1. Allosteric modulation of α4β2* nicotinic acetylcholine receptors: Desformylflustrabromine potentiates antiallodynic response of nicotine in a mouse model of neuropathic pain.
- Author
-
Bagdas, D., Ergun, D., Jackson, A., Toma, W., Schulte, M. K., and Damaj, M. I.
- Subjects
THERAPEUTIC use of alkaloids ,CHOLINERGIC receptors ,ALKALOIDS ,ANIMAL experimentation ,BIOCHEMISTRY ,BIOLOGICAL models ,PHENOMENOLOGY ,MICE ,NEURALGIA ,NICOTINE ,RESEARCH funding ,BROMINATED hydrocarbons ,NICOTINIC agonists ,PHARMACODYNAMICS ,THERAPEUTICS - Abstract
Background: Neuronal nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels. The α4β2 subtype of nAChRs plays an important role in the mediation of pain and several nicotine-evoked responses. Agonists and partial agonists of α4β2 nAChRs show efficacy in animal pain models. In addition, the antinociceptive properties of nicotine, a non-selective nAChR agonist with a high affinity for α4β2 nAChRs, is well-known. There is a growing body of evidence pointing to allosteric modulation of nAChRs as an alternative treatment strategy in experimental pain. Desformylflustrabromine (dFBr) is a positive allosteric modulator (PAM) at α4β2 nAChRs that enhances agonist responses without activating receptors. We hypothesized that dFBr may enhance nicotine-induced antinociception.Methods: The present study investigated whether dFBr could attenuate mouse chronic constriction injury (CCI)-induced neuropathic pain by increasing endogenous cholinergic tone or potentiating the nicotine-evoked antiallodynic response.Results: We found that subcutaneous administration of dFBr failed to reduce pain behaviour on its own. However, the combination of dFBr with nicotine significantly reversed neuropathic pain behaviour dose- and time-dependently without motor impairment. Our data revealed that this effect was mediated by the α4β2 nAChRs by using competitive α4β2 antagonist dihydro-β-erythroidine. In addition, dFBr failed to potentiate the antiallodynic effect of morphine, which shows the effect of dFBr is unique to α4β2 nAChRs.Conclusions: The present results suggest that allosteric modulation of α4β2 nAChR may provide new strategies in chronic neuropathic pain.Significance: α4β2 nAChRs are involved in pain modulation. dFBr, a PAM at α4β2 nAChRs, potentiates the nicotine response dose-dependently in neuropathic pain. Thus, the present results suggest that allosteric modulation of α4β2* nAChR may provide new strategies in chronic neuropathic pain. [ABSTRACT FROM AUTHOR]- Published
- 2018
- Full Text
- View/download PDF