3,028 results on '"Schulz, B."'
Search Results
2. Precipitation-controlled grain boundary engineering in a cast & wrought Ni-based superalloy
- Author
-
Theska, F., Schulz, B., Lison-Pick, M., Street, S.R., and Primig, S.
- Published
- 2025
- Full Text
- View/download PDF
3. A Fourier method for the determination of focus for telescopes with stars
- Author
-
Tan, C. Y. and Schulz, B.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
We introduce a Fourier method (Fm) for the determination of best focus for telescopes with stars. Our method fits a power function, that we will derive in this paper, to a set of images taken as a function of focuser position. The best focus position is where the power is maximum. Fm was first tested with small refractor and Schmidt-Cassegrain (SCT) telescopes. After the successful small telescope tests, we then tested Fm with a 2 m Ritchey-Chr\'etien-Coud\'e (RCC). Our tests show that Fm is immune to the problems inherent in the popular half-flux diameter method., Comment: This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society (MNRAS) Published by Oxford University Press on behalf of the Royal Astronomical Society
- Published
- 2022
- Full Text
- View/download PDF
4. First direct neutrino-mass measurement with sub-eV sensitivity
- Author
-
Aker, M., Beglarian, A., Behrens, J., Berlev, A., Besserer, U., Bieringer, B., Block, F., Bornschein, B., Bornschein, L., Böttcher, M., Brunst, T., Caldwell, T. S., Carney, R. M. D., La Cascio, L., Chilingaryan, S., Choi, W., Debowski, K., Deffert, M., Descher, M., Barrero, D. Díaz, Doe, P. J., Dragoun, O., Drexlin, G., Eitel, K., Ellinger, E., Engel, R., Enomoto, S., Felden, A., Formaggio, J. A., Fränkle, F. M., Franklin, G. B., Friedel, F., Fulst, A., Gauda, K., Gil, W., Glück, F., Grössle, R., Gumbsheimer, R., Gupta, V., Höhn, T., Hannen, V., Haußmann, N., Helbing, K., Hickford, S., Hiller, R., Hillesheimer, D., Hinz, D., Houdy, T., Huber, A., Jansen, A., Karl, C., Kellerer, F., Kellerer, J., Klein, M., Köhler, C., Köllenberger, L., Kopmann, A., Korzeczek, M., Kovalík, A., Krasch, B., Krause, H., Kunka, N., Lasserre, T., Le, T. L., Lebeda, O., Lehnert, B., Lokhov, A., Machatschek, M., Malcherek, E., Mark, M., Marsteller, A., Martin, E. L., Melzer, C., Menshikov, A., Mertens, S., Mostafa, J., Müller, K., Niemes, S., Oelpmann, P., Parno, D. S., Poon, A. W. P., Poyato, J. M. L., Priester, F., Röllig, M., Röttele, C., Robertson, R. G. H., Rodejohann, W., Rodenbeck, C., Ryšavý, M., Sack, R., Saenz, A., Schäfer, P., Schaller, A., Schimpf, L., Schlösser, K., Schlösser, M., Schlüter, L., Schneidewind, S., Schrank, M., Schulz, B., Schwemmer, A., Šefčík, M., Sibille, V., Siegmann, D., Slezák, M., Steidl, M., Sturm, M., Sun, M., Tcherniakhovski, D., Telle, H. H., Thorne, L. A., Thümmler, T., Titov, N., Tkachev, I., Urban, K., Valerius, K., Vénos, D., Hernández, A. P. Vizcaya, Weinheimer, C., Welte, S., Wendel, J., Wilkerson, J. F., Wolf, J., Wüstling, S., Xu, W., Yen, Y. -R., Zadoroghny, S., and Zeller, G.
- Subjects
High Energy Physics - Experiment ,Nuclear Experiment - Abstract
We report the results of the second measurement campaign of the Karlsruhe Tritium Neutrino (KATRIN) experiment. KATRIN probes the effective electron anti-neutrino mass, $m_{\nu}$, via a high-precision measurement of the tritium $\beta$-decay spectrum close to its endpoint at $18.6\,\mathrm{keV}$. In the second physics run presented here, the source activity was increased by a factor of 3.8 and the background was reduced by $25\,\%$ with respect to the first campaign. A sensitivity on $m_{\nu}$ of $0.7\,\mathrm{eV/c^2}$ at $90\,\%$ confidence level (CL) was reached. This is the first sub-eV sensitivity from a direct neutrino-mass experiment. The best fit to the spectral data yields $m_{\nu}^2 = (0.26\pm0.34)\,\mathrm{eV^4/c^4}$, resulting in an upper limit of $m_{\nu}<0.9\,\mathrm{eV/c^2}$ ($90\,\%$ CL). By combining this result with the first neutrino mass campaign, we find an upper limit of $m_{\nu}<0.8\,\mathrm{eV/c^2}$ ($90\,\%$ CL)., Comment: 19 pages, 10 figures, 5 tables
- Published
- 2021
5. Precision measurement of the electron energy-loss function in tritium and deuterium gas for the KATRIN experiment
- Author
-
Aker, M., Beglarian, A., Behrens, J., Berlev, A., Besserer, U., Bieringer, B., Block, F., Bornschein, B., Bornschein, L., Böttcher, M., Brunst, T., Caldwell, T. S., Carney, R. M. D., Chilingaryan, S., Choi, W., Debowski, K., Deffert, M., Descher, M., Barrero, D. Díaz, Doe, P. J., Dragoun, O., Drexlin, G., Edzards, F., Eitel, K., Ellinger, E., Miniawy, A. El, Engel, R., Enomoto, S., Felden, A., Formaggio, J. A., Fränkle, F. M., Franklin, G. B., Friedel, F., Fulst, A., Gauda, K., Gil, W., Glück, F., Groh, S., Grössle, R., Gumbsheimer, R., Hannen, V., Haußmann, N., Heizmann, F., Helbing, K., Hickford, S., Hiller, R., Hillesheimer, D., Hinz, D., Höhn, T., Houdy, T., Huber, A., Jansen, A., Karl, C., Kellerer, J., Kleesiek, M., Klein, M., Köhler, C., Köllenberger, L., Kopmann, A., Korzeczek, M., Kovalík, A., Krasch, B., Krause, H., Kunka, N., Lasserre, T., La Cascio, L., Lebeda, O., Lehnert, B., Le, T. L., Lokhov, A., Machatschek, M., Malcherek, E., Mark, M., Marsteller, A., Martin, E. L., Meier, M., Melzer, C., Menshikov, A., Mertens, S., Mostafa, J., Müller, K., Niemes, S., Oelpmann, P., Parno, D. S., Poon, A. W. P., Poyato, J. M. L., Priester, F., Ranitzsch, P. C. -O., Robertson, R. G. H., Rodejohann, W., Rodenbeck, C., Röllig, M., Röttele, C., Ryšavý, M., Sack, R., Saenz, A., Schäfer, P., Schaller, A., Schimpf, L., Schlösser, K., Schlösser, M., Schlüter, L., Schneidewind, S., Schrank, M., Schulz, B., Schwachtgen, C., Šefčík, M., Seitz-Moskaliuk, H., Sibille, V., Siegmann, D., Slezák, M., Steidl, M., Sturm, M., Sun, M., Tcherniakhovski, D., Telle, H. H., Thorne, L. A., Thümmler, T., Titov, N., Tkachev, I., Trost, N., Urban, K., Valerius, K., Vénos, D., Hernández, A. P. Vizcaya, Weinheimer, C., Welte, S., Wendel, J., Wilkerson, J. F., Wolf, J., Wüstling, S., Xu, W., Yen, Y. -R., Zadoroghny, S., and Zeller, G.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
The KATRIN experiment is designed for a direct and model-independent determination of the effective electron anti-neutrino mass via a high-precision measurement of the tritium $\beta$-decay endpoint region with a sensitivity on $m_\nu$ of 0.2$\,$eV/c$^2$ (90% CL). For this purpose, the $\beta$-electrons from a high-luminosity windowless gaseous tritium source traversing an electrostatic retarding spectrometer are counted to obtain an integral spectrum around the endpoint energy of 18.6$\,$keV. A dominant systematic effect of the response of the experimental setup is the energy loss of $\beta$-electrons from elastic and inelastic scattering off tritium molecules within the source. We determined the \linebreak energy-loss function in-situ with a pulsed angular-selective and monoenergetic photoelectron source at various tritium-source densities. The data was recorded in integral and differential modes; the latter was achieved by using a novel time-of-flight technique. We developed a semi-empirical parametrization for the energy-loss function for the scattering of 18.6-keV electrons from hydrogen isotopologs. This model was fit to measurement data with a 95% T$_2$ gas mixture at 30$\,$K, as used in the first KATRIN neutrino mass analyses, as well as a D$_2$ gas mixture of 96% purity used in KATRIN commissioning runs. The achieved precision on the energy-loss function has abated the corresponding uncertainty of $\sigma(m_\nu^2)<10^{-2}\,\mathrm{eV}^2$ [arXiv:2101.05253] in the KATRIN neutrino-mass measurement to a subdominant level., Comment: 12 figures, 18 pages; to be submitted to EPJ C
- Published
- 2021
- Full Text
- View/download PDF
6. The Design, Construction, and Commissioning of the KATRIN Experiment
- Author
-
Aker, M., Altenmüller, K., Amsbaugh, J. F., Arenz, M., Babutzka, M., Bast, J., Bauer, S., Bechtler, H., Beck, M., Beglarian, A., Behrens, J., Bender, B., Berendes, R., Berlev, A., Besserer, U., Bettin, C., Bieringer, B., Blaum, K., Block, F., Bobien, S., Bohn, J., Bokeloh, K., Bolz, H., Bornschein, B., Bornschein, L., Böttcher, M., Bouquet, H., Boyd, N. M., Brunst, T., Burritt, T. H., Caldwell, T. S., Chaoui, Z., Chilingaryan, S., Choi, W., Corona, T. J., Cox, G. A., Debowski, K., Deffert, M., Descher, M., Barrero, D. Díaz, Doe, P. J., Dragoun, O., Drexlin, G., Dunmore, J. A., Dyba, S., Edzards, F., Eichelhardt, F., Eitel, K., Ellinger, E., Engel, R., Enomoto, S., Erhard, M., Eversheim, D., Fedkevych, M., Felden, A., Fischer, S., Formaggio, J. A., Fränkle, F. M., Franklin, G. B., Frenzel, H., Friedel, F., Fulst, A., Gauda, K., Gehring, R., Gil, W., Glück, F., Görhardt, S., Grimm, J., Grohmann, S., Groh, S., Grössle, R., Gumbsheimer, R., Hackenjos, M., Häßler, D., Hannen, V., Harms, F., Harper, G. C., Hartmann, J., Haußmann, N., Heizmann, F., Helbing, K., Held, M., Hickford, S., Hilk, D., Hillen, B., Hiller, R., Hillesheimer, D., Hinz, D., Höhn, T., Holzmann, S., Horn, S., Hötzel, M., Houdy, T., Howe, M. A., Huber, A., James, T., Jansen, A., Kaiser, M., Karl, C., Kazachenko, O., Kellerer, J., Kippenbrock, L., Kleesiek, M., Kleifges, M., Kleinfeller, J., Klein, M., Köllenberger, L., Kopmann, A., Korzeczek, M., Kosmider, A., Kovalík, A., Krasch, B., Krause, H., Kraus, M., Kuckert, L., Kumb, A., Kunka, N., Lasserre, T., La Cascio, L., Lebeda, O., Leber, M. L., Lehnert, B., Leiber, B., Letnev, J., Lewis, R. J., Le, T. L., Lichter, S., Lokhov, A., Poyato, J. M. Lopez, Machatschek, M., Malcherek, E., Mark, M., Marsteller, A., Martin, E. L., Mehret, K., Meloni, M., Melzer, C., Menshikov, A., Mertens, S., Minter, L. I., Monreal, B., Mostafa, J., Müller, K., Myers, A. W., Naumann, U., Neumann, H., Niemes, S., Oelpmann, P., Off, A., Ortjohann, H. -W., Osipowicz, A., Ostrick, B., Parno, D. S., Peterson, D. A., Plischke, P., Poon, A. W. P., Prall, M., Priester, F., Ranitzsch, P. C. -O., Reich, J., Renschler, P., Rest, O., Rinderspacher, R., Robertson, R. G. H., Rodejohann, W., Rodenbeck, C., Rohr, P., Röllig, M., Röttele, C., Rupp, S., Ryšavý, M., Sack, R., Saenz, A., Sagawe, M., Schäfer, P., Schaller, A., Schimpf, L., Schlösser, K., Schlösser, M., Schlüter, L., Schneidewind, S., Schön, H., Schönung, K., Schrank, M., Schulz, B., Schwarz, J., Šefčík, M., Seitz-Moskaliuk, H., Seller, W., Sibille, V., Siegmann, D., Slezák, M., Spanier, F., Steidl, M., Sturm, M., Sun, M., Tcherniakhovski, D., Telle, H. H., Thorne, L. A., Thümmler, T., Titov, N., Tkachev, I., Trost, N., Valerius, K., VanDevender, B. A., Van Wechel, T. D., Vénos, D., Verbeek, A., Vianden, R., Hernández, A. P. Vizcaya, Vogt, K., Wall, B. L., Wandkowsky, N., Weber, M., Weingardt, H., Weinheimer, C., Weiss, C., Welte, S., Wendel, J., Wierman, K. J., Wilkerson, J. F., Wolf, J., Wüstling, S., Xu, W., Yen, Y. -R., Zacher, M., Zadoroghny, S., Zboril, M., and Zeller, G.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
The KArlsruhe TRItium Neutrino (KATRIN) experiment, which aims to make a direct and model-independent determination of the absolute neutrino mass scale, is a complex experiment with many components. More than 15 years ago, we published a technical design report (TDR) [https://publikationen.bibliothek.kit.edu/270060419] to describe the hardware design and requirements to achieve our sensitivity goal of 0.2 eV at 90% C.L. on the neutrino mass. Since then there has been considerable progress, culminating in the publication of first neutrino mass results with the entire beamline operating [arXiv:1909.06048]. In this paper, we document the current state of all completed beamline components (as of the first neutrino mass measurement campaign), demonstrate our ability to reliably and stably control them over long times, and present details on their respective commissioning campaigns., Comment: Added missing acknowledgement, corrected performance statement in chapter 4.2.5, updated author list and references
- Published
- 2021
- Full Text
- View/download PDF
7. Analysis methods for the first KATRIN neutrino-mass measurement
- Author
-
Aker, M., Altenmüller, K., Beglarian, A., Behrens, J., Berlev, A., Besserer, U., Bieringer, B., Blaum, K., Block, F., Bornschein, B., Bornschein, L., Böttcher, M., Brunst, T., Caldwell, T. S., La Cascio, L., Chilingaryan, S., Choi, W., Barrero, D. Díaz, Debowski, K., Deffert, M., Descher, M., Doe, P. J., Dragoun, O., Drexlin, G., Dyba, S., Edzards, F., Eitel, K., Ellinger, E., Engel, R., Enomoto, S., Fedkevych, M., Felden, A., Formaggio, J. A., Fränkle, F. M., Franklin, G. B., Friedel, F., Fulst, A., Gauda, K., Gil, W., Glück, F., Grössle, R., Gumbsheimer, R., Höhn, T., Hannen, V., Haußmann, N., Helbing, K., Hickford, S., Hiller, R., Hillesheimer, D., Hinz, D., Houdy, T., Huber, A., Jansen, A., Köllenberger, L., Karl, C., Kellerer, J., Kippenbrock, L., Klein, M., Kopmann, A., Korzeczek, M., Kovalík, A., Krasch, B., Krause, H., Lasserre, T., Le, T. L., Lebeda, O., Lehnert, B., Lokhov, A., Poyato, J. M. Lopez, Müller, K., Machatschek, M., Malcherek, E., Mark, M., Marsteller, A., Martin, E. L., Melzer, C., Mertens, S., Niemes, S., Oelpmann, P., Osipowicz, A., Parno, D. S., Poon, A. W. P., Priester, F., Röllig, M., Röttele, C., Rest, O., Robertson, R. G. H., Rodenbeck, C., Ryšavý, M., Sack, R., Saenz, A., Schaller, A., Schäfer, P., Schimpf, L., Schlösser, K., Schlösser, M., Schlüter, L., Schrank, M., Schulz, B., Šefčík, M., Seitz-Moskaliuk, H., Sibille, V., Siegmann, D., Slezák, M., Spanier, F., Steidl, M., Sturm, M., Sun, M., Telle, H. H., Thümmler, T., Thorne, L. A., Titov, N., Tkachev, I., Trost, N., Vénos, D., Valerius, K., Hernández, A. P. Vizcaya, Wüstling, S., Weber, M., Weinheimer, C., Weiss, C., Welte, S., Wendel, J., Wilkerson, J. F., Wolf, J., Xu, W., Yen, Y. -R., Zadoroghny, S., and Zeller, G.
- Subjects
High Energy Physics - Experiment ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Nuclear Experiment ,Physics - Instrumentation and Detectors - Abstract
We report on the data set, data handling, and detailed analysis techniques of the first neutrino-mass measurement by the Karlsruhe Tritium Neutrino (KATRIN) experiment, which probes the absolute neutrino-mass scale via the $\beta$-decay kinematics of molecular tritium. The source is highly pure, cryogenic T$_2$ gas. The $\beta$ electrons are guided along magnetic field lines toward a high-resolution, integrating spectrometer for energy analysis. A silicon detector counts $\beta$ electrons above the energy threshold of the spectrometer, so that a scan of the thresholds produces a precise measurement of the high-energy spectral tail. After detailed theoretical studies, simulations, and commissioning measurements, extending from the molecular final-state distribution to inelastic scattering in the source to subtleties of the electromagnetic fields, our independent, blind analyses allow us to set an upper limit of 1.1 eV on the neutrino-mass scale at a 90\% confidence level. This first result, based on a few weeks of running at a reduced source intensity and dominated by statistical uncertainty, improves on prior limits by nearly a factor of two. This result establishes an analysis framework for future KATRIN measurements, and provides important input to both particle theory and cosmology., Comment: 36 pages with 26 figures. Accepted to Phys. Rev. D
- Published
- 2021
- Full Text
- View/download PDF
8. Bound on 3+1 active-sterile neutrino mixing from the first four-week science run of KATRIN
- Author
-
Aker, M., Altenmueller, K., Beglarian, A., Behrens, J., Berlev, A., Besserer, U., Bieringer, B., Blaum, K., Block, F., Bornschein, B., Bornschein, L., Boettcher, M., Brunst, T., Caldwell, T. S., La Cascio, L., Chilingaryan, S., Choi, W., Barrero, D. Diaz, Debowski, K., Deffert, M., Descher, M., Doe, P. J., Dragoun, O., Drexlin, G., Dyba, S., Edzards, F., Eitel, K., Ellinger, E., Engel, R., Enomoto, S., Felden, M. Fedkevych A., Formaggio, J. A., Fraenkle, F. M., Franklin, G. B., Friedel, F., Fulst, A., Gauda, K., Gil, W., Glueck, F., Groessle, R., Gumbsheimer, R., Hoehn, T., Hannen, V., Haussmann, N., Helbing, K., Hickford, S., Hiller, R., Hillesheimer, D., Hinz, D., Houdy, T., Huber, A., Jansen, A., Koellenberger, L., Karl, C., Kellerer, J., Kippenbrock, L., Klein, M., Kopmann, A., Korzeczek, M., Kovalik, A., Krasch, B., Krause, H., Lasserre, T., Le, T. L., Lebeda, O., Guennic, N. Le, Lehnert, B., Lokhov, A., Poyato, J. M. Lopez, Mueller, K., Machatschek, M., Malcherek, E., Mark, M., Marsteller, A., Martin, E. L., Melzer, C., Mertens, S., Niemes, S., Oelpmann, P., Osipowicz, A., Parno, D. S., Poon, A. W. P., Priester, F., Roellig, M., Roettele, C., Rest, O., Robertson, R. G. H., Rodenbeck, C., Rysavy, M., Sack, R., Saenz, A., Schaller, A., Schaefer, P., Schimpf, L., Schloesser, M., Schloesser, K., Schlueter, L., Schrank, M., Schulz, B., Sefcik, M., Seitz-Moskaliuk, H., Sibille, V., Siegmann, D., Slezak, M., Spanier, F., Steidl, M., Sturm, M., Sun, M., Telle, H. H., Thuemmler, T., Thorne, L. A., Titov, N., Tkachev, I., Trost, N., Venos, D., Valerius, K., Hernandez, A. P. Vizcaya, Wuestling, S., Weber, M., Weinheimer, C., Weiss, C., Welte, S., Wendel, J., Wilkerson, J. F., Wolf, J., Xu, W., Yen, Y. -R., Zadoroghny, S., and Zeller, G.
- Subjects
High Energy Physics - Experiment ,Nuclear Experiment - Abstract
We report on the light sterile neutrino search from the first four-week science run of the KATRIN experiment in~2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are analyzed by a high-resolution MAC-E filter down to 40 eV below the endpoint at 18.57 keV. We consider the framework with three active neutrinos and one sterile neutrino of mass $m_{4}$. The analysis is sensitive to a fourth mass state $m^2_{4} \lesssim$ 1000 eV$^2$ and to active-to-sterile neutrino mixing down to $|U_{e4}|^2 \gtrsim 2\cdot10^{-2}$. No significant spectral distortion is observed and exclusion bounds on the sterile mass and mixing are reported. These new limits supersede the Mainz results and improve the Troitsk bound for $m^2_{4} <$ 30 eV$^2$. The reactor and gallium anomalies are constrained for $ 100 < \Delta{m}^2_{41} < 1000$ eV$^2$., Comment: 8 pages, 4 figures
- Published
- 2020
- Full Text
- View/download PDF
9. Analysis methods for the first KATRIN neutrino-mass measurement
- Author
-
Aker, M, Altenmüller, K, Beglarian, A, Behrens, J, Berlev, A, Besserer, U, Bieringer, B, Blaum, K, Block, F, Bornschein, B, Bornschein, L, Böttcher, M, Brunst, T, Caldwell, TS, La Cascio, L, Chilingaryan, S, Choi, W, Díaz Barrero, D, Debowski, K, Deffert, M, Descher, M, Doe, PJ, Dragoun, O, Drexlin, G, Dyba, S, Edzards, F, Eitel, K, Ellinger, E, Engel, R, Enomoto, S, Fedkevych, M, Felden, A, Formaggio, JA, Fränkle, FM, Franklin, GB, Friedel, F, Fulst, A, Gauda, K, Gil, W, Glück, F, Grössle, R, Gumbsheimer, R, Höhn, T, Hannen, V, Haußmann, N, Helbing, K, Hickford, S, Hiller, R, Hillesheimer, D, Hinz, D, Houdy, T, Huber, A, Jansen, A, Köllenberger, L, Karl, C, Kellerer, J, Kippenbrock, L, Klein, M, Kopmann, A, Korzeczek, M, Kovalík, A, Krasch, B, Krause, H, Lasserre, T, Le, TL, Lebeda, O, Lehnert, B, Lokhov, A, Lopez Poyato, JM, Müller, K, Machatschek, M, Malcherek, E, Mark, M, Marsteller, A, Martin, EL, Melzer, C, Mertens, S, Niemes, S, Oelpmann, P, Osipowicz, A, Parno, DS, Poon, AWP, Priester, F, Röllig, M, Röttele, C, Rest, O, Robertson, RGH, Rodenbeck, C, Ryšavý, M, Sack, R, Saenz, A, Schaller, A, Schäfer, P, Schimpf, L, Schlösser, K, Schlösser, M, Schlüter, L, Schrank, M, Schulz, B, and Šefčík, M
- Abstract
We report on the dataset, data handling, and detailed analysis techniques of the first neutrino-mass measurement by the Karlsruhe Tritium Neutrino (KATRIN) experiment, which probes the absolute neutrino-mass scale via the β-decay kinematics of molecular tritium. The source is highly pure, cryogenic T2 gas. The β electrons are guided along magnetic field lines toward a high-resolution, integrating spectrometer for energy analysis. A silicon detector counts β electrons above the energy threshold of the spectrometer, so that a scan of the thresholds produces a precise measurement of the high-energy spectral tail. After detailed theoretical studies, simulations, and commissioning measurements, extending from the molecular final-state distribution to inelastic scattering in the source to subtleties of the electromagnetic fields, our independent, blind analyses allow us to set an upper limit of 1.1 eV on the neutrino-mass scale at a 90% confidence level. This first result, based on a few weeks of running at a reduced source intensity and dominated by statistical uncertainty, improves on prior limits by nearly a factor of two. This result establishes an analysis framework for future KATRIN measurements, and provides important input to both particle theory and cosmology.
- Published
- 2021
10. Bound on 3+1 Active-Sterile Neutrino Mixing from the First Four-Week Science Run of KATRIN
- Author
-
Aker, M, Altenmüller, K, Beglarian, A, Behrens, J, Berlev, A, Besserer, U, Bieringer, B, Blaum, K, Block, F, Bornschein, B, Bornschein, L, Böttcher, M, Brunst, T, Caldwell, TS, La Cascio, L, Chilingaryan, S, Choi, W, Barrero, D Díaz, Debowski, K, Deffert, M, Descher, M, Doe, PJ, Dragoun, O, Drexlin, G, Dyba, S, Edzards, F, Eitel, K, Ellinger, E, Engel, R, Enomoto, S, Fedkevych, M, Felden, A, Formaggio, JA, Fränkle, FM, Franklin, GB, Friedel, F, Fulst, A, Gauda, K, Gil, W, Glück, F, Grössle, R, Gumbsheimer, R, Höhn, T, Hannen, V, Haußmann, N, Helbing, K, Hickford, S, Hiller, R, Hillesheimer, D, Hinz, D, Houdy, T, Huber, A, Jansen, A, Köllenberger, L, Karl, C, Kellerer, J, Kippenbrock, L, Klein, M, Kopmann, A, Korzeczek, M, Kovalík, A, Krasch, B, Krause, H, Lasserre, T, Le, TL, Lebeda, O, Le Guennic, N, Lehnert, B, Lokhov, A, Poyato, JM Lopez, Müller, K, Machatschek, M, Malcherek, E, Mark, M, Marsteller, A, Martin, EL, Melzer, C, Mertens, S, Niemes, S, Oelpmann, P, Osipowicz, A, Parno, DS, Poon, AWP, Priester, F, Röllig, M, Röttele, C, Rest, O, Robertson, RGH, Rodenbeck, C, Ryšavý, M, Sack, R, Saenz, A, Schaller, A, Schäfer, P, Schimpf, L, Schlösser, M, Schlösser, K, Schlüter, L, Schrank, M, and Schulz, B
- Subjects
Nuclear and Plasma Physics ,Particle and High Energy Physics ,Physical Sciences ,KATRIN Collaboration ,Mathematical Sciences ,Engineering ,General Physics ,Mathematical sciences ,Physical sciences - Abstract
We report on the light sterile neutrino search from the first four-week science run of the KATRIN experiment in 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are analyzed by a high-resolution MAC-E filter down to 40 eV below the endpoint at 18.57 keV. We consider the framework with three active neutrinos and one sterile neutrino. The analysis is sensitive to the mass, m_{4}, of the fourth mass state for m_{4}^{2}≲1000 eV^{2} and to active-to-sterile neutrino mixing down to |U_{e4}|^{2}≳2×10^{-2}. No significant spectral distortion is observed and exclusion bounds on the sterile mass and mixing are reported. These new limits supersede the Mainz results for m_{4}^{2}≲1000 eV^{2} and improve the Troitsk bound for m_{4}^{2}
- Published
- 2021
11. Metamorphic origin of stratiform cassiterite mineralization in the Schwarzenberg -Aue district – Clues to the metamorphic history and pre-orogenic Sn enrichment of the Erzgebirge (Germany)
- Author
-
Weber, S., Legler, C., Kallmeier, E., Schulz, B., and Burisch, M.
- Published
- 2023
- Full Text
- View/download PDF
12. In-situ observation of the incipient melting of borides and its effect on the hot-workability of Ni-based superalloys
- Author
-
Schulz, B., Leitner, T., and Primig, S.
- Published
- 2023
- Full Text
- View/download PDF
13. Advancements in processing of Ni-based superalloys by microstructure engineering via discontinuous γ′ break-down
- Author
-
Schulz, B., Leitner, T., Hafok, M., and Primig, S.
- Published
- 2023
- Full Text
- View/download PDF
14. Suppression of Penning discharges between the KATRIN spectrometers
- Author
-
Aker, M., Altenmüller, K., Beglarian, A., Behrens, J., Berlev, A., Besserer, U., Blaum, K., Block, F., Bobien, S., Bornschein, B., Bornschein, L., Bouquet, H., Brunst, T., Caldwell, T. S., Chilingaryan, S., Choi, W., Debowski, K., Deffert, M., Descher, M., Barrero, D. Díaz, Doe, P. J., Dragoun, O., Drexlin, G., Dyba, S., Eitel, K., Ellinger, E., Engel, R., Enomoto, S., Eversheim, D., Fedkevych, M., Felden, A., Formaggio, J. A., Fränkle, F., Franklin, G. B., Frankrone, H., Friedel, F., Fulst, A., Gauda, K., Gil, W., Glück, F., Grohmann, S., Grössle, R., Gumbsheimer, R., Hackenjos, M., Hannen, V., Hartmann, J., Haußmann, N., Heizmann, F., Heizmann, J., Helbing, K., Hickford, S., Hillesheimer, D., Hinz, D., Höhn, T., Holzapfel, B., Holzmann, S., Houdy, T., Jansen, A., Karl, C., Kellerer, J., Kernert, N., Kippenbrock, L., Klein, M., Köhler, C., Köllenberger, L., Kopmann, A., Korzeczek, M., Kovalík, A., Krasch, B., Krause, H., Kuffner, B., Kunka, N., Lasserre, T., La Cascio, L., Lebeda, O., Lehnert, B., Letnev, J., Leven, F., Le, T. L., Lichter, S., Lokhov, A., Machatschek, M., Malcherek, E., Marsteller, A., Martin, E. L., Melzer, C., Menshikov, A., Mertens, S., Monreal, B., Müller, K., Naumann, U., Neumann, H., Niemes, S., Noe, M., Ortjohann, H. -W., Osipowicz, A., Otten, E., Parno, D. S., Pollithy, A., Poon, A. W. P., Poyato, J. M. L., Priester, F., Ranitzsch, P. C. -O., Rest, O., Rinderspacher, R., Robertson, R. G. H., Rodenbeck, C., Rohr, P., Röllig, M., Röttele, C., Ryšavý, M., Sack, R., Saenz, A., Schäfer, P., Schimpf, L., Schlösser, K., Schlösser, M., Schlüter, L., Schrank, M., Schulz, B., Seitz-Moskaliuk, H., Seller, W., Sibille, V., Siegmann, D., Slezák, M., Spanier, F., Steidl, M., Steven, M., Sturm, M., Suesser, M., Sun, M., Tcherniakhovski, D., Telle, H. H., Thorne, L. A., Thümmler, T., Titov, N., Tkachev, I., Trost, N., Valerius, K., Vénos, D., Vianden, R., Hernández, A. P. Vizcaya, Weber, M., Weinheimer, C., Weiss, C., Welte, S., Wendel, J., Wilkerson, J. F., Wolf, J., Wüstling, S., Xu, W., Yen, Y. -R., Zadoroghny, S., and Zeller, G.
- Subjects
Physics - Instrumentation and Detectors - Abstract
The KArlsruhe TRItium Neutrino experiment (KATRIN) aims to determine the effective electron (anti)neutrino mass with a sensitivity of $0.2\textrm{ eV/c}^2$ (90$\%$ C.L.) by precisely measuring the endpoint region of the tritium $\beta$-decay spectrum. It uses a tandem of electrostatic spectrometers working as MAC-E (magnetic adiabatic collimation combined with an electrostatic) filters. In the space between the pre-spectrometer and the main spectrometer, an unavoidable Penning trap is created when the superconducting magnet between the two spectrometers, biased at their respective nominal potentials, is energized. The electrons accumulated in this trap can lead to discharges, which create additional background electrons and endanger the spectrometer and detector section downstream. To counteract this problem, "electron catchers" were installed in the beamline inside the magnet bore between the two spectrometers. These catchers can be moved across the magnetic-flux tube and intercept on a sub-ms time scale the stored electrons along their magnetron motion paths. In this paper, we report on the design and the successful commissioning of the electron catchers and present results on their efficiency in reducing the experimental background., Comment: - 12 pages, 14 figures, LaTeX; typos corrected, references added; precised a few arguments, added additional discussions, results unchanged
- Published
- 2019
- Full Text
- View/download PDF
15. An improved upper limit on the neutrino mass from a direct kinematic method by KATRIN
- Author
-
Aker, M., Altenmüller, K., Arenz, M., Babutzka, M., Barrett, J., Bauer, S., Beck, M., Beglarian, A., Behrens, J., Bergmann, T., Besserer, U., Blaum, K., Block, F., Bobien, S., Bokeloh, K., Bonn, J., Bornschein, B., Bornschein, L., Bouquet, H., Brunst, T., Caldwell, T. S., La Cascio, L., Chilingaryan, S., Choi, W., Corona, T. J., Debowski, K., Deffert, M., Descher, M., Doe, P. J., Dragoun, O., Drexlin, G., Dunmore, J. A., Dyba, S., Edzards, F., Eisenblätter, L., Eitel, K., Ellinger, E., Engel, R., Enomoto, S., Erhard, M., Eversheim, D., Fedkevych, M., Felden, A., Fischer, S., Flatt, B., Formaggio, J. A., Fränkle, F. M., Franklin, G. B., Frankrone, H., Friedel, F., Fuchs, D., Fulst, A., Furse, D., Gauda, K., Gemmeke, H., Gil, W., Glück, F., Görhardt, S., Groh, S., Grohmann, S., Grössle, R., Gumbsheimer, R., Minh, M. Ha, Hackenjos, M., Hannen, V., Harms, F., Hartmann, J., Haußmann, N., Heizmann, F., Helbing, K., Hickford, S., Hilk, D., Hillen, B., Hillesheimer, D., Hinz, D., Höhn, T., Holzapfel, B., Holzmann, S., Houdy, T., Howe, M. A., Huber, A., Jansen, A., Kaboth, A., Karl, C., Kazachenko, O., Kellerer, J., Kernert, N., Kippenbrock, L., Kleesiek, M., Klein, M., Köhler, C., Köllenberger, L., Kopmann, A., Korzeczek, M., Kosmider, A., Kovalí, A., Krasch, B., Kraus, M., Krause, H., Kuckert, L., Kuffner, B., Kunka, N., Lasserre, T., Le, T. L., Lebeda, O., Leber, M., Lehnert, B., Letnev, J., Leven, F., Lichter, S., Lobashev, V. M., Lokhov, A., Machatschek, M., Malcherek, E., Müller, K., Mark, M., Marsteller, A., Martin, E. L., Melzer, C., Menshikov, A., Mertens, S., Minter, L. I., Mirz, S., Monreal, B., Guzman, P. I. Morales, Naumann, U., Ndeke, W., Neumann, H., Niemes, S., Noe, M., Oblath, N. S., Ortjohann, H. -W., Osipowicz, A., Ostrick, B., Otten, E., Parno, D. S., Phillips II, D. G., Plischke, P., Pollithy, A., Poon, A. W. P., Pouryamout, J., Prall, M., Priester, F., Röllig, M., Röttele, C., Ranitzsch, P. C. -O., Rest, O., Rinderspacher, R., Robertson, R. G. H., Rodenbeck, C., Rohr, P., Roll, Ch., Rupp, S., Rysavy, M., Sack, R., Saenz, A., Schäfer, P., Schimpf, L., Schlösser, K., Schlösser, M., Schlüter, L., Schön, H., Schönung, K., Schrank, M., Schulz, B., Schwarz, J., Seitz-Moskaliuk, H., Seller, W., Sibille, V., Siegmann, D., Skasyrskaya, A., Slezak, M., Spalek, A., Spanier, F., Steidl, M., Steinbrink, N., Sturm, M., Suesser, M., Sun, M., Tcherniakhovski, D., Telle, H. H., Thümmler, T., Thorne, L. A., Titov, N., Tkachev, I., Trost, N., Urban, K., Venos, D., Valerius, K., VanDevender, B. A., Vianden, R., Hernandez, A. P. Vizcaya, Wall, B. L., Wüstling, S., Weber, M., Weinheimer, C., Weiss, C., Welte, S., Wendel, J., Wierman, K. J., Wilkerson, J. F., Wolf, J., Xu, W., Yen, Y. -R., Zacher, M., Zadorozhny, S., Zboril, M., and Zeller, G.
- Subjects
High Energy Physics - Experiment ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Nuclear Experiment ,Physics - Instrumentation and Detectors - Abstract
We report on the neutrino mass measurement result from the first four-week science run of the Karlsruhe Tritium Neutrino experiment KATRIN in spring 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are energy analyzed by a high-resolution MAC-E filter. A fit of the integrated electron spectrum over a narrow interval around the kinematic endpoint at 18.57 keV gives an effective neutrino mass square value of $(-1.0^{+0.9}_{-1.1})$ eV$^2$. From this we derive an upper limit of 1.1 eV (90$\%$ confidence level) on the absolute mass scale of neutrinos. This value coincides with the KATRIN sensitivity. It improves upon previous mass limits from kinematic measurements by almost a factor of two and provides model-independent input to cosmological studies of structure formation.
- Published
- 2019
- Full Text
- View/download PDF
16. First operation of the KATRIN experiment with tritium
- Author
-
Aker, M., Altenmüller, K., Arenz, M., Baek, W. -J., Barrett, J., Beglarian, A., Behrens, J., Berlev, A., Besserer, U., Blaum, K., Block, F., Bobien, S., Bornschein, B., Bornschein, L., Bouquet, H., Brunst, T., Caldwell, T. S., Chilingaryan, S., Choi, W., Debowski, K., Deffert, M., Descher, M., Barrero, D. Díaz, Doe, P. J., Dragoun, O., Drexlin, G., Dyba, S., Edzards, F., Eitel, K., Ellinger, E., Engel, R., Enomoto, S., Eversheim, D., Fedkevych, M., Felden, A., Formaggio, J. A., Fränkle, F. M., Franklin, G. B., Frankrone, H., Friedel, F., Fuchs, D., Fulst, A., Gauda, K., Gil, W., Glück, F., Grohmann, S., Grössle, R., Gumbsheimer, R., Hackenjos, M., Hannen, V., Hartmann, J., Haußmann, N., Minh, M. Ha, Heizmann, F., Heizmann, J., Helbing, K., Hickford, S., Hillesheimer, D., Hinz, D., Höhn, T., Holzapfel, B., Holzmann, S., Houdy, T., Howe, M. A., Huber, A., Jansen, A., Karl, C., Kellerer, J., Kernert, N., Kippenbrock, L., Kleesiek, M., Klein, M., Köhler, C., Köllenberger, L., Kopmann, A., Korzeczek, M., Kovalík, A., Krasch, B., Krause, H., Kuffner, B., Kunka, N., Lasserre, T., La Cascio, L., Lebeda, O., Lebert, M., Lehnert, B., Letnev, J., Leven, F., Le, T. L., Lichter, S., Lokhov, A., Machatschek, M., Malcherek, E., Mark, M., Marsteller, A., Martin, E. L., Megas, F., Melzer, C., Menshikov, A., Mertens, S., Meier, M., Mirz, S., Monreal, B., Guzmán, P. I. Morales, Müller, K., Naumann, U., Neumann, H., Niemes, S., Noe, M., Off, A., Ortjohann, H. -W., Osipowicz, A., Otten, E., Parno, D. S., Pollithy, A., Poon, A. W. P., Poyato, J. M. L., Priester, F., Ranitzsch, P. C. -O., Rest, O., Rinderspacher, R., Robertson, R. G. H., Rodenbeck, C., Rohr, P., Röllig, M., Röttele, C., Ryšavý, M., Sack, R., Saenz, A., Schäfer, P., Schimpf, L., Schlösser, K., Schlösser, M., Schlüter, L., Schrank, M., Schulz, B., Seitz-Moskaliuk, H., Seller, W., Sibille, V., Siegmann, D., Slezák, M., Spanier, F., Steidl, M., Steven, M., Sturm, M., Suesser, M., Sun, M., Tcherniakhovski, D., Telle, H. H., Thorne, L. A., Thümmler, T., Titov, N., Tkachev, I., Trost, N., Urban, K., Valerius, K., Vénos, D., Vianden, R., Hernández, A. P. Vizcaya, Weber, M., Weinheimer, C., Weiss, C., Welte, S., Wendel, J., Wilkerson, J. F., Wolf, J., Wüstling, S., Xu, W., Yen, Y. -R., Zadorozhny, S., and Zeller, G.
- Subjects
Physics - Instrumentation and Detectors ,Astrophysics - Cosmology and Nongalactic Astrophysics ,High Energy Physics - Experiment ,Nuclear Experiment - Abstract
The determination of the neutrino mass is one of the major challenges in astroparticle physics today. Direct neutrino mass experiments, based solely on the kinematics of beta-decay, provide a largely model-independent probe to the neutrino mass scale. The Karlsruhe Tritium Neutrino (KATRIN) experiment is designed to directly measure the effective electron antineutrino mass with a sensitivity of 0.2 eV 90% CL. In this work we report on the first operation of KATRIN with tritium which took place in 2018. During this commissioning phase of the tritium circulation system, excellent agreement of the theoretical prediction with the recorded spectra was found and stable conditions over a time period of 13 days could be established. These results are an essential prerequisite for the subsequent neutrino mass measurements with KATRIN in 2019.
- Published
- 2019
- Full Text
- View/download PDF
17. Advancing analytical electron microscopy methodologies to characterise microstructural features in superalloys
- Author
-
Schulz, B., Haghdadi, N., Leitner, T., Hafok, M., and Primig, S.
- Published
- 2023
- Full Text
- View/download PDF
18. Dynamic recrystallisation via nucleation at distorted twins in a Ni-based superalloy
- Author
-
Schulz, B., Haghdadi, N., Leitner, T., Hafok, M., and Primig, S.
- Published
- 2023
- Full Text
- View/download PDF
19. Correcting the extended-source calibration for the Herschel-SPIRE Fourier-Transform Spectrometer
- Author
-
Valtchanov, Ivan, Hopwood, R., Bendo, G., Benson, C., Conversi, L., Fulton, T., Griffin, M. J., Joubaud, T., Lim, T., Lu, N., Marchili, N., Makiwa, G., Meyer, R. A., Naylor, D. A., North, C., Papageorgiou, A., Pearson, C., Polehampton, E. T., Scott, J., Schulz, B., Spencer, L. D., van der Wiel, M. H. D., and Wu, R.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
We describe an update to the Herschel-SPIRE Fourier-Transform Spectrometer (FTS) calibration for extended sources, which incorporates a correction for the frequency-dependent far-field feedhorn efficiency, $\eta_\mathrm{FF}$. This significant correction affects all FTS extended-source calibrated spectra in sparse or mapping mode, regardless of the spectral resolution. Line fluxes and continuum levels are underestimated by factors of 1.3-2 in the Spectrometer Long-Wavelength band (SLW, 447-1018 GHz; 671-294 $\mu$m) and 1.4-1.5 in the Spectrometer Short-Wavelength band (SSW, 944-1568 GHz; 318-191 $\mu$m). The correction was implemented in the FTS pipeline version 14.1 and has also been described in the SPIRE Handbook since Feb 2017. Studies based on extended-source calibrated spectra produced prior to this pipeline version should be critically reconsidered using the current products available in the Herschel Science Archive. Once the extended-source calibrated spectra are corrected for $\eta_\mathrm{FF}$, the synthetic photometry and the broadband intensities from SPIRE photometer maps agree within 2-4% -- similar levels to the comparison of point-source calibrated spectra and photometry from point-source calibrated maps. The two calibration schemes for the FTS are now self-consistent: the conversion between the corrected extended-source and point-source calibrated spectra can be achieved with the beam solid angle and a gain correction that accounts for the diffraction loss., Comment: 9 pages, 6 figures, 1 table, MNRAS in press
- Published
- 2017
- Full Text
- View/download PDF
20. The Great Observatories All-Sky LIRG Survey: Herschel Image Atlas and Aperture Photometry
- Author
-
Chu, Jason K., Sanders, D. B., Larson, K. L., Mazzarella, J. M., Howell, J. H., Díaz-Santos, T., Xu, K. C., Paladini, R., Schulz, B., Shupe, D., Appleton, P., Armus, L., Billot, N., Chan, B. H. P., Evans, A. S., Fadda, D., Frayer, D. T., Haan, S., Ishida, C. M., Iwasawa, K., Kim, D. -C., Lord, S., Murphy, E., Petric, A., Privon, G. C., Surace, J. A., and Treister, E.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
Far-infrared (FIR) images and photometry are presented for 201 Luminous and Ultraluminous Infrared Galaxies [LIRGs: log$(L_{\rm IR}/L_\odot) = 11.00 - 11.99$, ULIRGs: log$(L_{\rm IR}/L_\odot) = 12.00 - 12.99$], in the Great Observatories All-Sky LIRG Survey (GOALS) based on observations with the $Herschel$ $Space$ $Observatory$ Photodetector Array Camera and Spectrometer (PACS) and the Spectral and Photometric Imaging Receiver (SPIRE) instruments. The image atlas displays each GOALS target in the three PACS bands (70, 100, and 160 $\mu$m) and the three SPIRE bands (250, 350, and 500 $\mu$m), optimized to reveal structures at both high and low surface brightness levels, with images scaled to simplify comparison of structures in the same physical areas of $\sim$$100\times100$ kpc$^2$. Flux densities of companion galaxies in merging systems are provided where possible, depending on their angular separation and the spatial resolution in each passband, along with integrated system fluxes (sum of components). This dataset constitutes the imaging and photometric component of the GOALS Herschel OT1 observing program, and is complementary to atlases presented for the Hubble Space Telescope (Evans et al. 2017, in prep.), Spitzer Space Telescope (Mazzarella et al. 2017, in prep.), and Chandra X-ray Observatory (Iwasawa et al. 2011, 2017, in prep.). Collectively these data will enable a wide range of detailed studies of AGN and starburst activity within the most luminous infrared galaxies in the local Universe., Comment: Accepted for publication in ApJS, 270 pages, 216 figures, 4 tables
- Published
- 2017
- Full Text
- View/download PDF
21. Tapping strength variability in sensorimotor experiments on rhythmic tapping.
- Author
-
Nelias, C., Schulz, B., Datseris, G., and Geisel, T.
- Subjects
- *
SPECTRAL energy distribution , *POWER density , *TIME series analysis , *METRONOME , *EXPONENTS - Abstract
We report psychophysical experiments and time series analyses to investigate sensorimotor tapping strength fluctuations in human periodic tapping with and without a metronome. The power spectral density of tapping strength fluctuations typically decays in an inverse power law (1 / f β -noise) associated with long-range correlations, i.e., with a slow power-law decay of tapping strength autocorrelations and scale-free behavior. The power-law exponents β are scattered around β = 1 ranging from 0.67 to 1.8. A log-linear representation of the power spectral densities reveals rhythmic peaks at frequencies f = 0.25 (and f = 0.5) and a tendency to slightly accentuate every fourth (and second) stroke when subjects try to synchronize their tapping with a metronome. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
22. New approaches in interdisciplinary river science—Presentation of the new PhD program “Industrialized Riverine Landscapes” within the Doctoral School HR21 at BOKU University
- Author
-
Hein, T., primary, Bondar-Kunze, E., additional, Ertl, T., additional, Graf, W., additional, Habersack, H., additional, Haidvogl, G., additional, Hauer, C., additional, Hood-Nowotny, R., additional, Laaha, G., additional, Mehdi-Schulz, B., additional, Mitter, H., additional, Schinegger, R., additional, Schmid, E., additional, Schmid, M., additional, Schmutz, S., additional, Seher, W., additional, Stockinger, M., additional, Stöglehner, G., additional, Stumpp, C., additional, Weigelhofer, G., additional, and Langergraber, G., additional
- Published
- 2024
- Full Text
- View/download PDF
23. Far Infrared Variability of Sagittarius A*: 25.5 Hours of Monitoring with $Herschel$
- Author
-
Stone, Jordan M., Marrone, D. P., Dowell, C. D., Schulz, B., Heinke, C. O., and Yusef-Zadeh, F.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Astrophysics of Galaxies - Abstract
Variable emission from Sgr~A*, the luminous counterpart to the super-massive black hole at the center of our Galaxy, arises from the innermost portions of the accretion flow. Better characterization of the variability is important for constraining models of the low-luminosity accretion mode powering Sgr~A*, and could further our ability to use variable emission as a probe of the strong gravitational potential in the vicinity of the $4\times10^{6}\mathrm{M}_{\odot}$ black hole. We use the \textit{Herschel} Spectral and Photometric Imaging Receiver (SPIRE) to monitor Sgr~A* at wavelengths that are difficult or impossible to observe from the ground. We find highly significant variations at 0.25, 0.35, and 0.5 mm, with temporal structure that is highly correlated across these wavelengths. While the variations correspond to $<$1% changes in the total intensity in the \textit{Herschel} beam containing Sgr~A*, comparison to independent, simultaneous observations at 0.85 mm strongly supports the reality of the variations. The lowest point in the light curves, $\sim$0.5 Jy below the time-averaged flux density, places a lower bound on the emission of Sgr~A* at 0.25 mm, the first such constraint on the THz portion of the SED. The variability on few hour timescales in the SPIRE light curves is similar to that seen in historical 1.3 mm data, where the longest time series is available, but the distribution of variations in the sub-mm do not show a tail of large-amplitude variations seen at 1.3 mm. Simultaneous X-ray photometry from XMM-Newton shows no significant variation within our observing period, which may explain the lack of very large variations if X-ray and submillimeter flares are correlated., Comment: Accepted for publication in ApJ
- Published
- 2016
- Full Text
- View/download PDF
24. Hi-GAL, the Herschel infrared Galactic Plane Survey: photometric maps and compact source catalogues. First data release for Inner Milky Way: +68{\deg}> l > -70{\deg}
- Author
-
Molinari, S., Schisano, E., Elia, D., Pestalozzi, M., Traficante, A., Pezzuto, S., Swinyard, B. M., Noriega-Crespo, A., Bally, J., Moore, T. J. T., Plume, R., Zavagno, A., di Giorgio, A. M., Liu, S. J., Pilbratt, G. L., Mottram, J. C., Russeil, D., Piazzo, L., Veneziani, M., Benedettini, M., Calzoletti, L., Faustini, F., Natoli, P., Piacentini, F., Merello, M., Palmese, A., Del Grande, R., Polychroni, D., Rygl, K. L. J., Polenta, G., Barlow, M. J., Bernard, J. -P., Martin, P. G., Testi, L., Ali, B., Andrè, P., Beltrán, M. T., Billot, N., Brunt, C., Carey, S., Cesaroni, R., Compiègne, M., Eden, D., Fukui, Y., Garcia-Lario, P., Hoare, M. G., Huang, M., Joncas, G., Lim, T. L., Lord, S. D., Martinavarro-Armengol, S., Motte, F., Paladini, R., Paradis, D., Peretto, N., Robitaille, T., Schilke, P., Schneider, N., Schulz, B., Sibthorpe, B., Strafella, F., Thompson, M. A., Umana, G., Ward-Thompson, D., and Wyrowski, F.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
(Abridged) We present the first public release of high-quality data products (DR1) from Hi-GAL, the {\em Herschel} infrared Galactic Plane Survey. Hi-GAL is the keystone of a suite of continuum Galactic Plane surveys from the near-IR to the radio, and covers five wavebands at 70, 160, 250, 350 and 500 micron, encompassing the peak of the spectral energy distribution of cold dust for 8 < T < 50K. This first Hi-GAL data release covers the inner Milky Way in the longitude range 68{\deg} > l > -70{\deg} in a |b|<1{\deg} latitude strip. Photometric maps have been produced with the ROMAGAL pipeline, that optimally capitalizes on the excellent sensitivity and stability of the bolometer arrays of the {\em Herschel} PACS and SPIRE photometric cameras, to deliver images of exquisite quality and dynamical range, absolutely calibrated with {\em Planck} and {\em IRAS}, and recovering extended emission at all wavelengths and all spatial scales. The compact source catalogues have been generated with the CuTEx algorithm, specifically developed to optimize source detection and extraction in the extreme conditions of intense and spatially varying background that are found in the Galactic Plane in the thermal infrared. Hi-GAL DR1 images will be accessible via a dedicated web-based image cutout service. The DR1 Compact Source Catalogues are delivered as single-band photometric lists containing, in addition to source position, peak and integrated flux and source sizes, a variety of parameters useful to assess the quality and reliability of the extracted sources, caveats and hints to help this assessment are provided. Flux completeness limits in all bands are determined from extensive synthetic source experiments and depend on the specific line of sight along the Galactic Plane. Hi-GAL DR1 catalogues contain 123210, 308509, 280685, 160972 and 85460 compact sources in the five bands, respectively., Comment: Astronomy & Astrophysics, accepted
- Published
- 2016
- Full Text
- View/download PDF
25. Record and provenance of Pleistocene volcaniclastic turbidites from the central Lesser Antilles (IODP Expedition 340, Site U1398B)
- Author
-
Breitkreuz, C., Schmitt, A.K., Repstock, A., Krause, J., Schulz, B., Bergmann, F., Bischoff, J., Le Friant, A., and Ishizuka, O.
- Published
- 2021
- Full Text
- View/download PDF
26. The birth of the Alps: Ediacaran to Paleozoic accretionary processes and crustal growth along the northern Gondwana margin
- Author
-
Siegesmund, S., Oriolo, S., Schulz, B., Heinrichs, T., Basei, M. A. S., and Lammerer, B.
- Published
- 2021
- Full Text
- View/download PDF
27. Gesundheitskompetenz im Setting Schule: Stand der Forschung, Herausforderungen und Bedarfe
- Author
-
Rathmann, K, Naczinsky, A, László, E, Sendatzki, S, Schulz, B, Lindemann, U, Landwehr, C, Hammes, K, Koschig, M, Richter-Werling, M, Rathmann, K, Naczinsky, A, László, E, Sendatzki, S, Schulz, B, Lindemann, U, Landwehr, C, Hammes, K, Koschig, M, and Richter-Werling, M
- Published
- 2024
28. The impacts of climate change on nitrogen losses to the environment in Austria: A dual model analysis across spatial and temporal scales to support policy decisions
- Author
-
Mehdi-Schulz, B., Zoboli, O., Schürz, Christoph, Strenge, E., Lima, E.M., Parajka, J., Wang, C., Zessner, M., Mehdi-Schulz, B., Zoboli, O., Schürz, Christoph, Strenge, E., Lima, E.M., Parajka, J., Wang, C., and Zessner, M.
- Abstract
The amounts and pathways of reactive nitrogen (Nr) losses in Austria into the surface water, soil, and atmosphere were determined under four climate change scenarios for the period 2041–2070. Two nutrient models were used to undertake the analysis at two different scales. Firstly, a semi-empirical, conceptual model (MONERIS) was setup for Austria to calculate the overall annual Nr surpluses, categorise flows of Nr, and identify regional hotspots of Nr losses. Secondly, a physically based eco-hydrological model (SWAT) was setup in three agricultural catchments to determine the hydrological processes related to Nr transport and quantify the amounts transported by various pathways in cropland at a detailed spatial and temporal resolution. The agricultural N surplus calculations for Austria were revised and used as input data for both models. The MONERIS and SWAT simulated inorganic N loads transported into waterbodies are overall similar, with average differences for the subsurface inorganic N loads of ±3 kg ha−1 yr−1 and for surface inorganic N loads of +0.4 to −0.03 kg ha−1 yr−1. Crop level N losses under future climate scenarios was contingent upon the fertilizer type, the crop grown and its accumulated biomass, as well as the type of climate scenario (wet or dry). In the SWAT model, an examination of the sensitivity of the input data (climate data and parameter values) found the dominant contribution to the sensitivity of simulated monthly discharge was from the climate data (69 % to 98 %). For simulating N loads, the climate scenarios contributed 30 % to 89 % of the sensitivity. Simulating Nr flows under climate scenarios is policy relevant to assess critical areas of N losses and identify future N transport pathways. Using a dual-model approach saves on resources required to set up a complex, data intensive model at a large scale, and can focus on critical catchments in deta
- Published
- 2024
29. Kapitel 9. Synopsis – Synergien, Zielkonflikte und Umsetzungsbarrieren von Klimaanpassungs- und Klimaschutzmaßnahmen
- Author
-
Jandl, R., Tappeiner, U., Foldal, C., Erb, K., Erb, K.-H., Baumgarten, A., Bertsch-Hörmann, B., Bethge, P., Bruckman, V.J., Gingrich, S., Glatzel, S., Kottusch, C., Kraxner, F., Lapin, K., Mehdi-Schulz, B., Raich, J., Schüler, S., Tasser, E., Tötzer, T., Zollitsch, W., Jandl, R., Tappeiner, U., Foldal, C., Erb, K., Erb, K.-H., Baumgarten, A., Bertsch-Hörmann, B., Bethge, P., Bruckman, V.J., Gingrich, S., Glatzel, S., Kottusch, C., Kraxner, F., Lapin, K., Mehdi-Schulz, B., Raich, J., Schüler, S., Tasser, E., Tötzer, T., and Zollitsch, W.
- Abstract
Es existiert eine Fülle von potenziellen Maßnahmen der Klimawandelanpassung und Emissionsminderung im Bereich der Landnutzung. Allerdings stehen Klimawandelanpassung und Emissionsminderung nicht notwendigerweise in einem synergistischen Zusammenhang. Neben der Klimarelevanz sind auch andere Kriterien von Bedeutung, wenn die integrative Leistungsfähigkeit von Maßnahmen bewertet werden soll. Dazu gehören vor allem mögliche und erwartete Auswirkungen auf die Biodiversität und denWasserhaushalt. Dieses Kapitel fasst die Klimawandelanpassungs- und Emissionsminderungsmaßnahmen und ihre Auswirkungen tabellarisch zusammen. Dabei soll eine integrative, übersichtliche Bewertung der im Special Report behandelten Maßnahmen ermöglicht werden.
- Published
- 2024
- Full Text
- View/download PDF
30. Technische Zusammenfassung
- Author
-
Jandl, R., Tappeiner, U., Foldal, C., Erb, K., Erb, K.-H., Anderl, M., Baumgarten, A., Bohner, A., Borsky, S., Bruckman, V., Bruckner, M., Díaz-Pinés, E., Dobernig, K., Dumke, H., Eitzinger, J., Fischer, T., Formayer, H., Freudenschuss, A., Gaube, V., Getzner, M., Gingrich, S., Glatzel, S., Gratzer, G., Haas, W., Jäger, J., Kirchner, M., Kitzler, B., Koch, A., Kottusch, C., Kraxner, F., Lapin, K., Leitinger, G., Lexer, M., Lindenthal, T., Loibl, W., Mehdi-Schulz, B., Meyer, I., Miloczki, J., Obrovsky, M., Penker, M., Sandén, T., Scharler, M., Schauberger, G., Mag. Dr. MSc. Schaumberger, A., Schinko, T., Shinozaki, K., Schirpke, U., Schmid, C., Schneider, S., Schöner, W., Schüler, S., Sinabell, F., Spiegel, H., Stöglehner, G., Stumpp, C., Sturmbauer, C., Tasser, E., Thaler, T., Theurl, M., Tötzer, T., Voigt, A., Weber, K., Weber, G., Weiss, P., Wenzel, W., Zessner, M., Zoboli, O., Zollitsch, W., Zuvela-Aloise, M., Jandl, R., Tappeiner, U., Foldal, C., Erb, K., Erb, K.-H., Anderl, M., Baumgarten, A., Bohner, A., Borsky, S., Bruckman, V., Bruckner, M., Díaz-Pinés, E., Dobernig, K., Dumke, H., Eitzinger, J., Fischer, T., Formayer, H., Freudenschuss, A., Gaube, V., Getzner, M., Gingrich, S., Glatzel, S., Gratzer, G., Haas, W., Jäger, J., Kirchner, M., Kitzler, B., Koch, A., Kottusch, C., Kraxner, F., Lapin, K., Leitinger, G., Lexer, M., Lindenthal, T., Loibl, W., Mehdi-Schulz, B., Meyer, I., Miloczki, J., Obrovsky, M., Penker, M., Sandén, T., Scharler, M., Schauberger, G., Mag. Dr. MSc. Schaumberger, A., Schinko, T., Shinozaki, K., Schirpke, U., Schmid, C., Schneider, S., Schöner, W., Schüler, S., Sinabell, F., Spiegel, H., Stöglehner, G., Stumpp, C., Sturmbauer, C., Tasser, E., Thaler, T., Theurl, M., Tötzer, T., Voigt, A., Weber, K., Weber, G., Weiss, P., Wenzel, W., Zessner, M., Zoboli, O., Zollitsch, W., and Zuvela-Aloise, M.
- Abstract
Die Technische Zusammenfassung des APCC-Sonderberichts ″Landnutzung und Klimawandel in Österreich″ umfasst die Kernbotschaften der Kapitel 1–9. In ihr sind die Hauptaussagen zu den sozioökonomischen und klimatischen Treibern der Landnutzungsänderungen, zu den Auswirkungen von Landnutzung und -bewirtschaftung auf den Klimawandel, zu Minderungs- und Anpassungsoptionen im Kontext nachhaltiger Entwicklungsziele sowie zu Synergien, Zielkonflikten und Umsetzungsbarrieren von Klimamaßnahmen enthalten.
- Published
- 2024
- Full Text
- View/download PDF
31. Kapitel 3. Sozioökonomische und klimatische Treiber der Änderung der Landnutzung in Österreich
- Author
-
Jandl, R., Tappeiner, U., Foldal, C., Erb, K., Gaube, V., Schneider, S., Thaler, T., Borsky, S., Kirchner, M., Loibl, W., Mehdi-Schulz, B., Schirpke, U., Zuvela-Aloise, M., Jandl, R., Tappeiner, U., Foldal, C., Erb, K., Gaube, V., Schneider, S., Thaler, T., Borsky, S., Kirchner, M., Loibl, W., Mehdi-Schulz, B., Schirpke, U., and Zuvela-Aloise, M.
- Abstract
Dieses Kapitel beschäftigt sich mit den klimatischen, ökologischen und sozioökonomischen treibenden Kräften, welche die Landnutzung in Österreich in der Vergangenheit und der Gegenwart maßgeblich bestimmt haben und die zukünftigen Entwicklungen beeinflussen werden. Es behandelt die in der Vergangenheit beobachteten und in der Zukunft erwarteten treibenden Kräfte von Landnutzungsänderungen in der Landwirtschaft (Abschn. 3.2), der Forstwirtschaft (Abschn. 3.3) und der Siedlungs- und Infrastrukturentwicklung (Abschn. 3.4). Abschließend werden die möglichen und erwarteten Auswirkungen dieser treibenden Kräfte auf die Bereitstellung der Ökosystemleistungen (ÖSL) beschrieben (Abschn. 3.5). Der Abbau von Mineralien wie Schotter oder Metalle wird aus Platzgründen nicht in diesem Kapitel behandelt, wenngleich es unumstritten ist, dass es sich auch dabei um landnutzungsrelevante Aktivitäten handelt. Kap. 3 unterscheidet zwischen natürlichen und anthropogenen Faktoren und wie sich diese auf die Landnutzung ausgewirkt haben und auswirken. Die sozioökonomischen Auswirkungen berücksichtigen dabei allerdings nicht die möglichen Anpassungs- oder Minderungsstrategien der einzelnen Sektoren, da diese in den Kap. 4 und 5 gesondert dargestellt werden.
- Published
- 2024
- Full Text
- View/download PDF
32. The HerMES sub-millimetre local and low-redshift luminosity functions
- Author
-
Marchetti, L., Vaccari, M., Franceschini, A., Arumugam, V., Aussel, H., Bethermin, M., Bock, J., Boselli, A., Buat, V., Burgarella, D., Clements, D. L., Conley, A., Conversi, L., Cooray, A., Dowell, C. D., Farrah, D., Feltre, A., Glenn, J., Griffin, M., Hatziminaoglou, E., Heinis, S., Ibar, E., Ivison, R. J., Nguyen, H. T., O'Halloran, B., Oliver, S. J., Omont, A., Page, M. J., Papageorgiou, A., Pearson, C. P., Perez-Fournon, I., Pohlen, M., Rigopoulou, D., Roseboom, I. G., Rowan-Robinson, M., Schulz, B., Scott, Douglas, Seymour, N., Shupe, D. L., Smith, A. J., Symeonidis, M., Valtchanov, I., Viero, M., Wang, L., Wardlow, J., Xu, C. K., and Zemcov, M.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We used wide area surveys over 39 deg$^2$ by the HerMES collaboration, performed with the Herschel Observatory SPIRE multi-wavelength camera, to estimate the low-redshift, $0.02
- Published
- 2015
- Full Text
- View/download PDF
33. Comparison of absolute gain photometric calibration between Planck/HFI and Herschel/SPIRE at 545 and 857 GHz
- Author
-
Bertincourt, B., Lagache, G., Schulz, B., Conversi, L., Dassas, K., Martin, P. G., Maurin, L., Abergel, A., Beelen, A., Bernard, J-P., Crill, B. P., Dole, H., Eales, S., Gudmundsson, J. E., Lellouch, E., Moreno, R., and Perdereau, O.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
We compare the absolute gain photometric calibration of the Planck/HFI and Herschel/SPIRE instruments on diffuse emission. The absolute calibration of HFI and SPIRE each relies on planet flux measurements and comparison with theoretical far-infrared emission models of planetary atmospheres. We measure the photometric cross calibration between the instruments at two overlapping bands, 545 GHz / 500 $\mu$m and 857 GHz / 350 $\mu$m. The SPIRE maps used have been processed in the Herschel Interactive Processing Environment (Version 12) and the HFI data are from the 2015 Public Data Release 2. For our study we used 15 large fields observed with SPIRE, which cover a total of about 120 deg^2. We have selected these fields carefully to provide high signal-to-noise ratio, avoid residual systematics in the SPIRE maps, and span a wide range of surface brightness. The HFI maps are bandpass-corrected to match the emission observed by the SPIRE bandpasses. The SPIRE maps are convolved to match the HFI beam and put on a common pixel grid. We measure the cross-calibration relative gain between the instruments using two methods in each field, pixel-to-pixel correlation and angular power spectrum measurements. The SPIRE / HFI relative gains are 1.047 ($\pm$ 0.0069) and 1.003 ($\pm$ 0.0080) at 545 and 857 GHz, respectively, indicating very good agreement between the instruments. These relative gains deviate from unity by much less than the uncertainty of the absolute extended emission calibration, which is about 6.4% and 9.5% for HFI and SPIRE, respectively, but the deviations are comparable to the values 1.4% and 5.5% for HFI and SPIRE if the uncertainty from models of the common calibrator can be discounted. Of the 5.5% uncertainty for SPIRE, 4% arises from the uncertainty of the effective beam solid angle, which impacts the adopted SPIRE point source to extended source unit conversion factor (Abridged), Comment: 13 pages, 10 figures; Incorporates revisions in response to referee comments; cross calibration factors unchanged
- Published
- 2015
- Full Text
- View/download PDF
34. HerMES: Current Cosmic Infrared Background Estimates Can be Explained by Known Galaxies and their Faint Companions at z < 4
- Author
-
Viero, M. P., Moncelsi, L., Quadri, R. F., Béthermin, M., Bock, J. J., Burgarella, D., Chapman, S. C., Clements, D. L., Conley, A., Conversi, L., Duivenvoorden, S., Dunlop, J. S., Farrah, D., Franceschini, A., Halpern, M., Ivison, R. J., Lagache, G., Magdis, G., Marchetti, L., Álvarez-Márquez, J., Marsden, G., Oliver, S. J., Page, M. J., Pérez-Fournon, I., Schulz, B., Scott, Douglas, Valtchanov, I., Vieira, J. D., Wang, L., Wardlow, J., and Zemcov, M.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We report contributions to cosmic infrared background (CIB) intensities originating from known galaxies and their faint companions at submillimeter wavelengths. Using the publicly-available UltraVISTA catalog, and maps at 250, 350, and 500 {\mu}m from the \emph{Herschel} Multi-tiered Extragalactic Survey (HerMES), we perform a novel measurement that exploits the fact that uncatalogued sources may bias stacked flux densities --- particularly if the resolution of the image is poor --- and intentionally smooth the images before stacking and summing intensities. By smoothing the maps we are capturing the contribution of faint (undetected in K_S ~ 23.4) sources that are physically associated, or correlated, with the detected sources. We find that the cumulative CIB increases with increased smoothing, reaching 9.82 +- 0.78, 5.77 +- 0.43, and 2.32 +- 0.19$\, \rm nW m^{-2} sr^{-1}$ at 250, 350, and 500 {\mu}m at 300 arcsec FWHM. This corresponds to a fraction of the fiducial CIB of 0.94 +- 0.23, 1.07 +- 0.31, and 0.97 +- 0.26 at 250, 350, and 500 {\mu}m, where the uncertainties are dominated by those of the absolute CIB. We then propose, with a simple model combining parametric descriptions for stacked flux densities and stellar mass functions, that emission from galaxies with log(M/Msun) > 8.5 can account for the most of the measured total intensities, and argue against contributions from extended, diffuse emission. Finally, we discuss prospects for future survey instruments to improve the estimates of the absolute CIB levels, and observe any potentially remaining emission at z > 4., Comment: Accepted to ApJL. 6 Pages, 3 figures
- Published
- 2015
- Full Text
- View/download PDF
35. Aetiology of Canine Infectious Respiratory Disease Complex and Prevalence of its Pathogens in Europe
- Author
-
Day, M.J., Carey, S., Clercx, C., Kohn, B., MarsilIo, F., Thiry, E., Freyburger, L., Schulz, B., and Walker, D.J.
- Published
- 2020
- Full Text
- View/download PDF
36. Ex Vivo Fluorescence Confocal Microscopy (FCM) ensures representative tissue in prostate cancer biobanking
- Author
-
Tketaki, A., primary, Abd Ali, F., additional, Titze, B., additional, Schulz, B., additional, Stege, C., additional, Sommerkamp, J., additional, Schneider, F., additional, Sievert, K-D., additional, and Titze, U., additional
- Published
- 2024
- Full Text
- View/download PDF
37. ALMA Observations of Warm Dense Gas in NGC 1614 --- Breaking of Star Formation Law in the Central kpc
- Author
-
Xu, C. K., Cao, C., Lu, N., Gao, Y., Diaz-Santos, T., Herrero-Illana, R., Meijerink, R., Privon, G., Zhao, Y. -H., Evans, A. S., König, S., Mazzarella, J. M., Aalto, S., Appleton, P., Armus, L., Charmandaris, V., Chu, J., Haan, S., Inami, H., Murphy, E. J., Sanders, D. B., Schulz, B., and van der Werf, P.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We present ALMA Cycle-0 observations of the CO (6-5) line emission and of the 435um dust continuum emission in the central kpc of NGC 1614, a local luminous infrared galaxy (LIRG) at a distance of 67.8 Mpc (1 arcsec = 329 pc). The CO emission is well resolved by the ALMA beam (0".26 x 0".20) into a circum-nuclear ring, with an integrated flux of f_{CO(6-5)} = 898 (+-153) Jy km/s, which is 63(+-12)% of the total CO(6-5) flux measured by Herschel. The molecular ring, located between 100pc < r < 350pc from the nucleus, looks clumpy and includes seven unresolved (or marginally resolved) knots with median velocity dispersion of 40 km/s. These knots are associated with strong star formation regions with \Sigma_{SFR} 100 M_\sun/yr/kpc^{2} and \Sigma_{Gas} 1.0E4 M_\sun/pc^{2}. The non-detections of the nucleus in both the CO (6-5) line emission and the 435um continuum rule out, with relatively high confidence, a Compton-thick AGN in NGC 1614. Comparisons with radio continuum emission show a strong deviation from an expected local correlation between \Sigma_{Gas} and \Sigma_{SFR}, indicating a breakdown of the Kennicutt-Schmidt law on the linear scale of 100 pc., Comment: 13 pages, 10 figures; accepted by ApJ
- Published
- 2014
- Full Text
- View/download PDF
38. Characterization of the LIGO detectors during their sixth science run
- Author
-
The LIGO Scientific Collaboration, The Virgo Collaboration, Aasi, J., Abadie, J., Abbott, B. P., Abbott, R., Abbott, T., Abernathy, M. R., Accadia, T., Acernese, F., Adams, C., Adams, T., Adhikari, R. X., Affeldt, C., Agathos, M., Aggarwal, N., Aguiar, O. D., Ajith, P., Allen, B., Allocca, A., Ceron, E. Amador., Amariutei, D., Anderson, R. A., Anderson, S. B., Anderson, W. G., Arai, K., Araya, M. C., Arceneaux, C., Areeda, J., Ast, S., Aston, S. M., Astone, P., Aufmuth, P., Aulbert, C., Austin, L., Aylott, B. E., Babak, S., Baker, P. T., Ballardin, G., Ballmer, S. W., Barayoga, J. C., Barker, D., Barnum, S. H., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barton, M. A., Bartos, I., Bassiri, R., Basti, A., Batch, J., Bauchrowitz, J., Bauer, Th. S., Bebronne, M., Behnke, B., Bejger, M., Beker, M. G., Bell, A. S., Bell, C., Belopolski, I., Bergmann, G., Berliner, J. M., Bertolini, A., Bessis, D., Betzwieser, J., Beyersdorf, P. T., Bhadbhade, T., Bilenko, I. A., Billingsley, G., Birch, J., Bitossi, M., Bizouard, M. A., Black, E., Blackburn, J. K., Blackburn, L., Blair, D., Blom, M., Bock, O., Bodiya, T. P., Boer, M., Bogan, C., Bond, C., Bondu, F., Bonelli, L., Bonnand, R., Bork, R., Born, M., Bose, S., Bosi, L., Bowers, J., Bradaschia, C., Brady, P. R., Braginsky, V. B., Branchesi, M., Brannen, C. A., Brau, J. E., Breyer, J., Briant, T., Bridges, D. O., Brillet, A., Brinkmann, M., Brisson, V., Britzger, M., Brooks, A. F., Brown, D. A., Brown, D. D., Bruckner, F., Bulik, T., Bulten, H. J., Buonanno, A., Buskulic, D., Buy, C., Byer, R. L., Cadonati, L., Cagnoli, G., Bustillo, J. Calderon., Calloni, E., Camp, J. B., Campsie, P., Cannon, K. C., Canuel, B., Cao, J., Capano, C. D., Carbognani, F., Carbone, L., Caride, S., Castiglia, A., Caudill, S., Cavaglia, M., Cavalier, F., Cavalieri, R., Cella, G., Cepeda, C., Cesarini, E., Chakraborty, R., Chalermsongsak, T., Chao, S., Charlton, P., Chassande-Mottin, E., Chen, X., Chen, Y., Chincarini, A., Chiummo, A., Cho, H. S., Chow, J., Christensen, N., Chu, Q., Chua, S. S. Y., Chung, S., Ciani, G., Clara, F., Clark, D. E., Clark, J. A., Cleva, F., Coccia, E., Cohadon, P. -F., Colla, A., Colombini, M., Constancio, Jr., M., Conte, A., Conte, R., Cook, D., Corbitt, T. R., Cordier, M., Cornish, N., Corsi, A., Costa, C. A., Coughlin, M. W., Coulon, J. -P., Countryman, S., Couvares, P., Coward, D. M., Cowart, M., Coyne, D. C., Craig, K., Creighton, J. D. E., Creighton, T. D., Crowder, S. G., Cumming, A., Cunningham, L., Cuoco, E., Dahl, K., Canton, T. Dal., Damjanic, M., Danilishin, S. L., D'Antonio, S., Danzmann, K., Dattilo, V., Daudert, B., Daveloza, H., Davier, M., Davies, G. S., Daw, E. J., Day, R., Dayanga, T., Debreczeni, G., Degallaix, J., Deleeuw, E., Deleglise, S., Pozzo, W. Del., Denker, T., Dent, T., Dereli, H., Dergachev, V., Rosa, R. De., DeRosa, R. T., DeSalvo, R., Dhurandhar, S., Diaz, M., Dietz, A., Fiore, L. Di., Lieto, A. Di., Palma, I. Di., Virgilio, A. Di., Dmitry, K., Donovan, F., Dooley, K. L., Doravari, S., Drago, M., Drever, R. W. P., Driggers, J. C., Du, Z., Dumas, J. -C., Dwyer, S., Eberle, T., Edwards, M., Effler, A., Ehrens, P., Eichholz, J., Eikenberry, S. S., Endroczi, G., Essick, R., Etzel, T., Evans, K., Evans, M., Evans, T., Factourovich, M., Fafone, V., Fairhurst, S., Fang, Q., Farr, B., Farr, W., Favata, M., Fazi, D., Fehrmann, H., Feldbaum, D., Ferrante, I., Ferrini, F., Fidecaro, F., Finn, L. S., Fiori, I., Fisher, R., Flaminio, R., Foley, E., Foley, S., Forsi, E., Forte, L. A., Fotopoulos, N., Fournier, J. -D., Franco, S., Frasca, S., Frasconi, F., Frede, M., Frei, M., Frei, Z., Freise, A., Frey, R., Fricke, T. T., Fritschel, P., Frolov, V. V., Fujimoto, M. -K., Fulda, P., Fyffe, M., Gair, J., Gammaitoni, L., Garcia, J., Garufi, F., Gehrels, N., Gemme, G., Genin, E., Gennai, A., Gergely, L., Ghosh, S., Giaime, J. A., Giampanis, S., Giardina, K. D., Giazotto, A., Gil-Casanova, S., Gill, C., Gleason, J., Goetz, E., Goetz, R., Gondan, L., Gonzalez, G., Gordon, N., Gorodetsky, M. L., Gossan, S., Gossler, S., Gouaty, R., Graef, C., Graff, P. B., Granata, M., Grant, A., Gras, S., Gray, C., Greenhalgh, R. J. S., Gretarsson, A. M., Griffo, C., Grote, H., Grover, K., Grunewald, S., Guidi, G. M., Guido, C., Gushwa, K. E., Gustafson, E. K., Gustafson, R., Hall, B., Hall, E., Hammer, D., Hammond, G., Hanke, M., Hanks, J., Hanna, C., Hanson, J., Harms, J., Harry, G. M., Harry, I. W., Harstad, E. D., Hartman, M. T., Haughian, K., Hayama, K., Heefner, J., Heidmann, A., Heintze, M., Heitmann, H., Hello, P., Hemming, G., Hendry, M., Heng, I. S., Heptonstall, A. W., Heurs, M., Hild, S., Hoak, D., Hodge, K. A., Holt, K., Hong, T., Hooper, S., Horrom, T., Hosken, D. J., Hough, J., Howell, E. J., Hu, Y., Hua, Z., Huang, V., Huerta, E. A., Hughey, B., Husa, S., Huttner, S. H., Huynh, M., Huynh-Dinh, T., Iafrate, J., Ingram, D. R., Inta, R., Isogai, T., Ivanov, A., Iyer, B. R., Izumi, K., Jacobson, M., James, E., Jang, H., Jang, Y. J., Jaranowski, P., Jimenez-Forteza, F., Johnson, W. W., Jones, D., Jones, D. I., Jones, R., Jonker, R. J. G., Ju, L., K, Haris., Kalmus, P., Kalogera, V., Kandhasamy, S., Kang, G., Kanner, J. B., Kasprzack, M., Kasturi, R., Katsavounidis, E., Katzman, W., Kaufer, H., Kaufman, K., Kawabe, K., Kawamura, S., Kawazoe, F., Kefelian, F., Keitel, D., Kelley, D. B., Kells, W., Keppel, D. G., Khalaidovski, A., Khalili, F. Y., Khazanov, E. A., Kim, B. K., Kim, C., Kim, K., Kim, N., Kim, W., Kim, Y. -M., King, E. J., King, P. J., Kinzel, D. L., Kissel, J. S., Klimenko, S., Kline, J., Koehlenbeck, S., Kokeyama, K., Kondrashov, V., Koranda, S., Korth, W. Z., Kowalska, I., Kozak, D., Kremin, A., Kringel, V., Krishnan, B., Krolak, A., Kucharczyk, C., Kudla, S., Kuehn, G., Kumar, A., Kumar, D. Nanda., Kumar, P., Kumar, R., Kurdyumov, R., Kwee, P., Landry, M., Lantz, B., Larson, S., Lasky, P. D., Lawrie, C., Lazzarini, A., Leaci, P., Lebigot, E. O., Lee, C. -H., Lee, H. K., Lee, H. M., Lee, J., Leonardi, M., Leong, J. R., Roux, A. Le., Leroy, N., Letendre, N., Levine, B., Lewis, J. B., Lhuillier, V., Li, T. G. F., Lin, A. C., Littenberg, T. B., Litvine, V., Liu, F., Liu, H., Liu, Y., Liu, Z., Lloyd, D., Lockerbie, N. A., Lockett, V., Lodhia, D., Loew, K., Logue, J., Lombardi, A. L., Lorenzini, M., Loriette, V., Lormand, M., Losurdo, G., Lough, J., Luan, J., Lubinski, M. J., Luck, H., Lundgren, A. P., Macarthur, J., Macdonald, E., Machenschalk, B., MacInnis, M., Macleod, D. M., Magana-Sandoval, F., Mageswaran, M., Mailand, K., Majorana, E., Maksimovic, I., Malvezzi, V., Man, N., Manca, G. M., Mandel, I., Mandic, V., Mangano, V., Mantovani, M., Marchesoni, F., Marion, F., Marka, S., Marka, Z., Markosyan, A., Maros, E., Marque, J., Martelli, F., Martellini, L., Martin, I. W., Martin, R. M., Martynov, D., Marx, J. N., Mason, K., Masserot, A., Massinger, T. J., Matichard, F., Matone, L., Matzner, R. A., Mavalvala, N., May, G., Mazumder, N., Mazzolo, G., McCarthy, R., McClelland, D. E., McGuire, S. C., McIntyre, G., McIver, J., Meacher, D., Meadors, G. D., Mehmet, M., Meidam, J., Meier, T., Melatos, A., Mendell, G., Mercer, R. A., Meshkov, S., Messenger, C., Meyer, M. S., Miao, H., Michel, C., Mikhailov, E. E., Milano, L., Miller, J., Minenkov, Y., Mingarelli, C. M. F., Mitra, S., Mitrofanov, V. P., Mitselmakher, G., Mittleman, R., Moe, B., Mohan, M., Mohapatra, S. R. P., Mokler, F., Moraru, D., Moreno, G., Morgado, N., Mori, T., Morriss, S. R., Mossavi, K., Mours, B., Mow-Lowry, C. M., Mueller, C. L., Mueller, G., Mukherjee, S., Mullavey, A., Munch, J., Murphy, D., Murray, P. G., Mytidis, A., Nagy, M. F., Nardecchia, I., Nash, T., Naticchioni, L., Nayak, R., Necula, V., Neri, I., Newton, G., Nguyen, T., Nishida, E., Nishizawa, A., Nitz, A., Nocera, F., Nolting, D., Normandin, M. E., Nuttall, L. K., Ochsner, E., O'Dell, J., Oelker, E., Ogin, G. H., Oh, J. J., Oh, S. H., Ohme, F., Oppermann, P., O'Reilly, B., Larcher, W. Ortega., O'Shaughnessy, R., Osthelder, C., Ott, C. D., Ottaway, D. J., Ottens, R. S., Ou, J., Overmier, H., Owen, B. J., Padilla, C., Pai, A., Palomba, C., Pan, Y., Pankow, C., Paoletti, F., Paoletti, R., Papa, M. A., Paris, H., Pasqualetti, A., Passaquieti, R., Passuello, D., Pedraza, M., Peiris, P., Penn, S., Perreca, A., Phelps, M., Pichot, M., Pickenpack, M., Piergiovanni, F., Pierro, V., Pinard, L., Pindor, B., Pinto, I. M., Pitkin, M., Poeld, J., Poggiani, R., Poole, V., Poux, C., Predoi, V., Prestegard, T., Price, L. R., Prijatelj, M., Principe, M., Privitera, S., Prodi, G. A., Prokhorov, L., Puncken, O., Punturo, M., Puppo, P., Quetschke, V., Quintero, E., Quitzow-James, R., Raab, F. J., Rabeling, D. S., Racz, I., Radkins, H., Raffai, P., Raja, S., Rajalakshmi, G., Rakhmanov, M., Ramet, C., Rapagnani, P., Raymond, V., Re, V., Reed, C. M., Reed, T., Regimbau, T., Reid, S., Reitze, D. H., Ricci, F., Riesen, R., Riles, K., Robertson, N. A., Robinet, F., Rocchi, A., Roddy, S., Rodriguez, C., Rodruck, M., Roever, C., Rolland, L., Rollins, J. G., Romano, R., Romanov, G., Romie, J. H., Rosinska, D., Rowan, S., Rudiger, A., Ruggi, P., Ryan, K., Salemi, F., Sammut, L., Sandberg, V., Sanders, J., Sannibale, V., Santiago-Prieto, I., Saracco, E., Sassolas, B., Sathyaprakash, B. S., Saulson, P. R., Savage, R., Schilling, R., Schnabel, R., Schofield, R. M. S., Schreiber, E., Schuette, D., Schulz, B., Schutz, B. F., Schwinberg, P., Scott, J., Scott, S. M., Seifert, F., Sellers, D., Sengupta, A. S., Sentenac, D., Sergeev, A., Shaddock, D., Shah, S., Shahriar, M. S., Shaltev, M., Shapiro, B., Shawhan, P., Shoemaker, D. H., Sidery, T. L., Siellez, K., Siemens, X., Sigg, D., Simakov, D., Singer, A., Singer, L., Sintes, A. M., Skelton, G. R., Slagmolen, B. J. J., Slutsky, J., Smith, J. R., Smith, M. R., Smith, R. J. E., Smith-Lefebvre, N. D., Soden, K., Son, E. J., Sorazu, B., Souradeep, T., Sperandio, L., Staley, A., Steinert, E., Steinlechner, J., Steinlechner, S., Steplewski, S., Stevens, D., Stochino, A., Stone, R., Strain, K. A., Strigin, S., Stroeer, A. S., Sturani, R., Stuver, A. L., Summerscales, T. Z., Susmithan, S., Sutton, P. J., Swinkels, B., Szeifert, G., Tacca, M., Talukder, D., Tang, L., Tanner, D. B., Tarabrin, S. P., Taylor, R., Braack, A. P. M. ter., Thirugnanasambandam, M. P., Thomas, M., Thomas, P., Thorne, K. A., Thorne, K. S., Thrane, E., Tiwari, V., Tokmakov, K. V., Tomlinson, C., Toncelli, A., Tonelli, M., Torre, O., Torres, C. V., Torrie, C. I., Travasso, F., Traylor, G., Tse, M., Ugolini, D., Unnikrishnan, C. S., Vahlbruch, H., Vajente, G., Vallisneri, M., Brand, J. F. J. van. den., Broeck, C. Van. Den., Putten, S. van. der., Sluys, M. V. van. der., Heijningen, J. van., Veggel, A. A. van., Vass, S., Vasuth, M., Vaulin, R., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venkateswara, K., Verkindt, D., Verma, S., Vetrano, F., Vicere, A., Vincent-Finley, R., Vinet, J. -Y., Vitale, S., Vlcek, B., Vo, T., Vocca, H., Vorvick, C., Vousden, W. D., Vrinceanu, D., Vyachanin, S. P., Wade, A., Wade, L., Wade, M., Waldman, S. J., Walker, M., Wallace, L., Wan, Y., Wang, J., Wang, M., Wang, X., Wanner, A., Ward, R. L., Was, M., Weaver, B., Wei, L. -W., Weinert, M., Weinstein, A. J., Weiss, R., Welborn, T., Wen, L., Wessels, P., West, M., Westphal, T., Wette, K., Whelan, J. T., Whitcomb, S. E., White, D. J., Whiting, B. F., Wibowo, S., Wiesner, K., Wilkinson, C., Williams, L., Williams, R., Williams, T., Willis, J. L., Willke, B., Wimmer, M., Winkelmann, L., Winkler, W., Wipf, C. C., Wittel, H., Woan, G., Worden, J., Yablon, J., Yakushin, I., Yamamoto, H., Yancey, C. C., Yang, H., Yeaton-Massey, D., Yoshida, S., Yum, H., Yvert, M., Zadrozny, A., Zanolin, M., Zendri, J. P., Zhang, F., Zhang, L., Zhao, C., Zhu, H., Zhu, X. J., Zotov, N., and Zucker, M. E.
- Subjects
General Relativity and Quantum Cosmology ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
In 2009-2010, the Laser Interferometer Gravitational-wave Observa- tory (LIGO) operated together with international partners Virgo and GEO600 as a network to search for gravitational waves of astrophysical origin. The sensitiv- ity of these detectors was limited by a combination of noise sources inherent to the instrumental design and its environment, often localized in time or frequency, that couple into the gravitational-wave readout. Here we review the performance of the LIGO instruments during this epoch, the work done to characterize the de- tectors and their data, and the effect that transient and continuous noise artefacts have on the sensitivity of LIGO to a variety of astrophysical sources., Comment: 31 pages, 13 figures
- Published
- 2014
- Full Text
- View/download PDF
39. Searching for stochastic gravitational waves using data from the two co-located LIGO Hanford detectors
- Author
-
The LIGO Scientific Collaboration, the Virgo Collaboration, Aasi, J., Abadie, J., Abbott, B. P., Abbott, R., Abbott, T., Abernathy, M. R., Accadia, T., Acernese, F., Adams, C., Adams, T., Addesso, P., Adhikari, R. X., Affeldt, C., Agathos, M., Aggarwal, N., Aguiar, O. D., Ajith, P., Allen, B., Allocca, A., Ceron, E. Amado., Amariutei, D., Anderson, R. A., Anderson, S. B., Anderson, W. G., Arai, K., Araya, M. C., Arceneaux, C., Areeda, J., Ast, S., Aston, S. M., Astone, P., Aufmuth, P., Aulbert, C., Austin, L., Aylott, B. E., Babak, S., Baker, P. T., Ballardin, G., Ballmer, S. W., Barayoga, J. C., Barker, D., Barnum, S. H., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barton, M. A., Bartos, I., Bassiri, R., Basti, A., Batch, J., Bauchrowitz, J., Bauer, Th. S., Bebronne, M., Behnke, B., Bejger, M., Beker, M. G., Bell, A. S., Bell, C., Belopolski, I., Bergmann, G., Berliner, J. M., Bersanetti, D., Bertolini, A., Bessis, D., Betzwieser, J., Beyersdorf, P. T., Bhadbhade, T., Bilenko, I. A., Billingsley, G., Birch, J., Biscans, S., Bitossi, M., Bizouard, M. A., Black, E., Blackburn, J. K., Blackburn, L., Blair, D., Blom, M., Bock, O., Bodiya, T. P., Boer, M., Bogan, C., Bond, C., Bondu, F., Bonelli, L., Bonnand, R., Bork, R., Born, M., Boschi, V., Bose, S., Bosi, L., Bowers, J., Bradaschia, C., Brady, P. R., Braginsky, V. B., Branchesi, M., Brannen, C. A., Brau, J. E., Breyer, J., Briant, T., Bridges, D. O., Brillet, A., Brinkmann, M., Brisson, V., Britzger, M., Brooks, A. F., Brown, D. A., Brown, D. D., Brückner, F., Bulik, T., Bulten, H. J., Buonanno, A., Buskulic, D., Buy, C., Byer, R. L., Cadonati, L., Cagnoli, G., Bustillo, J. Calderó., Calloni, E., Camp, J. B., Campsie, P., Cannon, K. C., Canuel, B., Cao, J., Capano, C. D., Carbognani, F., Carbone, L., Caride, S., Castiglia, A., Caudill, S., Cavaglià, M., Cavalier, F., Cavalieri, R., Cella, G., Cepeda, C., Cesarini, E., Chakraborty, R., Chalermsongsak, T., Chao, S., Charlton, P., Chassande-Mottin, E., Chen, X., Chen, Y., Chincarini, A., Chiummo, A., Cho, H. S., Chow, J., Christensen, N., Chu, Q., Chua, S. S. Y., Chung, S., Ciani, G., Clara, F., Clark, D. E., Clark, J. A., Cleva, F., Coccia, E., Cohadon, P. -F., Colla, A., Colombini, M., Constanci. Jr., M., Conte, A., Cook, D., Corbitt, T. R., Cordier, M., Cornish, N., Corsi, A., Costa, C. A., Coughlin, M. W., Coulon, J. -P., Countryman, S., Couvares, P., Coward, D. M., Cowart, M., Coyne, D. C., Craig, K., Creighton, J. D. E., Creighton, T. D., Crowder, S. G., Cumming, A., Cunningham, L., Cuoco, E., Dahl, K., Canton, T. Da., Damjanic, M., Danilishin, S. L., D'Antonio, S., Danzmann, K., Dattilo, V., Daudert, B., Daveloza, H., Davier, M., Davies, G. S., Daw, E. J., Day, R., Dayanga, T., Debreczeni, G., Degallaix, J., Deleeuw, E., Deléglise, S., Pozzo, W. De., Denker, T., Dent, T., Dereli, H., Dergachev, V., DeRosa, R. T., Rosa, R. D., DeSalvo, R., Dhurandhar, S., Díaz, M., Dietz, A., Fiore, L. D., Lieto, A. D., Palma, I. D., Virgilio, A. D., Dmitry, K., Donovan, F., Dooley, K. L., Doravari, S., Drago, M., Drever, R. W. P., Driggers, J. C., Du, Z., Dumas, J. -C., Dwyer, S., Eberle, T., Edwards, M., Effler, A., Ehrens, P., Eichholz, J., Eikenberry, S. S., Endrőczi, G., Essick, R., Etzel, T., Evans, K., Evans, M., Evans, T., Factourovich, M., Fafone, V., Fairhurst, S., Fang, Q., Farr, B., Farr, W., Favata, M., Fazi, D., Fehrmann, H., Feldbaum, D., Ferrante, I., Ferrini, F., Fidecaro, F., Finn, L. S., Fiori, I., Fisher, R., Flaminio, R., Foley, E., Foley, S., Forsi, E., Fotopoulos, N., Fournier, J. -D., Franco, S., Frasca, S., Frasconi, F., Frede, M., Frei, M., Frei, Z., Freise, A., Frey, R., Fricke, T. T., Fritschel, P., Frolov, V. V., Fujimoto, M. -K., Fulda, P., Fyffe, M., Gair, J., Gammaitoni, L., Garcia, J., Garufi, F., Gehrels, N., Gemme, G., Genin, E., Gennai, A., Gergely, L., Ghosh, S., Giaime, J. A., Giampanis, S., Giardina, K. D., Giazotto, A., Gil-Casanova, S., Gill, C., Gleason, J., Goetz, E., Goetz, R., Gondan, L., González, G., Gordon, N., Gorodetsky, M. L., Gossan, S., Goßler, S., Gouaty, R., Graef, C., Graff, P. B., Granata, M., Grant, A., Gras, S., Gray, C., Greenhalgh, R. J. S., Gretarsson, A. M., Griffo, C., Grote, H., Grover, K., Grunewald, S., Guidi, G. M., Guido, C., Gushwa, K. E., Gustafson, E. K., Gustafson, R., Hall, B., Hall, E., Hammer, D., Hammond, G., Hanke, M., Hanks, J., Hanna, C., Hanson, J., Harms, J., Harry, G. M., Harry, I. W., Harstad, E. D., Hartman, M. T., Haughian, K., Hayama, K., Heefner, J., Heidmann, A., Heintze, M., Heitmann, H., Hello, P., Hemming, G., Hendry, M., Heng, I. S., Heptonstall, A. W., Heurs, M., Hild, S., Hoak, D., Hodge, K. A., Holt, K., Hong, T., Hooper, S., Horrom, T., Hosken, D. J., Hough, J., Howell, E. J., Hu, Y., Hua, Z., Huang, V., Huerta, E. A., Hughey, B., Husa, S., Huttner, S. H., Huynh, M., Huynh-Dinh, T., Iafrate, J., Ingram, D. R., Inta, R., Isogai, T., Ivanov, A., Iyer, B. R., Izumi, K., Jacobson, M., James, E., Jang, H., Jang, Y. J., Jaranowski, P., Jiménez-Forteza, F., Johnson, W. W., Jones, D. I., Jones, D., Jones, R., Jonker, R. J. G., Ju, L., K, Hari., Kalmus, P., Kalogera, V., Kandhasamy, S., Kang, G., Kanner, J. B., Kasprzack, M., Kasturi, R., Katsavounidis, E., Katzman, W., Kaufer, H., Kaufman, K., Kawabe, K., Kawamura, S., Kawazoe, F., Kéfélian, F., Keitel, D., Kelley, D. B., Kells, W., Keppel, D. G., Khalaidovski, A., Khalili, F. Y., Khazanov, E. A., Kim, B. K., Kim, C., Kim, K., Kim, N., Kim, W., Kim, Y. -M., King, E., King, P. J., Kinzel, D. L., Kissel, J. S., Klimenko, S., Kline, J., Koehlenbeck, S., Kokeyama, K., Kondrashov, V., Koranda, S., Korth, W. Z., Kowalska, I., Kozak, D., Kremin, A., Kringel, V., Krishnan, B., Królak, A., Kucharczyk, C., Kudla, S., Kuehn, G., Kumar, A., Kumar, D. Nand., Kumar, P., Kumar, R., Kurdyumov, R., Kwee, P., Landry, M., Lantz, B., Larson, S., Lasky, P. D., Lawrie, C., Lazzarini, A., Leaci, P., Lebigot, E. O., Lee, C. -H., Lee, H. K., Lee, H. M., Lee, J. J., Lee, J., Leonardi, M., Leong, J. R., Roux, A. L., Leroy, N., Letendre, N., Levine, B., Lewis, J. B., Lhuillier, V., Li, T. G. F., Lin, A. C., Littenberg, T. B., Litvine, V., Liu, F., Liu, H., Liu, Y., Liu, Z., Lloyd, D., Lockerbie, N. A., Lockett, V., Lodhia, D., Loew, K., Logue, J., Lombardi, A. L., Lorenzini, M., Loriette, V., Lormand, M., Losurdo, G., Lough, J., Luan, J., Lubinski, M. J., Lück, H., Lundgren, A. P., Macarthur, J., Macdonald, E., Machenschalk, B., MacInnis, M., Macleod, D. M., Magana-Sandoval, F., Mageswaran, M., Mailand, K., Majorana, E., Maksimovic, I., Malvezzi, V., Man, N., Manca, G. M., Mandel, I., Mandic, V., Mangano, V., Mantovani, M., Marchesoni, F., Marion, F., Márka, S., Márka, Z., Markosyan, A., Maros, E., Marque, J., Martelli, F., Martellini, L., Martin, I. W., Martin, R. M., Martini, G., Martynov, D., Marx, J. N., Mason, K., Masserot, A., Massinger, T. J., Matichard, F., Matone, L., Matzner, R. A., Mavalvala, N., May, G., Mazumder, N., Mazzolo, G., McCarthy, R., McClelland, D. E., McGuire, S. C., McIntyre, G., McIver, J., Meacher, D., Meadors, G. D., Mehmet, M., Meidam, J., Meier, T., Melatos, A., Mendell, G., Mercer, R. A., Meshkov, S., Messenger, C., Meyer, M. S., Miao, H., Michel, C., Mikhailov, E., Milano, L., Miller, J., Minenkov, Y., Mingarelli, C. M. F., Mitra, S., Mitrofanov, V. P., Mitselmakher, G., Mittleman, R., Moe, B., Mohan, M., Mohapatra, S. R. P., Mokler, F., Moraru, D., Moreno, G., Morgado, N., Mori, T., Morriss, S. R., Mossavi, K., Mours, B., Mow-Lowry, C. M., Mueller, C. L., Mueller, G., Mukherjee, S., Mullavey, A., Munch, J., Murphy, D., Murray, P. G., Mytidis, A., Nagy, M. F., Nardecchia, I., Nash, T., Naticchioni, L., Nayak, R., Necula, V., Neri, I., Neri, M., Newton, G., Nguyen, T., Nishida, E., Nishizawa, A., Nitz, A., Nocera, F., Nolting, D., Normandin, M. E., Nuttall, L. K., Ochsner, E., O'Dell, J., Oelker, E., Ogin, G. H., Oh, J. J., Oh, S. H., Ohme, F., Oppermann, P., O'Reilly, B., Larcher, W. Orteg., O'Shaughnessy, R., Osthelder, C., Ottaway, D. J., Ottens, R. S., Ou, J., Overmier, H., Owen, B. J., Padilla, C., Pai, A., Palomba, C., Pan, Y., Pankow, C., Paoletti, F., Paoletti, R., Paris, H., Pasqualetti, A., Passaquieti, R., Passuello, D., Pedraza, M., Peiris, P., Penn, S., Perreca, A., Phelps, M., Pichot, M., Pickenpack, M., Piergiovanni, F., Pierro, V., Pinard, L., Pindor, B., Pinto, I. M., Pitkin, M., Poeld, J., Poggiani, R., Poole, V., Postiglione, F., Poux, C., Predoi, V., Prestegard, T., Price, L. R., Prijatelj, M., Privitera, S., Prodi, G. A., Prokhorov, L., Puncken, O., Punturo, M., Puppo, P., Quetschke, V., Quintero, E., Quitzow-James, R., Raab, F. J., Rabeling, D. S., Rácz, I., Radkins, H., Raffai, P., Raja, S., Rajalakshmi, G., Rakhmanov, M., Ramet, C., Rapagnani, P., Raymond, V., Re, V., Reed, C. M., Reed, T., Regimbau, T., Reid, S., Reitze, D. H., Ricci, F., Riesen, R., Riles, K., Robertson, N. A., Robinet, F., Rocchi, A., Roddy, S., Rodriguez, C., Rodruck, M., Roever, C., Rolland, L., Rollins, J. G., Romano, J. D., Romano, R., Romanov, G., Romie, J. H., Rosińska, D., Rowan, S., Rüdiger, A., Ruggi, P., Ryan, K., Salemi, F., Sammut, L., Sandberg, V., Sanders, J., Sannibale, V., Santiago-Prieto, I., Saracco, E., Sassolas, B., Sathyaprakash, B. S., Saulson, P. R., Savage, R., Schilling, R., Schnabel, R., Schofield, R. M. S., Schreiber, E., Schuette, D., Schulz, B., Schutz, B. F., Schwinberg, P., Scott, J., Scott, S. M., Seifert, F., Sellers, D., Sengupta, A. S., Sentenac, D., Sequino, V., Sergeev, A., Shaddock, D., Shah, S., Shahriar, M. S., Shaltev, M., Shapiro, B., Shawhan, P., Shoemaker, D. H., Sidery, T. L., Siellez, K., Siemens, X., Sigg, D., Simakov, D., Singer, A., Singer, L., Sintes, A. M., Skelton, G. R., Slagmolen, B. J. J., Slutsky, J., Smith, J. R., Smith, M. R., Smith, R. J. E., Smith-Lefebvre, N. D., Soden, K., Son, E. J., Sorazu, B., Souradeep, T., Sperandio, L., Staley, A., Steinert, E., Steinlechner, J., Steinlechner, S., Steplewski, S., Stevens, D., Stochino, A., Stone, R., Strain, K. A., Straniero, N., Strigin, S., Stroeer, A. S., Sturani, R., Stuver, A. L., Summerscales, T. Z., Susmithan, S., Sutton, P. J., Swinkels, B., Szeifert, G., Tacca, M., Talukder, D., Tang, L., Tanner, D. B., Tarabrin, S. P., Taylor, R., Braack, A. P. M. te., Thirugnanasambandam, M. P., Thomas, M., Thomas, P., Thorne, K. A., Thorne, K. S., Thrane, E., Tiwari, V., Tokmakov, K. V., Tomlinson, C., Toncelli, A., Tonelli, M., Torre, O., Torres, C. V., Torrie, C. I., Travasso, F., Traylor, G., Tse, M., Ugolini, D., Unnikrishnan, C. S., Vahlbruch, H., Vajente, G., Vallisneri, M., Brand, J. F. J. va. de., Broeck, C. Va. De., Putten, S. va. de., Sluys, M. V. va. de., Heijningen, J. va., Veggel, A. A. va., Vass, S., Vasúth, M., Vaulin, R., Vecchio, A., Vedovato, G., Veitch, P. J., Veitch, J., Venkateswara, K., Verkindt, D., Verma, S., Vetrano, F., Viceré, A., Vincent-Finley, R., Vinet, J. -Y., Vitale, S., Vlcek, B., Vo, T., Vocca, H., Vorvick, C., Vousden, W. D., Vrinceanu, D., Vyachanin, S. P., Wade, A., Wade, L., Wade, M., Waldman, S. J., Walker, M., Wallace, L., Wan, Y., Wang, J., Wang, M., Wang, X., Wanner, A., Ward, R. L., Was, M., Weaver, B., Wei, L. -W., Weinert, M., Weinstein, A. J., Weiss, R., Welborn, T., Wen, L., Wessels, P., West, M., Westphal, T., Wette, K., Whelan, J. T., White, D. J., Whiting, B. F., Wibowo, S., Wiesner, K., Wilkinson, C., Williams, L., Williams, R., Williams, T., Willis, J. L., Willke, B., Wimmer, M., Winkelmann, L., Winkler, W., Wipf, C. C., Wittel, H., Woan, G., Worden, J., Yablon, J., Yakushin, I., Yamamoto, H., Yancey, C. C., Yang, H., Yeaton-Massey, D., Yoshida, S., Yum, H., Yvert, M., Zadrożny, A., Zanolin, M., Zendri, J. -P., Zhang, F., Zhang, L., Zhao, C., Zhu, H., Zhu, X. J., Zotov, N., Zucker, M. E., and Zweizig, J.
- Subjects
General Relativity and Quantum Cosmology ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
Searches for a stochastic gravitational-wave background (SGWB) using terrestrial detectors typically involve cross-correlating data from pairs of detectors. The sensitivity of such cross-correlation analyses depends, among other things, on the separation between the two detectors: the smaller the separation, the better the sensitivity. Hence, a co-located detector pair is more sensitive to a gravitational-wave background than a non-co-located detector pair. However, co-located detectors are also expected to suffer from correlated noise from instrumental and environmental effects that could contaminate the measurement of the background. Hence, methods to identify and mitigate the effects of correlated noise are necessary to achieve the potential increase in sensitivity of co-located detectors. Here we report on the first SGWB analysis using the two LIGO Hanford detectors and address the complications arising from correlated environmental noise. We apply correlated noise identification and mitigation techniques to data taken by the two LIGO Hanford detectors, H1 and H2, during LIGO's fifth science run. At low frequencies, 40 - 460 Hz, we are unable to sufficiently mitigate the correlated noise to a level where we may confidently measure or bound the stochastic gravitational-wave signal. However, at high frequencies, 460-1000 Hz, these techniques are sufficient to set a $95%$ confidence level (C.L.) upper limit on the gravitational-wave energy density of \Omega(f)<7.7 x 10^{-4} (f/ 900 Hz)^3, which improves on the previous upper limit by a factor of $\sim 180$. In doing so, we demonstrate techniques that will be useful for future searches using advanced detectors, where correlated noise (e.g., from global magnetic fields) may affect even widely separated detectors., Comment: 21 pages, 10 figures, 5 tables
- Published
- 2014
- Full Text
- View/download PDF
40. Warm Molecular Gas in Luminous Infrared Galaxies
- Author
-
Lu, N., Zhao, Y., Xu, C. K., Gao, Y., Armus, L., Mazzarella, J. M., Isaak, K. G., Petric, A. O., Charmandaris, V., Diaz-Santos, T., Evans, A. S., Howell, J., Appleton, P., Inami, H., Iwasawa, K., Leech, J., Lord, S., Sanders, D. B., Schulz, B., Surace, J., and van der Werf, P. P.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We present our initial results on the CO rotational spectral line energy distribution (SLED) of the $J$ to $J$$-$1 transitions from $J=4$ up to $13$ from Herschel SPIRE spectroscopic observations of 65 luminous infrared galaxies (LIRGs) in the Great Observatories All-Sky LIRG Survey (GOALS). The observed SLEDs change on average from one peaking at $J \le 4$ to a broad distribution peaking around $J \sim\,$6$-$7 as the IRAS 60-to-100 um color, $C(60/100)$, increases. However, the ratios of a CO line luminosity to the total infrared luminosity, $L_{\rm IR}$, show the smallest variation for $J$ around 6 or 7. This suggests that, for most LIRGs, ongoing star formation (SF) is also responsible for a warm gas component that emits CO lines primarily in the mid-$J$ regime ($5 \lesssim J \lesssim 10$). As a result, the logarithmic ratios of the CO line luminosity summed over CO (5$-$4), (6$-$5), (7$-$6), (8$-$7) and (10$-$9) transitions to $L_{\rm IR}$, $\log R_{\rm midCO}$, remain largely independent of $C(60/100)$, and show a mean value of $-4.13$ ($\equiv \log R^{\rm SF}_{\rm midCO}$) and a sample standard deviation of only 0.10 for the SF-dominated galaxies. Including additional galaxies from the literature, we show, albeit with small number of cases, the possibility that galaxies, which bear powerful interstellar shocks unrelated to the current SF, and galaxies, in which an energetic active galactic nucleus contributes significantly to the bolometric luminosity, have their $R_{\rm midCO}$ higher and lower than $R^{\rm SF}_{\rm midCO}$, respectively., Comment: Accepted for publication in the ApJ Letters; 5 pages, 4 figures
- Published
- 2014
- Full Text
- View/download PDF
41. ALMA Observations of Warm Molecular Gas and Cold Dust in NGC 34
- Author
-
Xu, C. K., Cao, C., Lu, N., Gao, Y., Van Der Werf, P., Evans, A. S., Mazzarella, J. M., Chu, J., Haan, S., Diaz-Santos, T., Meijerink, R., Zhao, Y. -H., Appleton, P., Armus, L., Charmandaris, V., Lord, S., Murphy, E. J., Sanders, D. B., Schulz, B., and Stierwalt, S.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We present ALMA Cycle-0 observations of the CO (6-5) line emission (rest-frame frequency = 691.473 GHz) and of the 435$\mu m$ dust continuum emission in the nuclear region of NGC 34, a local luminous infrared galaxy (LIRG) at a distance of 84 Mpc (1" = 407 pc) which contains a Seyfert 2 active galactic nucleus (AGN) and a nuclear starburst. The CO emission is well resolved by the ALMA beam ($\rm 0."26\times 0."23$), with an integrated flux of $\rm f_{CO~(6-5)} = 1004\; (\pm 151) \; Jy\; km\; s^{-1}$. Both the morphology and kinematics of the CO (6-5) emission are rather regular, consistent with a compact rotating disk with a size of 200 pc. A significant emission feature is detected on the red-shifted wing of the line profile at the frequency of the $\rm H^{13}CN\; (8-7)$ line, with an integrated flux of $\rm 17.7 \pm 2.1 (random) \pm 2.7 (sysmatic)\; Jy\;km\; s^{-1}$. However, it cannot be ruled out that the feature is due to an outflow of warm dense gas with a mean velocity of $\rm 400\; km\; s^{-1}$. The continuum is resolved into an elongated configuration, and the observed flux corresponds to a dust mass of $\rm M_{dust} = 10^{6.97\pm 0.13}\; M_{sun}$. An unresolved central core ($\rm radius \simeq 50\; pc$) contributes $28\%$ of the continuum flux and $19\%$ of the CO (6-5) flux, consistent with insignificant contributions of the AGN to both emissions. Both the CO (6-5) and continuum spatial distributions suggest a very high gas column density ($\rm >= 10^4\; M_{sun}\; pc^{-2}$) in the nuclear region at $\rm radius <= 100\; pc$., Comment: 10 pages, 13 figures, accepted for publication in Astrophysical Journal
- Published
- 2014
- Full Text
- View/download PDF
42. Calibration of the Herschel SPIRE Fourier Transform Spectrometer
- Author
-
Swinyard, B. M., Polehampton, E. T., Hopwood, R., Valtchanov, I., Lu, N., Fulton, T., Benielli, D., Imhof, P., Marchili, N., Baluteau, J. -P., Bendo, G. J., Ferlet, M., Griffin, M. J., Lim, T. L., Makiwa, G., Naylor, D. A., Orton, G. S., Papageorgiou, A., Pearson, C. P., Schulz, B., Sidher, S. D., Spencer, L. D., van der Wiel, M. H. D., and Wu, R.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The Herschel SPIRE instrument consists of an imaging photometric camera and an imaging Fourier Transform Spectrometer (FTS), both operating over a frequency range of 450-1550 GHz. In this paper, we briefly review the FTS design, operation, and data reduction, and describe in detail the approach taken to relative calibration (removal of instrument signatures) and absolute calibration against standard astronomical sources. The calibration scheme assumes a spatially extended source and uses the Herschel telescope as primary calibrator. Conversion from extended to point-source calibration is carried out using observations of the planet Uranus. The model of the telescope emission is shown to be accurate to within 6% and repeatable to better than 0.06% and, by comparison with models of Mars and Neptune, the Uranus model is shown to be accurate to within 3%. Multiple observations of a number of point-like sources show that the repeatability of the calibration is better than 1%, if the effects of the satellite absolute pointing error (APE) are corrected. The satellite APE leads to a decrement in the derived flux, which can be up to ~10% (1 sigma) at the high-frequency end of the SPIRE range in the first part of the mission, and ~4% after Herschel operational day 1011. The lower frequency range of the SPIRE band is unaffected by this pointing error due to the larger beam size. Overall, for well-pointed, point-like sources, the absolute flux calibration is better than 6%, and for extended sources where mapping is required it is better than 7%., Comment: 20 pages, 18 figures, accepted for publication in MNRAS
- Published
- 2014
- Full Text
- View/download PDF
43. Constraining the Lyman Alpha Escape Fraction with Far-Infrared Observations of Lyman Alpha Emitters
- Author
-
Wardlow, Julie L., Malhotra, S., Zheng, Z., Finkelstein, S., Bock, J., Bridge, C., Calanog, J., Ciardullo, R., Conley, A., Cooray, A., Farrah, D., Gawiser, E., Gronwall, C., Heinis, S., Ibar, E., Ivison, R. J., Marsden, G., Oliver, S. J., Rhoads, J., Riechers, D., Schulz, B., Smith, A. J., Viero, M., Wang, L., and Zemcov, M.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We study the far-infrared properties of 498 Lyman Alpha Emitters (LAEs) at z=2.8, 3.1 and 4.5 in the Extended Chandra Deep Field-South, using 250, 350 and 500 micron data from the Herschel Multi-tiered Extragalactic Survey (HerMES) and 870 micron data from the LABOCA ECDFS Submillimeter Survey (LESS). None of the 126, 280 or 92 LAEs at z=2.8, 3.1 and 4.5, respectively, are individually detected in the far-infrared data. We use stacking to probe the average emission to deeper flux limits, reaching $1\sigma$ depths of ~0.1 to 0.4 mJy. The LAEs are also undetected at $\ge3\sigma$ in the stacks, although a $2.5\sigma$ signal is observed at 870 micron for the z=2.8 sources. We consider a wide range of far-infrared spectral energy distributions (SEDs), including a M82 and an Sd galaxy template, to determine upper limits on the far-infrared luminosities and far-infrared-derived star-formation rates of the LAEs. These star-formation rates are then combined with those inferred from the Ly$\alpha$ and UV emission to determine lower limits on the LAEs Ly$\alpha$ escape fraction ($f_{\rm esc}($Ly$\alpha$)). For the Sd SED template, the inferred LAEs $f_{\rm esc}($Ly$\alpha$) are $\gtrsim30%$ ($1\sigma$) at z=2.8, 3.1 and 4.5, which are all significantly higher than the global $f_{\rm esc}($Ly$\alpha$) at these redshifts. Thus, if the LAEs $f_{\rm esc}($Ly$\alpha$) follows the global evolution then they have warmer far-infrared SEDs than the Sd galaxy template. The average and M82 SEDs produce lower limits on the LAE $f_{\rm esc}($Ly$\alpha$) of ~10 to 20% ($1\sigma$), all of which are slightly higher than the global evolution of $f_{\rm esc}($Ly$\alpha$) but consistent with it at the 2 to 3$\sigma$ level., Comment: 9 pages, 4 figures. Accepted for publication in ApJ
- Published
- 2013
- Full Text
- View/download PDF
44. HerMES: Point source catalogues from Herschel-SPIRE observations II
- Author
-
Wang, L., Viero, M., Clarke, C., Bock, J., Buat, V., Conley, A., Farrah, D., Heinis, S., Magdis, G., Marchetti, L., Marsden, G., Norberg, P., Oliver, S. J., Roehlly, Y., Roseboom, I. G., Schulz, B., Smith, A. J., Vaccari, M., and Zemcov, M.
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The Herschel Multi-tiered Extragalactic Survey (HerMES) is the largest Guaranteed Time Key Programme on the Herschel Space Observatory. With a wedding cake survey strategy, it consists of nested fields with varying depth and area totalling ~380 deg^2. In this paper, we present deep point source catalogues extracted from Herschel-SPIRE observations of all HerMES fields, except for the later addition of the 270 deg^2 HeLMS field. These catalogues constitute the second Data Release (DR2) made in October 2013. A subset of these catalogues, which consists of bright sources extracted from Herschel-SPIRE observations completed by May 1, 2010 (covering ~ 74 deg^2) were released earlier in the first extensive Data Release (DR1) in March 2012. Two different methods are used to generate the point source catalogues, the SUSSEXtractor (SXT) point source extractor used in two earlier data releases (EDR and EDR2) and a new source detection and photometry method. The latter combines an iterative source detection algorithm, StarFinder (SF), and a De-blended SPIRE Photometry (DESPHOT) algorithm. We use end-to-end Herschel-SPIRE simulations with realistic number counts and clustering properties to characterise basic properties of the point source catalogues, such as the completeness, reliability, photometric and positional accuracy. Over 500, 000 catalogue entries in HerMES fields (except HeLMS) are released to the public through the HeDAM website (http://hedam.oamp.fr/herMES)., Comment: 14 pages, 7 figures, submitted to MNRAS. Comments welcome
- Published
- 2013
- Full Text
- View/download PDF
45. HerMES: Clusters of Dusty Galaxies Uncovered by Herschel and Planck
- Author
-
Clements, D. L., Braglia, F. G., Hyde, A., Perez-Fournon, I., Bock, J., Cava, A., Chapman, S., Conley, A., Cooray, A., Farrah, D., Solares, E. A. Gonzalez, Marchetti, L., Marsden, G., Oliver, S. J., Roseboom, I. G., Schulz, B., Smith, A. J., Vaccari, M., Vieira, J., Viero, M., Wang, L., Wardlow, J., Zemcov, M., and de Zotti, G.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The potential for Planck to detect clusters of dusty, star-forming galaxies at z greater than 1 is tested by examining the Herschel-SPIRE images of Planck Early Release Compact Source Catalog (ERCSC) sources lying in fields observed by the HerMES survey. Of the 16 Planck sources that lie in the roughly 90 sq. deg. examined, we find that twelve are associated with single bright Herschel sources. The remaining four are associated with overdensities of Herschel sources, making them candidate clusters of dusty, starforming galaxies. We use complementary optical and NIR data for these clumps to test this idea, and find evidence for the presence of galaxy clusters in all four cases. We use photometric redshifts and red sequence galaxies to estimate the redshifts of these clusters, finding that they range from 0.8 to 2.3. These redshifts imply that the Herschel sources in these clusters, which contribute to the detected Planck flux, are forming stars very rapidly, with typical total cluster star formation rates greater than 1000Msun per yr. The high redshift clusters discovered in these observations are used to constrain the epoch of cluster galaxy formation, finding that the galaxies in our clusters are 1 to 1.5 Gy old at z about 1 to 2. Prospects for the discovery of further clusters of dusty galaxies are discussed, using not only all sky Planck surveys, but also deeper, smaller area, Herschel surveys., Comment: MNRAS in press
- Published
- 2013
- Full Text
- View/download PDF
46. Application of a Hough search for continuous gravitational waves on data from the 5th LIGO science run
- Author
-
The LIGO Scientific Collaboration, The Virgo Collaboration, Aasi, J., Abadie, J., Abbott, B. P., Abbott, R., Abbott, T., Abernathy, M. R., Accadia, T., Acernese, F., Adams, C., Adams, T., Adhikari, R. X., Affeldt, C., Agathos, M., Aggarwal, N., Aguiar, O. D., Ajith, P., Allen, B., Allocca, A., Ceron, E. Amador, Amariutei, D., Anderson, R. A., Anderson, S. B., Anderson, W. G., Arai, K., Araya, M. C., Arceneaux, C., Areeda, J., Ast, S., Aston, S. M., Astone, P., Aufmuth, P., Aulbert, C., Austin, L., Aylott, B. E., Babak, S., Baker, P. T., Ballardin, G., Ballmer, S. W., Barayoga, J. C., Barker, D., Barnum, S. H., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barton, M. A., Bartos, I., Bassiri, R., Basti, A., Batch, J., Bauchrowitz, J., Bauer, Th. S., Bebronne, M., Behnke, B., Bejger, M., Beker, M. G., Bell, A. S., Bell, C., Belopolski, I., Bergmann, G., Berliner, J. M., Bersanetti, D., Bertolini, A., Bessis, D., Betzwieser, J., Beyersdorf, P. T., Bhadbhade, T., Bilenko, I. A., Billingsley, G., Birch, J., Bitossi, M., Bizouard, M. A., Black, E., Blackburn, J. K., Blackburn, L., Blair, D., Blom, M., Bock, O., Bodiya, T. P., Boer, M., Bogan, C., Bond, C., Bondu, F., Bonelli, L., Bonnand, R., Bork, R., Born, M., Boschi, V., Bose, S., Bosi, L., Bowers, J., Bradaschia, C., Brady, P. R., Braginsky, V. B., Branchesi, M., Brannen, C. A., Brau, J. E., Breyer, J., Briant, T., Bridges, D. O., Brillet, A., Brinkmann, M., Brisson, V., Britzger, M., Brooks, A. F., Brown, D. A., Brown, D. D., Brückner, F., Bulik, T., Bulten, H. J., Buonanno, A., Buskulic, D., Buy, C., Byer, R. L., Cadonati, L., Cagnoli, G., Bustillo, J. Calderón, Calloni, E., Camp, J. B., Campsie, P., Cannon, K. C., Canuel, B., Cao, J., Capano, C. D., Carbognani, F., Carbone, L., Caride, S., Castiglia, A., Caudill, S., Cavaglia, M., Cavalier, F., Cavalieri, R., Cella, G., Cepeda, C., Cesarini, E., Chakraborty, R., Chalermsongsak, T., Chao, S., Charlton, P., Chassande-Mottin, E., Chen, X., Chen, Y., Chincarini, A., Chiummo, A., Cho, H. S., Chow, J., Christensen, N., Chu, Q., Chua, S. S. Y., Chung, S., Ciani, G., Clara, F., Clark, D. E., Clark, J. A., Cleva, F., Coccia, E., Cohadon, P. -F., Colla, A., Colombini, M., Constancio Jr., M., Conte, A., Conte, R., Cook, D., Corbitt, T. R., Cordier, M., Cornish, N., Corsi, A., Costa, C. A., Coughlin, M. W., Coulon, J. -P., Countryman, S., Couvares, P., Coward, D. M., Cowart, M., Coyne, D. C., Craig, K., Creighton, J. D. E., Creighton, T. D., Crowder, S. G., Cumming, A., Cunningham, L., Cuoco, E., Dahl, K., Canton, T. Dal, Damjanic, M., Danilishin, S. L., D'Antonio, S., Danzmann, K., Dattilo, V., Daudert, B., Daveloza, H., Davier, M., Davies, G. S., Daw, E. J., Day, R., Dayanga, T., Debreczeni, G., Degallaix, J., Deleeuw, E., Deléglise, S., Del Pozzo, W., Denker, T., Dent, T., Dereli, H., Dergachev, V., DeRosa, R. T., De Rosa, R., DeSalvo, R., Dhurandhar, S., Díaz, M., Dietz, A., Di Fiore, L., Di Lieto, A., Di Palma, I., Di Virgilio, A., Dmitry, K., Donovan, F., Dooley, K. L., Doravari, S., Drago, M., Drever, R. W. P., Driggers, J. C., Du, Z., Dumas, J. C., Dwyer, S., Eberle, T., Edwards, M., Effler, A., Ehrens, P., Eichholz, J., Eikenberry, S. S., Endroczi, G., Essick, R., Etzel, T., Evans, K., Evans, M., Evans, T., Factourovich, M., Fafone, V., Fairhurst, S., Fang, Q., Farinon, S., Farr, B., Farr, W., Favata, M., Fazi, D., Fehrmann, H., Feldbaum, D., Ferrante, I., Ferrini, F., Fidecaro, F., Finn, L. S., Fiori, I., Fisher, R., Flaminio, R., Foley, E., Foley, S., Forsi, E., Fotopoulos, N., Fournier, J. D., Franco, S., Frasca, S., Frasconi, F., Frede, M., Frei, M., Frei, Z., Freise, A., Frey, R., Fricke, T. T., Fritschel, P., Frolov, V. V., Fujimoto, M. -K., Fulda, P., Fyffe, M., Gair, J., Gammaitoni, L., Garcia, J., Garufi, F., Gehrels, N., Gemme, G., Genin, E., Gennai, A., Gergely, L., Ghosh, S., Giaime, J. A., Giampanis, S., Giardina, K. D., Giazotto, A., Gil-Casanova, S., Gill, C., Gleason, J., Goetz, E., Goetz, R., Gondan, L., González, G., Gordon, N., Gorodetsky, M. L., Gossan, S., Gossler, S., Gouaty, R., Graef, C., Graff, P. B., Granata, M., Grant, A., Gras, S., Gray, C., Greenhalgh, R. J. S., Gretarsson, A. M., Griffo, C., Groot, P., Grote, H., Grover, K., Grunewald, S., Guidi, G. M., Guido, C., Gushwa, K. E., Gustafson, E. K., Gustafson, R., Hall, B., Hall, E., Hammer, D., Hammond, G., Hanke, M., Hanks, J., Hanna, C., Hanson, J., Harms, J., Harry, G. M., Harry, I. W., Harstad, E. D., Hartman, M. T., Haughian, K., Hayama, K., Heefner, J., Heidmann, A., Heintze, M., Heitmann, H., Hello, P., Hemming, G., Hendry, M., Heng, I. S., Heptonstall, A. W., Heurs, M., Hild, S., Hoak, D., Hodge, K. A., Holt, K., Hong, T., Hooper, S., Horrom, T., Hosken, D. J., Hough, J., Howell, E. J., Hu, Y., Hua, Z., Huang, V., Huerta, E. A., Hughey, B., Husa, S., Huttner, S. H., Huynh, M., Huynh-Dinh, T., Iafrate, J., Ingram, D. R., Inta, R., Isogai, T., Ivanov, A., Iyer, B. R., Izumi, K., Jacobson, M., James, E., Jang, H., Jang, Y. J., Jaranowski, P., Jiménez-Forteza, F., Johnson, W. W., Jones, D., Jones, D. I., Jones, R., Jonker, R. J. G., Ju, L., K, Haris, Kalmus, P., Kalogera, V., Kandhasamy, S., Kang, G., Kanner, J. B., Kasprzack, M., Kasturi, R., Katsavounidis, E., Katzman, W., Kaufer, H., Kaufman, K., Kawabe, K., Kawamura, S., Kawazoe, F., Kéfélian, F., Keitel, D., Kelley, D. B., Kells, W., Keppel, D. G., Khalaidovski, A., Khalili, F. Y., Khazanov, E. A., Kim, B. K., Kim, C., Kim, K., Kim, N., Kim, W., Kim, Y. M., King, E. J., King, P. J., Kinzel, D. L., Kissel, J. S., Klimenko, S., Kline, J., Koehlenbeck, S., Kokeyama, K., Kondrashov, V., Koranda, S., Korth, W. Z., Kowalska, I., Kozak, D., Kremin, A., Kringel, V., Krishnan, B., Królak, A., Kucharczyk, C., Kudla, S., Kuehn, G., Kumar, A., Kumar, P., Kumar, R., Kurdyumov, R., Kwee, P., Landry, M., Lantz, B., Larson, S., Lasky, P. D., Lawrie, C., Leaci, P., Lebigot, E. O., Lee, C. H., Lee, H. K., Lee, H. M., Lee, J., Leonardi, M., Leong, J. R., Roux, A. Le, Leroy, N., Letendre, N., Levine, B., Lewis, J. B., Lhuillier, V., Li, T. G. F., Lin, A. C., Littenberg, T. B., Litvine, V., Liu, F., Liu, H., Liu, Y., Liu, Z., Lloyd, D., Lockerbie, N. A., Lockett, V., Lodhia, D., Loew, K., Logue, J., Lombardi, A. L., Lorenzini, M., Loriette, V., Lormand, M., Losurdo, G., Lough, J., Luan, J., Lubinski, M. J., Lück, H., Lundgren, A. P., Macarthur, J., Macdonald, E., Machenschalk, B., MacInnis, M., Macleod, D. M., Magana-Sandoval, F., Mageswaran, M., Mailand, K., Majorana, E., Maksimovic, I., Malvezzi, V., Man, N., Manca, G. M., Mandel, I., Mandic, V., Mangano, V., Mantovani, M., Marchesoni, F., Marion, F., Márka, S., Márka, Z., Markosyan, A., Maros, E., Marque, J., Martelli, F., Martin, I. W., Martin, R. M., Martinelli, L., Martynov, D., Marx, J. N., Mason, K., Masserot, A., Massinger, T. J., Matichard, F., Matone, L., Matzner, R. A., Mavalvala, N., May, G., Mazumder, N., Mazzolo, G., McCarthy, R., McClelland, D. E., McGuire, S. C., McIntyre, G., McIver, J., Meacher, D., Meadors, G. D., Mehmet, M., Meidam, J., Meier, T., Melatos, A., Mendell, G., Mercer, R. A., Meshkov, S., Messenger, C., Meyer, M. S., Miao, H., Michel, C., Mikhailov, E. E., Milano, L., Miller, J., Minenkov, Y., Mingarelli, C. M. F., Mitra, S., Mitrofanov, V. P., Mitselmakher, G., Mittleman, R., Moe, B., Mohan, M., Mohapatra, S. R. P., Mokler, F., Moraru, D., Moreno, G., Morgado, N., Mori, T., Morriss, S. R., Mossavi, K., Mours, B., Mow-Lowry, C. M., Mueller, C. L., Mueller, G., Mukherjee, S., Mullavey, A., Munch, J., Murphy, D., Murray, P. G., Mytidis, A., Nagy, M. F., Kumar, D. Nanda, Nardecchia, I., Nash, T., Naticchioni, L., Nayak, R., Necula, V., Nelemans, G., Neri, I., Neri, M., Newton, G., Nguyen, T., Nishida, E., Nishizawa, A., Nitz, A., Nocera, F., Nolting, D., Normandin, M. E., Nuttall, L. K., Ochsner, E., O'Dell, J., Oelker, E., Ogin, G. H., Oh, J. J., Oh, S. H., Ohme, F., Oppermann, P., O'Reilly, B., Larcher, W. Ortega, O'Shaughnessy, R., Osthelder, C., Ott, C. D., Ottaway, D. J., Ottens, R. S., Ou, J., Overmier, H., Owen, B. J., Padilla, C., Pai, A., Palomba, C., Pan, Y., Pankow, C., Paoletti, F., Paoletti, R., Papa, M. A., Paris, H., Pasqualetti, A., Passaquieti, R., Passuello, D., Pedraza, M., Peiris, P., Penn, S., Perreca, A., Phelps, M., Pichot, M., Pickenpack, M., Piergiovanni, F., Pierro, V., Pinard, L., Pindor, B., Pinto, I. M., Pitkin, M., Poeld, J., Poggiani, R., Poole, V., Poux, C., Predoi, V., Prestegard, T., Price, L. R., Prijatelj, M., Principe, M., Privitera, S., Prix, R., Prodi, G. A., Prokhorov, L., Puncken, O., Punturo, M., Puppo, P., Quetschke, V., Quintero, E., Quitzow-James, R., Raab, F. J., Rabeling, D. S., Rácz, I., Radkins, H., Raffai, P., Raja, S., Rajalakshmi, G., Rakhmanov, M., Ramet, C., Rapagnani, P., Raymond, V., Re, V., Reed, C. M., Reed, T., Regimbau, T., Reid, S., Reitze, D. H., Ricci, F., Riesen, R., Riles, K., Robertson, N. A., Robinet, F., Rocchi, A., Roddy, S., Rodriguez, C., Rodruck, M., Roever, C., Rolland, L., Rollins, J. G., Romano, R., Romanov, G., Romie, J. H., Rosinska, D., Rowan, S., Rüdiger, A., Ruggi, P., Ryan, K., Salemi, F., Sammut, L., de la Jordana, L. Sancho, Sandberg, V., Sanders, J., Sannibale, V., Santiago-Prieto, I., Saracco, E., Sassolas, B., Sathyaprakash, B. S., Saulson, P. R., Savage, R., Schilling, R., Schnabel, R., Schofield, R. M. S., Schreiber, E., Schuette, D., Schulz, B., Schutz, B. F., Schwinberg, P., Scott, J., Scott, S. M., Seifert, F., Sellers, D., Sengupta, A. S., Sentenac, D., Sequino, V., Sergeev, A., Shaddock, D., Shah, S., Shahriar, M. S., Shaltev, M., Shapiro, B., Shawhan, P., Shoemaker, D. H., Sidery, T. L., Siellez, K., Siemens, X., Sigg, D., Simakov, D., Singer, A., Singer, L., Sintes, A. M., Skelton, G. R., Slagmolen, B. J. J., Slutsky, J., Smith, J. R., Smith, M. R., Smith, R. J. E., Smith-Lefebvre, N. D., Soden, K., Son, E. J., Sorazu, B., Souradeep, T., Sperandio, L., Staley, A., Steinert, E., Steinlechner, J., Steinlechner, S., Steplewski, S., Stevens, D., Stochino, A., Stone, R., Strain, K. A., Straniero, N., Strigin, S., Stroeer, A. S., Sturani, R., Stuver, A. L., Summerscales, T. Z., Susmithan, S., Sutton, P. J., Swinkels, B., Szeifert, G., Tacca, M., Talukder, D., Tang, L., Tanner, D. B., Tarabrin, S. P., Taylor, R., ter Braack, A. P. M., Thirugnanasambandam, M. P., Thomas, M., Thomas, P., Thorne, K. A., Thorne, K. S., Thrane, E., Tiwari, V., Tokmakov, K. V., Tomlinson, C., Toncelli, A., Tonelli, M., Torre, O., Torres, C. V., Torrie, C. I., Travasso, F., Traylor, G., Tse, M., Ugolini, D., Unnikrishnan, C. S., Vahlbruch, H., Vajente, G., Vallisneri, M., Brand, J. F. J. van den, Broeck, C. Van Den, van der Putten, S., van der Sluys, M. V., van Heijningen, J., van Veggel, A. A., Vass, S., Vasúth, M., Vaulin, R., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venkateswara, K., Verkindt, D., Verma, S., Vetrano, F., Viceré, A., Vincent-Finley, R., Vinet, J. Y., Vitale, S., Vlcek, B., Vo, T., Vocca, H., Vorvick, C., Vousden, W. D., Vrinceanu, D., Vyachanin, S. P., Wade, A., Wade, L., Wade, M., Waldman, S. J., Walker, M., Wallace, L., Wan, Y., Wang, J., Wang, M., Wang, X., Wanner, A., Ward, R. L., Was, M., Weaver, B., Wei, L. -W., Weinert, M., Weinstein, A. J., Weiss, R., Welborn, T., Wen, L., Wessels, P., West, M., Westphal, T., Wette, K., Whelan, J. T., Whitcomb, S. E., White, D. J., Whiting, B. F., Wibowo, S., Wiesner, K., Wilkinson, C., Williams, L., Williams, R., Williams, T., Willis, J. L., Willke, B., Wimmer, M., Winkelmann, L., Winkler, W., Wipf, C. C., Wittel, H., Woan, G., Worden, J., Yablon, J., Yakushin, I., Yamamoto, H., Yancey, C. C., Yang, H., Yeaton-Massey, D., Yoshida, S., Yum, H., Yvert, M., Zadrozny, A., Zanolin, M., Zendri, J. -P., Zhang, F., Zhang, L., Zhao, C., Zhu, H., Zhu, X. J., Zotov, N., Zucker, M. E., and Zweizig, J.
- Subjects
General Relativity and Quantum Cosmology - Abstract
We report on an all-sky search for periodic gravitational waves in the frequency range $\mathrm{50-1000 Hz}$ with the first derivative of frequency in the range $-8.9 \times 10^{-10}$ Hz/s to zero in two years of data collected during LIGO's fifth science run. Our results employ a Hough transform technique, introducing a $\chi^2$ test and analysis of coincidences between the signal levels in years 1 and 2 of observations that offers a significant improvement in the product of strain sensitivity with compute cycles per data sample compared to previously published searches. Since our search yields no surviving candidates, we present results taking the form of frequency dependent, 95$%$ confidence upper limits on the strain amplitude $h_0$. The most stringent upper limit from year 1 is $1.0\times 10^{-24}$ in the $\mathrm{158.00-158.25 Hz}$ band. In year 2, the most stringent upper limit is $\mathrm{8.9\times10^{-25}}$ in the $\mathrm{146.50-146.75 Hz}$ band. This improved detection pipeline, which is computationally efficient by at least two orders of magnitude better than our flagship Einstein$@$Home search, will be important for "quick-look" searches in the Advanced LIGO and Virgo detector era., Comment: Accepted in Classical and Quantum Gravity. Science summary of results available at http://www.ligo.org/science/Publication-S5CWHough/index.php
- Published
- 2013
- Full Text
- View/download PDF
47. HerMES: Candidate High-Redshift Galaxies Discovered with Herschel/SPIRE
- Author
-
Dowell, C. Darren, Conley, A., Glenn, J., Arumugam, V., Asboth, V., Aussel, H., Bertoldi, F., Bethermin, M., Bock, J., Boselli, A., Bridge, C., Buat, V., Burgarella, D., Cabrera-Lavers, A., Casey, C. M., Chapman, S. C., Clements, D. L., Conversi, L., Cooray, A., Dannerbauer, H., De Bernardis, F., Ellsworth-Bowers, T. P., Farrah, D., Franceschini, A., Griffin, M., Gurwell, M. A., Halpern, M., Hatziminaoglou, E., Heinis, S., Ibar, E., Ivison, R. J., Laporte, N., Marchetti, L., Martinez-Navajas, P., Marsden, G., Morrison, G. E., Nguyen, H. T., O'Halloran, B., Oliver, S. J., Omont, A., Page, M. J., Papageorgiou, A., Pearson, C. P., Petitpas, G., Perez-Fournon, I., Pohlen, M., Riechers, D., Rigopoulou, D., Roseboom, I. G., Rowan-Robinson, M., Sayers, J., Schulz, B., Scott, Douglas, Seymour, N., Shupe, D. L., Smith, A. J., Streblyanska, A., Symeonidis, M., Vaccari, M., Valtchanov, I., Vieira, J. D., Viero, M., Wang, L., Wardlow, J., Xu, C. K., and Zemcov, M.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present a method for selecting $z>4$ dusty, star forming galaxies (DSFGs) using Herschel/SPIRE 250/350/500 $\mu m$ flux densities to search for red sources. We apply this method to 21 deg$^2$ of data from the HerMES survey to produce a catalog of 38 high-$z$ candidates. Follow-up of the first 5 of these sources confirms that this method is efficient at selecting high-$z$ DSFGs, with 4/5 at $z=4.3$ to $6.3$ (and the remaining source at $z=3.4$), and that they are some of the most luminous dusty sources known. Comparison with previous DSFG samples, mostly selected at longer wavelengths (e.g., 850 $\mu m$) and in single-band surveys, shows that our method is much more efficient at selecting high-$z$ DSFGs, in the sense that a much larger fraction are at $z>3$. Correcting for the selection completeness and purity, we find that the number of bright ($S_{500\,\mu m} \ge 30$ mJy), red Herschel sources is $3.3 \pm 0.8$ deg$^{-2}$. This is much higher than the number predicted by current models, suggesting that the DSFG population extends to higher redshifts than previously believed. If the shape of the luminosity function for high-$z$ DSFGs is similar to that at $z\sim2$, rest-frame UV based studies may be missing a significant component of the star formation density at $z=4$ to $6$, even after correction for extinction., Comment: Accepted for publication in ApJ
- Published
- 2013
- Full Text
- View/download PDF
48. The suppression of star formation by powerful active galactic nuclei
- Author
-
Page, M. J., Symeonidis, M., Vieira, J. D., Altieri, B., Amblard, A., Arumugam, V., Aussel, H., Babbedge, T., Blain, A., Bock, J., Boselli, A., Buat, V., Castro-Rodr'iguez, N., Cava, A., Chanial, P., Clements, D. L., Conley, A., Conversi, L., Cooray, A., Dowell, C. D., Dubois, E. N., Dunlop, J. S., Dwek, E., Dye, S., Eales, S., Elbaz, D., Farrah, D., Fox, M., Franceschini, A., Gear, W., Glenn, J., Griffin, M., Halpern, M., Hatziminaoglou, E., Ibar, E., Isaak, K., Ivison, R. J., Lagache, G., Levenson, L., Lu, N., Madden, S., Maffei, B., Mainetti, G., Marchetti, L., Nguyen, H. T., O'Halloran, B., Oliver, S. J., Omont, A., Panuzzo, P., Papageorgiou, A., Pearson, C. P., Perez-Fournon, I., Pohlen, M., Rawlings, J. I., Rigopoulou, D., Riguccini, L., Rizzo, D., Rodighiero, G., Roseboom, I. G., Rowan-Robinson, M., Portal, M. Sanchez, Schulz, B., Scott, Douglas, Seymour, N., Shupe, D. L., Smith, A. J., Stevens, J. A., Trichas, M., Tugwell, K. E., Vaccari, M., Valtchanov, I., Viero, M., Vigroux, L., Wang, L., Ward, R., Wright, G., Xu, C. K., and Zemcov, M.
- Subjects
Astrophysics - Cosmology and Extragalactic Astrophysics - Abstract
The old, red stars which constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly from accretion onto black holes. It is widely suspected, but unproven, that the tight correlation in mass of the black hole and stellar components results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, while powerful star-forming galaxies are usually dust-obscured and are brightest at infrared to submillimetre wavelengths. Here we report observations in the submillimetre and X-ray which show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 Gyrs old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10^44 erg/s. This suppression of star formation in the host galaxies of powerful AGN is a key prediction of models in which the AGN drives a powerful outflow, expelling the interstellar medium of its host galaxy and transforming the galaxy's properties in a brief period of cosmic time., Comment: Published in Nature, May 2012. Includes supplementary information
- Published
- 2013
- Full Text
- View/download PDF
49. HerMES: dust attenuation and star formation activity in UV-selected samples from z~4 to z~1.5
- Author
-
Heinis, S., Buat, V., Bethermin, M., Bock, J., Burgarella, D., Conley, A., Cooray, A., Farrah, D., Ilbert, O., Magdis, G., Marsden, G., Oliver, S. J., Rigopoulou, D., Roehlly, Y., Schulz, B., Symeonidis, M., Viero, M., Xu, C. K., and Zemcov, M.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We study the link between observed ultraviolet luminosity, stellar mass, and dust attenuation within rest-frame UV-selected samples at z~ 4, 3, and 1.5. We measure by stacking at 250, 350, and 500 um in the Herschel/SPIRE images from the HerMES program the average infrared luminosity as a function of stellar mass and UV luminosity. We find that dust attenuation is mostly correlated with stellar mass. There is also a secondary dependence with UV luminosity: at a given UV luminosity, dust attenuation increases with stellar mass, while at a given stellar mass it decreases with UV luminosity. We provide new empirical recipes to correct for dust attenuation given the observed UV luminosity and the stellar mass. Our results also enable us to put new constraints on the average relation between star formation rate and stellar mass at z~ 4, 3, and 1.5. The star formation rate-stellar mass relations are well described by power laws (SFR~ M^0.7), with the amplitudes being similar at z~4 and z~3, and decreasing by a factor of 4 at z~1.5 at a given stellar mass. We further investigate the evolution with redshift of the specific star formation rate. Our results are in the upper range of previous measurements, in particular at z~3, and are consistent with a plateau at 3
- Published
- 2013
- Full Text
- View/download PDF
50. Constraints on cosmic strings from the LIGO-Virgo gravitational-wave detectors
- Author
-
Aasi, J., Abadie, J., Abbott, B. P., Abbott, R., Abbott, T., Abernathy, M. R., Accadia, T., Acernese, F., Adams, C., Adams, T., Adhikari, R. X., Affeldt, C., Agathos, M., Aggarwal, N., Aguiar, O. D., Ajith, P., Allen, B., Allocca, A., Ceron, E. Amador, Amariutei, D., Anderson, R. A., Anderson, S. B., Anderson, W. G., Arai, K., Araya, M. C., Arceneaux, C., Areeda, J., Ast, S., Aston, S. M., Astone, P., Aufmuth, P., Aulbert, C., Austin, L., Aylott, B. E., Babak, S., Baker, P. T., Ballardin, G., Ballmer, S. W., Barayoga, J. C., Barker, D., Barnum, S. H., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barton, M. A., Bartos, I., Bassiri, R., Basti, A., Batch, J., Bauchrowitz, J., Bauer, Th. S., Bebronne, M., Behnke, B., Bejger, M., Beker, M. G., Bell, A. S., Bell, C., Belopolski, I., Bergmann, G., Berliner, J. M., Bersanetti, D., Bertolini, A., Bessis, D., Betzwieser, J., Beyersdorf, P. T., Bhadbhade, T., Bilenko, I. A., Billingsley, G., Birch, J., Bitossi, M., Bizouard, M. A., Black, E., Blackburn, J. K., Blackburn, L., Blair, D., Blom, M., Bock, O., Bodiya, T. P., Boer, M., Bogan, C., Bond, C., Bondu, F., Bonelli, L., Bonnand, R., Bork, R., Born, M., Boschi, V., Bose, S., Bosi, L., Bowers, J., Bradaschia, C., Brady, P. R., Braginsky, V. B., Branchesi, M., Brannen, C. A., Brau, J. E., Breyer, J., Briant, T., Bridges, D. O., Brillet, A., Brinkmann, M., Brisson, V., Britzger, M., Brooks, A. F., Brown, D. A., Brown, D. D., Brückner, F., Bulik, T., Bulten, H. J., Buonanno, A., Buskulic, D., Buy, C., Byer, R. L., Cadonati, L., Cagnoli, G., Bustillo, J. Calderón, Calloni, E., Camp, J. B., Campsie, P., Cannon, K. C., Canuel, B., Cao, J., Capano, C. D., Carbognani, F., Carbone, L., Caride, S., Castiglia, A., Caudill, S., Cavagliá, M., Cavalier, F., Cavalieri, R., Cella, G., Cepeda, C., Cesarini, E., Chakraborty, R., Chalermsongsak, T., Chao, S., Charlton, P., Chassande-Mottin, E., Chen, X., Chen, Y., Chincarini, A., Chiummo, A., Cho, H. S., Chow, J., Christensen, N., Chu, Q., Chua, S. S. Y., Chung, S., Ciani, G., Clara, F., Clark, D. E., Clark, J. A., Cleva, F., Coccia, E., Cohadon, P. -F., Colla, A., Colombini, M., Constancio Jr., M., Conte, A., Conte, R., Cook, D., Corbitt, T. R., Cordier, M., Cornish, N., Corsi, A., Costa, C. A., Coughlin, M. W., Coulon, J. -P., Countryman, S., Couvares, P., Coward, D. M., Cowart, M., Coyne, D. C., Craig, K., Creighton, J. D. E., Creighton, T. D., Crowder, S. G., Cumming, A., Cunningham, L., Cuoco, E., Dahl, K., Canton, T. Dal, Damjanic, M., Danilishin, S. L., D'Antonio, S., Danzmann, K., Dattilo, V., Daudert, B., Daveloza, H., Davier, M., Davies, G. S., Daw, E. J., Day, R., Dayanga, T., De Rosa, R., Debreczeni, G., Degallaix, J., Del Pozzo, W., Deleeuw, E., Deléglise, S., Denker, T., Dent, T., Dereli, H., Dergachev, V., DeRosa, R., DeSalvo, R., Dhurandhar, S., Di Fiore, L., Di Lieto, A., Di Palma, I., Di Virgilio, A., Díaz, M., Dietz, A., Dmitry, K., Donovan, F., Dooley, K. L., Doravari, S., Drago, M., Drever, R. W. P., Driggers, J. C., Du, Z., Dumas, J. -C., Dwyer, S., Eberle, T., Edwards, M., Effler, A., Ehrens, P., Eichholz, J., Eikenberry, S. S., Endröczi, G., Essick, R., Etzel, T., Evans, K., Evans, M., Evans, T., Factourovich, M., Fafone, V., Fairhurst, S., Fang, Q., Farinon, S., Farr, B., Farr, W., Favata, M., Fazi, D., Fehrmann, H., Feldbaum, D., Ferrante, I., Ferrini, F., Fidecaro, F., Finn, L. S., Fiori, I., Fisher, R., Flaminio, R., Foley, E., Foley, S., Forsi, E., Fotopoulos, N., Fournier, J. -D., Franco, S., Frasca, S., Frasconi, F., Frede, M., Frei, M., Frei, Z., Freise, A., Frey, R., Fricke, T. T., Fritschel, P., Frolov, V. V., Fujimoto, M. -K., Fulda, P., Fyffe, M., Gair, J., Gammaitoni, L., Garcia, J., Garufi, F., Gehrels, N., Gemme, G., Genin, E., Gennai, A., Gergely, L., Ghosh, S., Giaime, J. A., Giampanis, S., Giardina, K. D., Giazotto, A., Gil-Casanova, S., Gill, C., Gleason, J., Goetz, E., Goetz, R., Gondan, L., González, G., Gordon, N., Gorodetsky, M. L., Gossan, S., Goßler, S., Gouaty, R., Graef, C., Graff, P. B., Granata, M., Grant, A., Gras, S., Gray, C., Greenhalgh, R. J. S., Gretarsson, A. M., Griffo, C., Groot, P., Grote, H., Grover, K., Grunewald, S., Guidi, G. M., Guido, C., Gushwa, K. E., Gustafson, E. K., Gustafson, R., Hall, B., Hall, E., Hammer, D., Hammond, G., Hanke, M., Hanks, J., Hanna, C., Hanson, J., Harms, J., Harry, G. M., Harry, I. W., Harstad, E. D., Hartman, M. T., Haughian, K., Hayama, K., Heefner, J., Heidmann, A., Heintze, M., Heitmann, H., Hello, P., Hemming, G., Hendry, M., Heng, I. S., Heptonstall, A. W., Heurs, M., Hild, S., Hoak, D., Hodge, K. A., Holt, K., Holtrop, M., Hong, T., Hooper, S., Horrom, T., Hosken, D. J., Hough, J., Howell, E. J., Hu, Y., Hua, Z., Huang, V., Huerta, E. A., Hughey, B., Husa, S., Huttner, S. H., Huynh, M., Huynh-Dinh, T., Iafrate, J., Ingram, D. R., Inta, R., Isogai, T., Ivanov, A., Iyer, B. R., Izumi, K., Jacobson, M., James, E., Jang, H., Jang, Y. J., Jaranowski, P., Jiménez-Forteza, F., Johnson, W. W., Jones, D., Jones, D. I., Jones, R., Jonker, R. J. G., Ju, L., K, Haris, Kalmus, P., Kalogera, V., Kandhasamy, S., Kang, G., Kanner, J. B., Kasprzack, M., Kasturi, R., Katsavounidis, E., Katzman, W., Kaufer, H., Kaufman, K., Kawabe, K., Kawamura, S., Kawazoe, F., Kéfélian, F., Keitel, D., Kelley, D. B., Kells, W., Keppel, D. G., Khalaidovski, A., Khalili, F. Y., Khazanov, E. A., Kim, B. K., Kim, C., Kim, K., Kim, N., Kim, W., Kim, Y. -M., King, E. J., King, P. J., Kinzel, D. L., Kissel, J. S., Klimenko, S., Kline, J., Koehlenbeck, S., Kokeyama, K., Kondrashov, V., Koranda, S., Korth, W. Z., Kowalska, I., Kozak, D., Kremin, A., Kringel, V., Królak, A., Kucharczyk, C., Kudla, S., Kuehn, G., Kumar, A., Kumar, P., Kumar, R., Kurdyumov, R., Kwee, P., Landry, M., Lantz, B., Larson, S., Lasky, P. D., Lawrie, C., Lazzarini, A., Roux, A. Le, Leaci, P., Lebigot, E. O., Lee, C. -H., Lee, H. K., Lee, H. M., Lee, J., Leonardi, M., Leong, J. R., Leroy, N., Letendre, N., Levine, B., Lewis, J. B., Lhuillier, V., Li, T. G. F., Lin, A. C., Littenberg, T. B., Litvine, V., Liu, F., Liu, H., Liu, Y., Liu, Z., Lloyd, D., Lockerbie, N. A., Lockett, V., Lodhia, D., Loew, K., Logue, J., Lombardi, A. L., Lorenzini, M., Loriette, V., Lormand, M., Losurdo, G., Lough, J., Luan, J., Lubinski, M. J., Lück, H., Lundgren, A. P., Macarthur, J., Macdonald, E., Machenschalk, B., MacInnis, M., Macleod, D. M., Magana-Sandoval, F., Mageswaran, M., Mailand, K., Majorana, E., Maksimovic, I., Malvezzi, V., Man, N., Manca, G. M., Mandel, I., Mandic, V., Mangano, V., Mantovani, M., Marchesoni, F., Marion, F., Márka, S., Márka, Z., Markosyan, A., Maros, E., Marque, J., Martelli, F., Martin, I. W., Martin, R. M., Martinelli, L., Martynov, D., Marx, J. N., Mason, K., Masserot, A., Massinger, T. J., Matichard, F., Matone, L., Matzner, R. A., Mavalvala, N., May, G., Mazumder, N., Mazzolo, G., McCarthy, R., McClelland, D. E., McGuire, S. C., McIntyre, G., McIver, J., Meacher, D., Meadors, G. D., Mehmet, M., Meidam, J., Meier, T., Melatos, A., Mendell, G., Mercer, R. A., Meshkov, S., Messenger, C., Meyer, M. S., Miao, H., Michel, C., Mikhailov, E. E., Milano, L., Miller, J., Minenkov, Y., Mingarelli, C. M. F., Mitra, S., Mitrofanov, V. P., Mitselmakher, G., Mittleman, R., Moe, B., Mohan, M., Mohapatra, S. R. P., Mokler, F., Moraru, D., Moreno, G., Morgado, N., Mori, T., Morriss, S. R., Mossavi, K., Mours, B., Mow-Lowry, C. M., Mueller, C. L., Mueller, G., Mukherjee, S., Mullavey, A., Munch, J., Murphy, D., Murray, P. G., Mytidis, A., Nagy, M. F., Kumar, D. Nanda, Nardecchia, I., Nash, T., Naticchioni, L., Nayak, R., Necula, V., Nelemans, G., Neri, I., Neri, M., Newton, G., Nguyen, T., Nishida, E., Nishizawa, A., Nitz, A., Nocera, F., Nolting, D., Normandin, M. E., Nuttall, L. K., Ochsner, E., O'Dell, J., Oelker, E., Ogin, G. H., Oh, J. J., Oh, S. H., Ohme, F., Oppermann, P., O'Reilly, B., Larcher, W. Ortega, O'Shaughnessy, R., Osthelder, C., Ott, C. D., Ottaway, D. J., Ottens, R. S., Ou, J., Overmier, H., Owen, B. J., Padilla, C., Pai, A., Palomba, C., Pan, Y., Pankow, C., Paoletti, F., Paoletti, R., Papa, M. A., Paris, H., Pasqualetti, A., Passaquieti, R., Passuello, D., Pedraza, M., Peiris, P., Penn, S., Perreca, A., Phelps, M., Pichot, M., Pickenpack, M., Piergiovanni, F., Pierro, V., Pinard, L., Pindor, B., Pinto, I. M., Pitkin, M., Poeld, J., Poggiani, R., Poole, V., Poux, C., Predoi, V., Prestegard, T., Price, L. R., Prijatelj, M., Principe, M., Privitera, S., Prix, R., Prodi, G. A., Prokhorov, L., Puncken, O., Punturo, M., Puppo, P., Quetschke, V., Quintero, E., Quitzow-James, R., Raab, F. J., Rabeling, D. S., Rácz, I., Radkins, H., Raffai, P., Raja, S., Rajalakshmi, G., Rakhmanov, M., Ramet, C., Rapagnani, P., Raymond, V., Re, V., Reed, C. M., Reed, T., Regimbau, T., Reid, S., Reitze, D. H., Ricci, F., Riesen, R., Riles, K., Robertson, N. A., Robinet, F., Rocchi, A., Roddy, S., Rodriguez, C., Rodruck, M., Roever, C., Rolland, L., Rollins, J. G., Romano, R., Romanov, G., Romie, J. H., Rosińska, D., Rowan, S., Rüdiger, A., Ruggi, P., Ryan, K., Salemi, F., Sammut, L., Sandberg, V., Sanders, J., Sannibale, V., Santiago-Prieto, I., Saracco, E., Sassolas, B., Sathyaprakash, B. S., Saulson, P. R., Savage, R., Schilling, R., Schnabel, R., Schofield, R. M. S., Schreiber, E., Schuette, D., Schulz, B., Schutz, B. F., Schwinberg, P., Scott, J., Scott, S. M., Seifert, F., Sellers, D., Sengupta, A. S., Sentenac, D., Sergeev, A., Shaddock, D., Shah, S., Shahriar, M. S., Shaltev, M., Shapiro, B., Shawhan, P., Shoemaker, D. H., Sidery, T. L., Siellez, K., Siemens, X., Sigg, D., Simakov, D., Singer, A., Singer, L., Sintes, A. M., Skelton, G. R., Slagmolen, B. J. J., Slutsky, J., Smith, J. R., Smith, M. R., Smith, R. J. E., Smith-Lefebvre, N. D., Soden, K., Son, E. J., Sorazu, B., Souradeep, T., Sperandio, L., Staley, A., Steinert, E., Steinlechner, J., Steinlechner, S., Steplewski, S., Stevens, D., Stochino, A., Stone, R., Strain, K. A., Straniero, N., Strigin, S., Stroeer, A. S., Sturani, R., Stuver, A. L., Summerscales, T. Z., Susmithan, S., Sutton, P. J., Swinkels, B., Szeifert, G., Tacca, M., Talukder, D., Tang, L., Tanner, D. B., Tarabrin, S. P., Taylor, R., ter Braack, A. P. M., Thirugnanasambandam, M. P., Thomas, M., Thomas, P., Thorne, K. A., Thorne, K. S., Thrane, E., Tiwari, V., Tokmakov, K. V., Tomlinson, C., Toncelli, A., Tonelli, M., Torre, O., Torres, C. V., Torrie, C. I., Travasso, F., Traylor, G., Tse, M., Ugolini, D., Unnikrishnan, C. S., Vahlbruch, H., Vajente, G., Vallisneri, M., Brand, J. F. J. van den, Broeck, C. Van Den, van der Putten, S., van der Sluys, M. V., van Heijningen, J., van Veggel, A. A., Vass, S., Vasúth, M., Vaulin, R., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venkateswara, K., Verkindt, D., Verma, S., Vetrano, F., Viceré, A., Vincent-Finley, R., Vinet, J. -Y., Vitale, S., Vlcek, B., Vo, T., Vocca, H., Vorvick, C., Vousden, W. D., Vrinceanu, D., Vyachanin, S. P., Wade, A., Wade, L., Wade, M., Waldman, S. J., Walker, M., Wallace, L., Wan, Y., Wang, J., Wang, M., Wang, X., Wanner, A., Ward, R. L., Was, M., Weaver, B., Wei, L. -W., Weinert, M., Weinstein, A. J., Weiss, R., Welborn, T., Wen, L., Wessels, P., West, M., Westphal, T., Wette, K., Whelan, J. T., Whitcomb, S. E., White, D. J., Whiting, B. F., Wibowo, S., Wiesner, K., Wilkinson, C., Williams, L., Williams, R., Williams, T., Willis, J. L., Willke, B., Wimmer, M., Winkelmann, L., Winkler, W., Wipf, C. C., Wittel, H., Woan, G., Worden, J., Yablon, J., Yakushin, I., Yamamoto, H., Yancey, C. C., Yang, H., Yeaton-Massey, D., Yoshida, S., Yum, H., Yvert, M., Zadrożny, A., Zanolin, M., Zendri, J. -P., Zhang, F., Zhang, L., Zhao, C., Zhu, H., Zhu, X. J., Zotov, N., Zucker, M. E., and Zweizig, J.
- Subjects
General Relativity and Quantum Cosmology ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs from cosmic microwave background measurements and pulsar timing data. In particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the string tension $G\mu$ below $10^{-8}$ in some regions of the cosmic string parameter space.
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.