13 results on '"Schulte-Uebbing, L"'
Search Results
2. Trajecten naar een ‘klimaatneutrale’ landbouw, landgebruik en glastuinbouw in 2050
- Author
-
Westhoek, H., Schulte-Uebbing, L., Plomp, A., Westhoek, H., Schulte-Uebbing, L., and Plomp, A.
- Abstract
Dit achtergrondrapport voor de sectoren Landbouw, Landgebruik en Glastuinbouw maakt deel uit van de PBL-studie studie ‘Trajectverkenning Klimaatneutraal Nederland 2050’ (TVKN). In deze studie is verkend welke ontwikkelingen in de Nederlandse maatschappij en economische sectoren nodig zijn om in 2050 klimaatneutraal te zijn. Ingrijpende maatregelen leiden tot forse reductie, maar landbouw blijvende emissiebron. Keuze voor compensatie emissies binnen Nederland. Hoewel de omvang van de binnenlandse vlees- en zuivelconsumptie niet direct is gekoppeld aan de omvang van de veestapel, is vermindering van de consumptie ervan consistent met een kleinere veestapel. De glastuinbouw gebruikt veel energie voor de verwarming van kassen en voor verlichting om de plantengroei te bevorderen.
- Published
- 2024
3. Methodology for the calculation of emissions from agriculture
- Author
-
van der Zee, TC, Bleeker, A, van Bruggen, C, Bussink, W, van Dooren, HJC, Groenestein, CM, Huijsmans, JFM, Kros, H, Lagerwerf, LA, Oltmer, K, Ros, M, van Schijndel, M, Schulte-Uebbing, L, Velthof, GL, van der Zee, TC, Bleeker, A, van Bruggen, C, Bussink, W, van Dooren, HJC, Groenestein, CM, Huijsmans, JFM, Kros, H, Lagerwerf, LA, Oltmer, K, Ros, M, van Schijndel, M, Schulte-Uebbing, L, and Velthof, GL
- Abstract
RIVM rapport:Nederland rapporteert elk jaar nationaal en internationaal hoeveel stoffen de landbouw uitstoot naar de lucht. Het gaat om alle stoffen die in de Emissieregistratie voorkomen en voor deze sector moeten worden gerapporteerd. Denk aan broeikasgassen en stoffen die luchtverontreiniging veroorzaken, zoals ammoniak en fijnstof. De emissieberekeningen worden uitgevoerd op basis van internationale richtlijnen. De uitstoot wordt berekend met het National Emission Model for Agriculture (NEMA), dat in Nederland is ontwikkeld. Het NEMA berekent de uitstoot van stoffen voor bijvoorbeeld stallen, mestopslag, en het gebruik van mest. Het NEMA wordt ook gebruikt om emissies zoals methaan uit verschillende dieren en mest te berekenen. Dit model wordt elk jaar aangepast aan de nieuwste wetenschappelijke inzichten. De methoden die voor verschillende stoffen worden gebruikt zijn beschreven, plus de wijzigingen die in het model zijn doorgevoerd. De gegevens over de uitstoot zijn openbaar via de website emissieregistratie.nl. Ze worden gebruikt voor rapportages die vanwege internationale verdragen verplicht zijn, zoals het verdrag van Parijs, de Europese Emissieplafonds (NEC-Directive) en de Convention on Long-range Transboundary Air Pollution (CLRTAP). Dit rapport is ook de basis voor de reviewers die de Nederlandse rapportages aan de Europese Unie en Verenigde Naties valideren., Every year, the Netherlands reports, both nationally and internationally, the quantities of substances that are emitted into the air by its agricultural sector. This entails all the substances originating from agricultural activities that are listed in the Pollutant Release and Transfer Register, e.g. greenhouse gases and substances that cause air pollution, such as ammonia and fine particles. The methods used to calculate the emissions are in accordance with international guidelines. The emissions are calculated using the National Emission Model for Agriculture (NEMA), which is developed in the Netherlands. For example, the NEMA is used to calculate the emissions from stables, manure storages and the application of manure. It is also used to calculate emissions, such as methane, from various animals and manure. The model is updated annually to reflect the latest scientific insights. This time around, the methods used for different substances as well as the implemented adjustments have been described. The emission data is available to the public via the website emissieregistratie.nl. It is used for reports that are mandatory under international treaties such as the Paris Agreement, the EU Emission Ceilings (NEC Directive) and the Convention on Long-range Transboundary Air Pollution (CLRTAP). This report also forms the basis for the reviewers who validate the Dutch reports to the European Union and the United Nations.
- Published
- 2024
4. Emissies naar lucht uit de landbouw berekend met NEMA voor 1990-2021
- Author
-
van Bruggen, C., Bannink, A., Bleeker, A., Bussink, D.W., van Dooren, H.J.C., Groenestein, C.M., Huijsmans, J.F.M., Kros, J., Lagerwerf, L.A., Oltmer, K., Ros, M.B.H., van Schijndel, M.W., Schulte-Uebbing, L., Velthof, G.L., van der Zee, T.C., van Bruggen, C., Bannink, A., Bleeker, A., Bussink, D.W., van Dooren, H.J.C., Groenestein, C.M., Huijsmans, J.F.M., Kros, J., Lagerwerf, L.A., Oltmer, K., Ros, M.B.H., van Schijndel, M.W., Schulte-Uebbing, L., Velthof, G.L., and van der Zee, T.C.
- Published
- 2023
5. Reflectie op ‘In Beweging’ concept-Landbouwakkoord 2040
- Author
-
Westhoek, H., Boezeman, D., Hellegers, M., Hinsberg, A. van, Schild, J., Schulte-Uebbing, L., Vink, M., Westhoek, H., Boezeman, D., Hellegers, M., Hinsberg, A. van, Schild, J., Schulte-Uebbing, L., and Vink, M.
- Abstract
De belangen rondom het Landbouwakkoord zijn groot. Het gaat om een duurzame toekomst voor boerenbedrijven en om het verbeteren van de natuur- en milieukwaliteit in het landelijk gebied. De onderhandelende partijen kregen de dubbele opdracht mee om afspraken te maken om richting 2040 een ‘reëel verdienvermogen’ voor boeren mogelijk te maken én om aan te geven hoe de landbouwsector ‘haar aandeel gaat leveren aan de grote opgaven van natuurherstel, water en klimaat’. Geenszins een gemakkelijke opdracht gezien de grote veranderingen die hiervoor nodig zijn, en de maatschappelijke polarisatie rond de verschillende oplossingsrichtingen daarvoor. In deze studie reflecteert het PBL op de tussenversie van 18 mei 2023 van het akkoord. Welke bijdrage kunnen afspraken in het concept-Landbouwakkoord leveren en wat zijn aandachtspunten voor het vervolg van de onderhandelingen?
- Published
- 2023
6. Safe and just Earth system boundaries
- Author
-
Rockström, J., Gupta, J., Qin, D., Lade, S.J., Abrams, J.F., Andersen, L.S., Armstrong McKay, D.I., Bai, X., Bala, G., Bunn, S.E., Ciobanu, D., DeClerck, F., Ebi, K., Gifford, L., Gordon, C., Hasan, S., Kanie, N., Lenton, T.M., Loriani, S., Liverman, D.M., Mohamed, A., Nakicenovic, N., Obura, D., Ospina, D., Prodani, K., Rammelt, C., Sakschewski, B., Scholtens, J., Stewart-Koster, B., Tharammal, T., van Vuuren, D., Verburg, P.H., Winkelmann, R., Zimm, C., Bennett, E.M., Bringezu, S., Broadgate, W., Green, P.A., Huang, L., Jacobson, L., Ndehedehe, C., Pedde, S., Rocha, J., Scheffer, M., Schulte-Uebbing, L., de Vries, W., Xiao, C., Xu, C., Xu, X., Zafra-Calvo, N., Zhang, X., Rockström, J., Gupta, J., Qin, D., Lade, S.J., Abrams, J.F., Andersen, L.S., Armstrong McKay, D.I., Bai, X., Bala, G., Bunn, S.E., Ciobanu, D., DeClerck, F., Ebi, K., Gifford, L., Gordon, C., Hasan, S., Kanie, N., Lenton, T.M., Loriani, S., Liverman, D.M., Mohamed, A., Nakicenovic, N., Obura, D., Ospina, D., Prodani, K., Rammelt, C., Sakschewski, B., Scholtens, J., Stewart-Koster, B., Tharammal, T., van Vuuren, D., Verburg, P.H., Winkelmann, R., Zimm, C., Bennett, E.M., Bringezu, S., Broadgate, W., Green, P.A., Huang, L., Jacobson, L., Ndehedehe, C., Pedde, S., Rocha, J., Scheffer, M., Schulte-Uebbing, L., de Vries, W., Xiao, C., Xu, C., Xu, X., Zafra-Calvo, N., and Zhang, X.
- Abstract
The stability and resilience of the Earth system and human well-being are inseparably linked1,2,3, yet their interdependencies are generally under-recognized; consequently, they are often treated independently4,5. Here, we use modelling and literature assessment to quantify safe and just Earth system boundaries (ESBs) for climate, the biosphere, water and nutrient cycles, and aerosols at global and subglobal scales. We propose ESBs for maintaining the resilience and stability of the Earth system (safe ESBs) and minimizing exposure to significant harm to humans from Earth system change (a necessary but not sufficient condition for justice)4. The stricter of the safe or just boundaries sets the integrated safe and just ESB. Our findings show that justice considerations constrain the integrated ESBs more than safety considerations for climate and atmospheric aerosol loading. Seven of eight globally quantified safe and just ESBs and at least two regional safe and just ESBs in over half of global land area are already exceeded. We propose that our assessment provides a quantitative foundation for safeguarding the global commons for all people now and into the future.
- Published
- 2023
7. Methodology for the calculation of emissions from agriculture. Calculations for methane, ammonia, nitrous oxide, nitrogen oxides, non-methane volatile organic compounds, fine particles and carbon dioxide emissions using the National Emission Model for Agriculture (NEMA)
- Author
-
van der Zee, TC, Bleeker, A, van Bruggen, C, Bussink, W, Groenestein, CM, Huismans, JFM, Kros, H, Lagerwerf, LA, Oltmer, K, Ros, M, van Schijndel, M, Schulte-Uebbing, L, Velthof, GL, van der Zee, TC, Bleeker, A, van Bruggen, C, Bussink, W, Groenestein, CM, Huismans, JFM, Kros, H, Lagerwerf, LA, Oltmer, K, Ros, M, van Schijndel, M, Schulte-Uebbing, L, and Velthof, GL
- Abstract
RIVM rapport:Every year, the Netherlands reports, both nationally and internationally, the quantities of substances that are emitted into the air by its agricultural sector. This entails all the substances originating from agricultural activities that are listed in the Pollutant Release and Transfer Register, e.g. greenhouse gases and substances that cause air pollution, such as ammonia and fine particles. The methods used to calculate the emissions are in accordance with international guidelines. The emissions are calculated using the National Emission Model for Agriculture (NEMA), which is developed in the Netherlands. For example, the NEMA is used to calculate the emissions from stables, manure storages and the application of manure. It is also used to calculate emissions, such as methane, from various animals and manure. The model is updated annually to reflect the latest scientific insights. This time around, the methods used for different substances as well as the implemented adjustments have been described. The emission data is available to the public via the website emissieregistratie.nl. It is used for reports that are mandatory under international treaties such as the Paris Agreement, the EU Emission Ceilings (NEC Directive) and the Convention on Long-range Transboundary Air Pollution (CLRTAP). This report also forms the basis for the reviewers who validate the Dutch reports to the European Union and the United Nations., Nederland rapporteert elk jaar nationaal en internationaal hoeveel stoffen de landbouw uitstoot naar de lucht. Het gaat om alle stoffen die in de Emissieregistratie voorkomen en voor deze sector moeten worden gerapporteerd. Denk aan broeikasgassen en stoffen die luchtverontreiniging veroorzaken, zoals ammoniak en fijnstof. De emissieberekeningen worden uitgevoerd op basis van internationale richtlijnen. De uitstoot wordt berekend met het National Emission Model for Agriculture (NEMA), dat in Nederland is ontwikkeld. Het NEMA berekent de uitstoot van stoffen voor bijvoorbeeld stallen, mestopslag, en het gebruik van mest. Het NEMA wordt ook gebruikt om emissies zoals methaan uit verschillende dieren en mest te berekenen. Dit model wordt elk jaar aangepast aan de nieuwste wetenschappelijke inzichten. De methoden die voor verschillende stoffen worden gebruikt zijn beschreven, plus de wijzigingen die in het model zijn doorgevoerd. De gegevens over de uitstoot zijn openbaar via de website emissieregistratie.nl. Ze worden gebruikt voor rapportages die vanwege internationale verdragen verplicht zijn, zoals het verdrag van Parijs, de Europese Emissieplafonds (NEC(national emission ceiling)-Directive) en de Convention on Longrange Transboundary Air Pollution (CLRTAP(Convention on Long-Range Transboundary air Pollution)). Dit rapport is ook de basis voor de reviewers die de Nederlandse rapportages aan de Europese Unie en Verenigde Naties valideren.
- Published
- 2023
8. From planetary to regional boundaries for agricultural nitrogen pollution
- Author
-
Geochemistry, Bio-, hydro-, and environmental geochemistry, Schulte-Uebbing, L. F., Beusen, A. H.W., Bouwman, A. F., de Vries, W., Geochemistry, Bio-, hydro-, and environmental geochemistry, Schulte-Uebbing, L. F., Beusen, A. H.W., Bouwman, A. F., and de Vries, W.
- Published
- 2022
9. A just world on a safe planet: a Lancet Planetary Health-Earth Commission report on Earth-system boundaries, translations, and transformations.
- Author
-
Gupta J, Bai X, Liverman DM, Rockström J, Qin D, Stewart-Koster B, Rocha JC, Jacobson L, Abrams JF, Andersen LS, Armstrong McKay DI, Bala G, Bunn SE, Ciobanu D, DeClerck F, Ebi KL, Gifford L, Gordon C, Hasan S, Kanie N, Lenton TM, Loriani S, Mohamed A, Nakicenovic N, Obura D, Ospina D, Prodani K, Rammelt C, Sakschewski B, Scholtens J, Tharammal T, van Vuuren D, Verburg PH, Winkelmann R, Zimm C, Bennett E, Bjørn A, Bringezu S, Broadgate WJ, Bulkeley H, Crona B, Green PA, Hoff H, Huang L, Hurlbert M, Inoue CYA, Kılkış Ş, Lade SJ, Liu J, Nadeem I, Ndehedehe C, Okereke C, Otto IM, Pedde S, Pereira L, Schulte-Uebbing L, Tàbara JD, de Vries W, Whiteman G, Xiao C, Xu X, Zafra-Calvo N, Zhang X, Fezzigna P, and Gentile G
- Subjects
- Humans, Climate Change, Earth, Planet, Global Health
- Abstract
Competing Interests: Declaration of interests We declare no competing interests.
- Published
- 2024
- Full Text
- View/download PDF
10. Successful implementation of global targets to reduce nutrient and pesticide pollution requires suitable indicators.
- Author
-
Möhring N, Kanter D, Aziz T, Castro IB, Maggi F, Schulte-Uebbing L, Seufert V, Tang FHM, Zhang X, and Leadley P
- Subjects
- Agriculture, Environmental Monitoring, Nutrients, Pesticides analysis
- Published
- 2023
- Full Text
- View/download PDF
11. Safe and just Earth system boundaries.
- Author
-
Rockström J, Gupta J, Qin D, Lade SJ, Abrams JF, Andersen LS, Armstrong McKay DI, Bai X, Bala G, Bunn SE, Ciobanu D, DeClerck F, Ebi K, Gifford L, Gordon C, Hasan S, Kanie N, Lenton TM, Loriani S, Liverman DM, Mohamed A, Nakicenovic N, Obura D, Ospina D, Prodani K, Rammelt C, Sakschewski B, Scholtens J, Stewart-Koster B, Tharammal T, van Vuuren D, Verburg PH, Winkelmann R, Zimm C, Bennett EM, Bringezu S, Broadgate W, Green PA, Huang L, Jacobson L, Ndehedehe C, Pedde S, Rocha J, Scheffer M, Schulte-Uebbing L, de Vries W, Xiao C, Xu C, Xu X, Zafra-Calvo N, and Zhang X
- Subjects
- Humans, Aerosols metabolism, Climate, Water metabolism, Nutrients metabolism, Climate Change, Earth, Planet, Environmental Justice, Safety legislation & jurisprudence, Safety standards, Internationality
- Abstract
The stability and resilience of the Earth system and human well-being are inseparably linked
1-3 , yet their interdependencies are generally under-recognized; consequently, they are often treated independently4,5 . Here, we use modelling and literature assessment to quantify safe and just Earth system boundaries (ESBs) for climate, the biosphere, water and nutrient cycles, and aerosols at global and subglobal scales. We propose ESBs for maintaining the resilience and stability of the Earth system (safe ESBs) and minimizing exposure to significant harm to humans from Earth system change (a necessary but not sufficient condition for justice)4 . The stricter of the safe or just boundaries sets the integrated safe and just ESB. Our findings show that justice considerations constrain the integrated ESBs more than safety considerations for climate and atmospheric aerosol loading. Seven of eight globally quantified safe and just ESBs and at least two regional safe and just ESBs in over half of global land area are already exceeded. We propose that our assessment provides a quantitative foundation for safeguarding the global commons for all people now and into the future., (© 2023. The Author(s).)- Published
- 2023
- Full Text
- View/download PDF
12. Spatially explicit boundaries for agricultural nitrogen inputs in the European Union to meet air and water quality targets.
- Author
-
de Vries W, Schulte-Uebbing L, Kros H, Voogd JC, and Louwagie G
- Abstract
Agricultural production in the EU has increased strongly since the 1940s, partly driven by increased nitrogen (N) fertiliser and manure inputs. Increased N inputs and associated losses, however, adversely affect air and water quality, with widespread impacts on terrestrial and aquatic ecosystems and human health. Managing these impacts requires knowledge on 'safe boundaries' for N inputs, i.e., N flows that do not exceed environmental thresholds. We used a spatially explicit N balance model for the EU to derive boundaries for N losses and associated N inputs for three environmental thresholds: (i) N deposition onto natural areas to protect terrestrial biodiversity (critical N loads), (ii) N concentration in runoff to surface water (2.5 mg N l
-1 ) to protect aquatic ecosystems and (iii) nitrate (NO3 ) concentration in leachate to groundwater (50 mg NO l- ) concentration in leachate to groundwater (50 mg NO l-1 ) to meet the EU drinking water standard. Critical N losses and inputs were calculated for ~40,000 unique soil-slope-climate combinations and then aggregated at country- and EU-level. To respect thresholds for N deposition, N inputs in the EU need to be reduced by 31% on average, ranging from 0% in several countries to 59% in Ireland and Denmark. The strongest reductions are required in intensive livestock regions, such as Benelux, Brittany and the Po valley. To respect thresholds for N concentration in runoff to surface water, N inputs need to be reduced by 43% on average, ranging from 2% in Estonia to 74% in the Netherlands. Average critical N inputs in view of the threshold for NO3 - concentration in leachate to groundwater are close to actual (year 2010) inputs, even though leaching thresholds are exceeded in 18% of agricultural land. Critical N inputs and their exceedances presented in this paper can inform more targeted mitigation policies than flat-rate targets for N loss reductions currently mentioned in EU policies., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.)- Published
- 2021
- Full Text
- View/download PDF
13. Global-scale impacts of nitrogen deposition on tree carbon sequestration in tropical, temperate, and boreal forests: A meta-analysis.
- Author
-
Schulte-Uebbing L and de Vries W
- Subjects
- Biomass, Carbon, Nitrogen chemistry, Trees growth & development, Carbon Sequestration, Forests, Nitrogen metabolism, Taiga, Tropical Climate
- Abstract
Elevated nitrogen (N) deposition may increase net primary productivity in N-limited terrestrial ecosystems and thus enhance the terrestrial carbon (C) sink. To assess the magnitude of this N-induced C sink, we performed a meta-analysis on data from forest fertilization experiments to estimate N-induced C sequestration in aboveground tree woody biomass, a stable C pool with long turnover times. Our results show that boreal and temperate forests responded strongly to N addition and sequestered on average an additional 14 and 13 kg C per kg N in aboveground woody biomass, respectively. Tropical forests, however, did not respond significantly to N addition. The common hypothesis that tropical forests do not respond to N because they are phosphorus-limited could not be confirmed, as we found no significant response to phosphorus addition in tropical forests. Across climate zones, we found that young forests responded more strongly to N addition, which is important as many previous meta-analyses of N addition experiments rely heavily on data from experiments on seedlings and young trees. Furthermore, the C-N response (defined as additional mass unit of C sequestered per additional mass unit of N addition) was affected by forest productivity, experimental N addition rate, and rate of ambient N deposition. The estimated C-N responses from our meta-analysis were generally lower that those derived with stoichiometric scaling, dynamic global vegetation models, and forest growth inventories along N deposition gradients. We estimated N-induced global C sequestration in tree aboveground woody biomass by multiplying the C-N responses obtained from the meta-analysis with N deposition estimates per biome. We thus derived an N-induced global C sink of about 177 (112-243) Tg C/year in aboveground and belowground woody biomass, which would account for about 12% of the forest biomass C sink (1,400 Tg C/year)., (© 2017 John Wiley & Sons Ltd.)
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.