara, Miguel S., Escarzaga, Stephen M., Fernández‐Guisuraga, José M., Fisher, Adrian G., Gdulová, Kateřina, Gillespie, Breahna M., Griebel, Anne, Hanan, Niall P., Hanggito, Muhammad S., Haselberger, Stefan, Havrilla, Caroline A., Heilman, Phil, Ji, Wenjie, Karl, Jason W., Kirchhoff, Mario, Kraushaar, Sabine, Lyons, Mitchell B., Marzolff, Irene, Mauritz, Marguerite E., McIntire, Cameron D., Metzen, Daniel, Méndez‐Barroso, Luis A., Power, Simon C., Prošek, Jiří, Sanz‐Ablanedo, Enoc, Sauer, Katherine J., Schulze‐Brüninghoff, Damian, Šímová, Petra, Sitch, Stephen, Smit, Julian L., Steele, Caiti M., Suárez‐Seoane, Susana, Vargas, Sergio A., Villarreal, Miguel, Visser, Fleur, Wachendorf, Michael, Wirnsberger, Hannes, Wojcikiewicz, Robert, Ecologia, Facultad de Ciencias Biologicas y Ambientales, Sankey, Temuulen, and Carter, A
- Subjects
Canopy ,Technology ,010504 meteorology & atmospheric sciences ,UAV ,0211 other engineering and technologies ,Canopy height model ,3308 Ingeniería y Tecnología del Medio Ambiente ,02 engineering and technology ,Ingeniería forestal ,01 natural sciences ,Ecosystem services ,Structure-from-motion photogrammetry ,QH301 ,Fine spatial resolution remote sensing ,structure‐from‐motion photogrammetry ,Forest ecology ,Unoccupied Aerial Vehicle Data Quantify Aboveground Biomass ,Ecosystem ,Computers in Earth Sciences ,QH540-549.5 ,Ecology, Evolution, Behavior and Systematics ,021101 geological & geomatics engineering ,0105 earth and related environmental sciences ,Nature and Landscape Conservation ,Biomass (ecology) ,GB ,Ecology ,GA ,Elevation ,Vegetation ,Ecología. Medio ambiente ,Drone ,Plant height ,Photogrammetry ,Environmental science ,Physical geography - Abstract
EU Horizon 2020 grant No. 776681 (PHUSICOS)..., Cunliffe, A.M., Anderson, K., Boschetti, F., Brazier, R.E., Graham, H.A., Myers-Smith, I.H., Astor, T., Boer, M.M., Calvo, L.G., Clark, P.E., Cramer, M.D., Encinas-Lara, M.S., Escarzaga, S.M., Fernández-Guisuraga, J.M., Fisher, A.G., Gdulová, K., Gillespie, B.M., Griebel, A., Hanan, N.P., Hanggito, M.S., Haselberger, S., Havrilla, C.A., Heilman, P., Ji, W., Karl, J.W., Kirchhoff, M., Kraushaar, S., Lyons, M.B., Marzolff, I., Mauritz, M.E., McIntire, C.D., Metzen, D., Méndez-Barroso, L.A., Power, S.C., Prošek, J., Sanz-Ablanedo, E., Sauer, K.J., Schulze-Brüninghoff, D., Šímová, P., Sitch, S., Smit, J.L., Steele, C.M., Suárez-Seoane, S., Vargas, S.A., Villarreal, M., Visser, F., Wachendorf, M., Wirnsberger, H., Wojcikiewicz, R.
- Published
- 2021
8. Predicting Forage Quality of Grasslands Using UAV-Borne Imaging Spectroscopy
- Author
-
Wijesingha, Jayan, Astor, Thomas, Schulze-Brüninghoff, Damian, Wengert, Matthias, and Wachendorf, Michael
- Subjects
hyperspectral ,crude protein ,Science ,unmanned aerial vehicle ,acid detergent fibre ,grassland ,predictive modelling - Abstract
The timely knowledge of forage quality of grasslands is vital for matching the demands in animal feeding. Remote sensing (RS) is a promising tool for estimating field-scale forage quality compared with traditional methods, which usually do not provide equally detailed information. However, the applicability of RS prediction models depends on the variability of the underlying calibration data, which can be brought about by the inclusion of a multitude of grassland types and management practices in the model development. Major aims of this study were (i) to build forage quality estimation models for multiple grassland types based on an unmanned aerial vehicle (UAV)-borne imaging spectroscopy and (ii) to generate forage quality distribution maps using the best models obtained. The study examined data from eight grasslands in northern Hesse, Germany, which largely differed in terms of vegetation type and cutting regime. The UAV with a hyperspectral camera on board was utilised to acquire spectral images from the grasslands, and crude protein (CP) and acid detergent fibre (ADF) concentration of the forage was assessed at each cut. Five predictive modelling regression algorithms were applied to develop quality estimation models. Further, grassland forage quality distribution maps were created using the best models developed. The normalised spectral reflectance data showed the strongest relationship with both CP and ADF concentration. From all predictive algorithms, support vector regression provided the highest precision and accuracy for CP estimation (median normalised root mean square error prediction (nRMSEp) = 10.6%), while cubist regression model proved best for ADF estimation (median nRMSEp = 13.4%). The maps generated for both CP and ADF showed a distinct spatial variation in forage quality values for the different grasslands and cutting regimes. Overall, the results disclose that UAV-borne imaging spectroscopy, in combination with predictive modelling, provides a promising tool for accurate forage quality estimation of multiple grasslands.
- Published
- 2020
9. Remote sensing data fusion as a tool for biomass prediction in extensive grasslands invaded byL. polyphyllus
- Author
-
Schulze‐Brüninghoff, Damian, primary, Wachendorf, Michael, additional, and Astor, Thomas, additional
- Published
- 2020
- Full Text
- View/download PDF
10. Mapping invasive Lupinus polyphyllus Lindl. in semi-natural grasslands using object-based analysis of UAV-borne images
- Author
-
Wijesingha, Jayan, primary, Astor, Thomas, additional, Schulze-Brüninghoff, Damian, additional, and Wachendorf, Michael, additional
- Published
- 2020
- Full Text
- View/download PDF
11. Biomasseertrag, Lupinenanteil und Alkaloidgehalte in Bergmähwiesen in Abhängigkeit des Erntezeitpunktes
- Author
-
Hensgen, Frank, Bartels, Wiebke, Schulze-Brüninghoff, Damian, Möckel, Thomas, Wachendorf, Michael, Mühlrath, Daniel, Albrecht, Joana, Finckh, Maria R., Hamm, Ulrich, Heß, Jürgen, Knierim, Ute, and Möller, Detlev
- Subjects
Pasture and forage crops ,Biodiversity and ecosystem services - Abstract
Die invasive Leguminose Lupinus polyphyllus (Vielblättrige Lupine) breitet sich in artenreichen Borstgrasrasen und Bergmähwiesen aus. Dort verdrängt sie gefährdete Rote-Liste Arten und verändert die Artenzusammensetzung. Wir führten ein Experiment durch um den Biomasseertrag und den Lupinenanteil an der Biomasse zu unterschiedlichen Nutzungszeitpunkten zu untersuchen. Zusätzlich wurde der Alkaloidgehalt der Lupinen ermittelt, da dieser einen Einsatz der Biomasse in der Tierernährung verhindern kann. Die Ergebnisse zeigten Bioamsseerträge vo 3,6 bis 3,9 t Trockenmasse pro Hektar und Lupinenanteile von ca. 30% im Mittel. Der Alkaloidgehalt in den Lupinen wies eine Spannweite zwischen 0,7 und 2,5% in der Trockenmasse auf und war signifikant abhängig vom untersuchten Pflanzenorgan. Die Samen und Blätter hatten signifikant höhere Alkaloidgehalte als die Stängel und Blüten.
- Published
- 2019
12. Methoden zur lasergestützten Abschätzung extensiver Grünlandbestände
- Author
-
Schulze-Brüninghoff, Damian, Hensgen, Frank, Möckel, Thomas, Wachendorf, Michael, Mühlrath, Daniel, Albrecht, Joana, Finckh, Maria R., Hamm, Ulrich, Heß, Jürgen, Knierim, Ute, and Möller, Detlev
- Subjects
Pasture and forage crops - Abstract
In der Forstwirtschaft ist die lasergestützte Holzertragsabschätzung bereits eine etablierte Technik. In Graslandökosystemen hingegen fand diese Technik bisher weniger Aufmerksamkeit. Deshalb ist die Abschätzung extensiver Grünlandbestände mittels eines terrestrischen Laserscanners (TLS) noch wenig erforscht. Der Einsatz fernerkundlicher Methoden zur Erfassung qualitativer und quantitativer Parameter von extensiven Grünlandbeständen kann Managementstrategien zum Erhalt schützenswerter Ökosysteme unterstützen. Die Versuchsflächen befanden sich im „UNESCO Biosphärenreservat Rhön“ und wurden zu drei Terminen im Jahr mittels eines terrestrischen Laserscanners (Leica P30) gemessen. Vier Methoden zur Biomassebestimmung aus dreidimensionalen Punktwolken wurden auf die Datensätze angewendet: Die Methode der Vegetationshöhe, der Summe der Voxel, der mittleren 3d-Raster Höhe und das Volumen der konvexen Hülle. Die Methoden wurden teilweise modifiziert in Bezug auf einzelne funktionale Parameter, um die Modellstabilität und Modellstärke zu optimieren. Die Methoden wurden verglichen hinsichtlich ihrer Modellstärke, der Kalkulationsdauer und hinsichtlich der Anzahl an Scans, die in jede Punktwolke einfließen. Die Methoden wurden erfolgreich angewendet und die jeweils optimalen Parametereinstellungen wurden identifiziert. Die beste Modellstärke lieferte die Methode der Vegetationshöhe gemittelt aus den oberen 5 % aller Vegetationshöhenwerte (angepasstes R² 0,72). Die Korrelationen der Modelle mit dem gemessenen Frischmasseertrag fielen durchweg besser aus im Vergleich zum Trockenmasseertrag. Modelle der Vegetationshöhe, beruhend auf Punktwolken aus zwei Scans, erzielten die höchste Schätzgenauigkeit für Frisch- und Trockenmasseertrag (angepasstes R² 0,73 und 0,58).
- Published
- 2019
13. Biomasseertrag, Lupinenanteil und Alkaloidgehalte in Bergmähwiesen in Abhängigkeit des Erntezeitpunktes
- Author
-
Mühlrath, Daniel, Albrecht, Joana, Finckh, Maria R., Hamm, Ulrich, Heß, Jürgen, Knierim, Ute, Möller, Detlev, Hensgen, Frank, Bartels, Wiebke, Schulze-Brüninghoff, Damian, Möckel, Thomas, Wachendorf, Michael, Mühlrath, Daniel, Albrecht, Joana, Finckh, Maria R., Hamm, Ulrich, Heß, Jürgen, Knierim, Ute, Möller, Detlev, Hensgen, Frank, Bartels, Wiebke, Schulze-Brüninghoff, Damian, Möckel, Thomas, and Wachendorf, Michael
- Abstract
Die invasive Leguminose Lupinus polyphyllus (Vielblättrige Lupine) breitet sich in artenreichen Borstgrasrasen und Bergmähwiesen aus. Dort verdrängt sie gefährdete Rote-Liste Arten und verändert die Artenzusammensetzung. Wir führten ein Experiment durch um den Biomasseertrag und den Lupinenanteil an der Biomasse zu unterschiedlichen Nutzungszeitpunkten zu untersuchen. Zusätzlich wurde der Alkaloidgehalt der Lupinen ermittelt, da dieser einen Einsatz der Biomasse in der Tierernährung verhindern kann. Die Ergebnisse zeigten Bioamsseerträge vo 3,6 bis 3,9 t Trockenmasse pro Hektar und Lupinenanteile von ca. 30% im Mittel. Der Alkaloidgehalt in den Lupinen wies eine Spannweite zwischen 0,7 und 2,5% in der Trockenmasse auf und war signifikant abhängig vom untersuchten Pflanzenorgan. Die Samen und Blätter hatten signifikant höhere Alkaloidgehalte als die Stängel und Blüten.
- Published
- 2019
14. Methoden zur lasergestützten Abschätzung extensiver Grünlandbestände
- Author
-
Mühlrath, Daniel, Albrecht, Joana, Finckh, Maria R., Hamm, Ulrich, Heß, Jürgen, Knierim, Ute, Möller, Detlev, Schulze-Brüninghoff, Damian, Hensgen, Frank, Möckel, Thomas, Wachendorf, Michael, Mühlrath, Daniel, Albrecht, Joana, Finckh, Maria R., Hamm, Ulrich, Heß, Jürgen, Knierim, Ute, Möller, Detlev, Schulze-Brüninghoff, Damian, Hensgen, Frank, Möckel, Thomas, and Wachendorf, Michael
- Abstract
In der Forstwirtschaft ist die lasergestützte Holzertragsabschätzung bereits eine etablierte Technik. In Graslandökosystemen hingegen fand diese Technik bisher weniger Aufmerksamkeit. Deshalb ist die Abschätzung extensiver Grünlandbestände mittels eines terrestrischen Laserscanners (TLS) noch wenig erforscht. Der Einsatz fernerkundlicher Methoden zur Erfassung qualitativer und quantitativer Parameter von extensiven Grünlandbeständen kann Managementstrategien zum Erhalt schützenswerter Ökosysteme unterstützen. Die Versuchsflächen befanden sich im „UNESCO Biosphärenreservat Rhön“ und wurden zu drei Terminen im Jahr mittels eines terrestrischen Laserscanners (Leica P30) gemessen. Vier Methoden zur Biomassebestimmung aus dreidimensionalen Punktwolken wurden auf die Datensätze angewendet: Die Methode der Vegetationshöhe, der Summe der Voxel, der mittleren 3d-Raster Höhe und das Volumen der konvexen Hülle. Die Methoden wurden teilweise modifiziert in Bezug auf einzelne funktionale Parameter, um die Modellstabilität und Modellstärke zu optimieren. Die Methoden wurden verglichen hinsichtlich ihrer Modellstärke, der Kalkulationsdauer und hinsichtlich der Anzahl an Scans, die in jede Punktwolke einfließen. Die Methoden wurden erfolgreich angewendet und die jeweils optimalen Parametereinstellungen wurden identifiziert. Die beste Modellstärke lieferte die Methode der Vegetationshöhe gemittelt aus den oberen 5 % aller Vegetationshöhenwerte (angepasstes R² 0,72). Die Korrelationen der Modelle mit dem gemessenen Frischmasseertrag fielen durchweg besser aus im Vergleich zum Trockenmasseertrag. Modelle der Vegetationshöhe, beruhend auf Punktwolken aus zwei Scans, erzielten die höchste Schätzgenauigkeit für Frisch- und Trockenmasseertrag (angepasstes R² 0,73 und 0,58).
- Published
- 2019
15. Remote sensing data fusion as a tool for biomass prediction in extensive grasslands invaded by L. polyphyllus.
- Author
-
Schulze‐Brüninghoff, Damian, Wachendorf, Michael, Astor, Thomas, Disney, Mat, and Levick, Shaun
- Subjects
OPTICAL scanners ,REMOTE sensing ,MULTISENSOR data fusion ,GRASSLANDS ,BIOMASS ,PREDICTION models - Abstract
Remote sensing data fusion is a powerful tool to gain information of quantitative and qualitative vegetation properties on field level. The aim of this study was to develop prediction models from sensor data fusion for fresh and dry matter yield (FMY/DMY) in extensively managed grasslands with variable degree of invasion by Lupinus polyphyllus. Therefore, a terrestrial 3d laser scanner (TLS) and a drone‐based hyperspectral camera was used to collect high resolution 3d point clouds and hyperspectral aerial orthomosaics of four extremely heterogenous grasslands. From 3d point clouds multiple features (vegetation height, sum of voxel, point density and surface structure) were extracted and combined with hyperspectral data to develop an optimized biomass model from random forest regression algorithm to predict FMY and DMY (ntrain = 130, ntest = 33). Models from hyperspectral data solitarily had the lowest prediction performance (FMY: R2 = 0.61, nRMSEr = 17.14; DMY: R2 = 0.59, nRMSEr = 19.37). Higher performance was gained by models derived from 3d laser data (FMY: R2 = 0. 76, nRMSEr = 13.3; DMY: R2 = 0. 74, nRMSEr = 15.1). A fusion of both sensor systems increased the FMY prediction performance up to R2 = 0.8; nRMSEr = 12.02 and the DMY prediction performance to R2 = 0.81 and nRMSEr = 12.06. The fusion of complementary sensor systems can increase the power to predict biomass yields of heterogenous and extensively managed grasslands. It is a novel alternative to labour‐intensive, traditional biomass prediction methods and to remote sensing methods using only single sensor data. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
16. Global application of an unoccupied aerial vehicle photogrammetry protocol for predicting aboveground biomass in non‐forest ecosystems
- Author
-
Ecologia, Cunliffe, Andrew M., Anderson, Karen, Boschetti, Fabio, Brazier, Richard E., Graham, Hugh A., Myers‐Smith, Isla H., Astor, Thomas, Boer, Matthias M., Calvo Galván, María Leonor, Clark, Patrick E., Cramer, Michael D., Encinas‐Lara, Miguel S., Escarzaga, Stephen M., Fernández Guisuraga, José Manuel, Fisher, Adrian G., Gdulová, Kateřina, Gillespie, Breahna M., Griebel, Anne, Hanan, Niall P., Hanggito, Muhammad S., Haselberger, Stefan, Havrilla, Caroline A., Heilman, Phil, Ji, Wenjie, Karl, Jason W., Kirchhoff, Mario, Kraushaar, Sabine, Lyons, Mitchell B., Marzolff, Irene, Mauritz, Marguerite E., McIntire, Cameron D., Metzen, Daniel, Méndez‐Barroso, Luis A., Power, Simon C., Prošek, Jiří, Sanz Ablanedo, Enoc, Sauer, Katherine J., Schulze‐Brüninghoff, Damian, Šímová, Petra, Sitch, Stephen, Smit, Julian L., Steele, Caiti M., Suárez Seoane, Susana, Vargas, Sergio A., Villarreal, Miguel, Visser, Fleur, Wachendorf, Michael, Wirnsberger, Hannes, Wojcikiewicz, Robert, Ecologia, Cunliffe, Andrew M., Anderson, Karen, Boschetti, Fabio, Brazier, Richard E., Graham, Hugh A., Myers‐Smith, Isla H., Astor, Thomas, Boer, Matthias M., Calvo Galván, María Leonor, Clark, Patrick E., Cramer, Michael D., Encinas‐Lara, Miguel S., Escarzaga, Stephen M., Fernández Guisuraga, José Manuel, Fisher, Adrian G., Gdulová, Kateřina, Gillespie, Breahna M., Griebel, Anne, Hanan, Niall P., Hanggito, Muhammad S., Haselberger, Stefan, Havrilla, Caroline A., Heilman, Phil, Ji, Wenjie, Karl, Jason W., Kirchhoff, Mario, Kraushaar, Sabine, Lyons, Mitchell B., Marzolff, Irene, Mauritz, Marguerite E., McIntire, Cameron D., Metzen, Daniel, Méndez‐Barroso, Luis A., Power, Simon C., Prošek, Jiří, Sanz Ablanedo, Enoc, Sauer, Katherine J., Schulze‐Brüninghoff, Damian, Šímová, Petra, Sitch, Stephen, Smit, Julian L., Steele, Caiti M., Suárez Seoane, Susana, Vargas, Sergio A., Villarreal, Miguel, Visser, Fleur, Wachendorf, Michael, Wirnsberger, Hannes, and Wojcikiewicz, Robert
- Abstract
Non-forest ecosystems, dominated by shrubs, grasses and herbaceous plants, provide ecosystem services including carbon sequestration and forage for grazing, and are highly sensitive to climatic changes. Yet these ecosystems are poorly represented in remotely sensed biomass products and are undersampled by in situ monitoring. Current global change threats emphasize the need for new tools to capture biomass change in non-forest ecosystems at appropriate scales. Here we developed and deployed a new protocol for photogrammetric height using unoccupied aerial vehicle (UAV) images to test its capability for delivering standardized measurements of biomass across a globally distributed field experiment. We assessed whether canopy height inferred from UAV photogrammetry allows the prediction of aboveground biomass (AGB) across low-stature plant species by conducting 38 photogrammetric surveys over 741 harvested plots to sample 50 species. We found mean canopy height was strongly predictive of AGB across species, with a median adjusted R2 of 0.87 (ranging from 0.46 to 0.99) and median prediction error from leave-one-out cross-validation of 3.9%. Biomass per-unit-of-height was similar within but different among, plant functional types. We found that photogrammetric reconstructions of canopy height were sensitive to wind speed but not sun elevation during surveys. We demonstrated that our photogrammetric approach produced generalizable measurements across growth forms and environmental settings and yielded accuracies as good as those obtained from in situ approaches. We demonstrate that using a standardized approach for UAV photogrammetry can deliver accurate AGB estimates across a wide range of dynamic and heterogeneous ecosystems. Many academic and land management institutions have the technical capacity to deploy these approaches over extents of 1–10 ha−1. Photogrammetric approaches could provide much-needed information required to calibrate and validate the vegetation model
17. Global application of an unoccupied aerial vehicle photogrammetry protocol for predicting aboveground biomass in non-forest ecosystems.
- Author
-
Cunliffe AM, Anderson K, Boschetti F, Brazier RE, Graham HA, Myers-Smith IH, Astor T, Boer MM, Calvo LG, Clark PE, Cramer MD, Encinas-Lara MS, Escarzaga SM, Fernández-Guisuraga JM, Fisher AG, Gdulová K, Gillespie BM, Griebel A, Hanan NP, Hanggito MS, Haselberger S, Havrilla CA, Heilman P, Ji W, Karl JW, Kirchhoff M, Kraushaar S, Lyons MB, Marzolff I, Mauritz ME, McIntire CD, Metzen D, Méndez-Barroso LA, Power SC, Prošek J, Sanz-Ablanedo E, Sauer KJ, Schulze-Brüninghoff D, Šímová P, Sitch S, Smit JL, Steele CM, Suárez-Seoane S, Vargas SA, Villarreal M, Visser F, Wachendorf M, Wirnsberger H, and Wojcikiewicz R
- Abstract
Non-forest ecosystems, dominated by shrubs, grasses and herbaceous plants, provide ecosystem services including carbon sequestration and forage for grazing, and are highly sensitive to climatic changes. Yet these ecosystems are poorly represented in remotely sensed biomass products and are undersampled by in situ monitoring. Current global change threats emphasize the need for new tools to capture biomass change in non-forest ecosystems at appropriate scales. Here we developed and deployed a new protocol for photogrammetric height using unoccupied aerial vehicle (UAV) images to test its capability for delivering standardized measurements of biomass across a globally distributed field experiment. We assessed whether canopy height inferred from UAV photogrammetry allows the prediction of aboveground biomass (AGB) across low-stature plant species by conducting 38 photogrammetric surveys over 741 harvested plots to sample 50 species. We found mean canopy height was strongly predictive of AGB across species, with a median adjusted R
2 of 0.87 (ranging from 0.46 to 0.99) and median prediction error from leave-one-out cross-validation of 3.9%. Biomass per-unit-of-height was similar within but different among, plant functional types. We found that photogrammetric reconstructions of canopy height were sensitive to wind speed but not sun elevation during surveys. We demonstrated that our photogrammetric approach produced generalizable measurements across growth forms and environmental settings and yielded accuracies as good as those obtained from in situ approaches. We demonstrate that using a standardized approach for UAV photogrammetry can deliver accurate AGB estimates across a wide range of dynamic and heterogeneous ecosystems. Many academic and land management institutions have the technical capacity to deploy these approaches over extents of 1-10 ha-1 . Photogrammetric approaches could provide much-needed information required to calibrate and validate the vegetation models and satellite-derived biomass products that are essential to understand vulnerable and understudied non-forested ecosystems around the globe., (© 2021 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.)- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.