1. Competitive actions of MnSi in the epitaxial growth of Mn5Si3 thin films on Si(111)
- Author
-
Kounta, Ismaïla, Reichlova, Helena, Kriegner, Dominik, Lopes Seeger, Rafael, Bad'Ura, Antonin, Leiviska, Miina, Boussadi, Amine, Heresanu, Vasile, Bertaina, Sylvain, Petit, Matthieu, Schmoranzerova, Eva, Smejkal, Libor, Sinova, Jairo, Jungwirth, Tomas, Baltz, Vincent, Goennenwein, Sebastian, Michez, Lisa, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU), Institut für Festkörper- und Materialphysik, Technische Universität Dresden, Technische Universität Dresden = Dresden University of Technology (TU Dresden), Dresden-Würzburg Center of Excellence on Complexity and Topology in Quantum Matte (ct.qmat), Institute of Physics of the Czech Academy of Sciences (FZU / CAS), Czech Academy of Sciences [Prague] (CAS), SPINtronique et TEchnologie des Composants (SPINTEC), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Faculty of Mathematics and Physics [Charles University of Praha], Charles University [Prague] (CU), Institut des Matériaux, de Microélectronique et des Nanosciences de Provence (IM2NP), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Polytech Marseille (AMU POLYTECH), Institut für Physik Johannes Gutenberg Universität, Johannes Gutenberg - Universität Mainz = Johannes Gutenberg University (JGU), School of Physics and Astronomy, University of Nottingham, Fachbereich Physik, Universität Konstanz, Universitätsstraße 10, D-78453 Konstanz, Germany ( Fachbereich Physik, Universität Konstanz), Fachbereich Physik, Universität Konstanz, GACR Grant No. 22-17899K, Lumina Quaeruntur fellowship of the Czech Academy of Science (Grant No. LQ100102201), Elasto-Q-Mat (DFG SFB TRR 288), and ANR-20-CE92-0049,MATHEEIAS,Effets magnéto-thermo-électriques en électronique de spin antiferromagnétique(2020)
- Subjects
Mn5Si3 ,Antiferromagnetism ,Interface & surface thermodynamics ,Anomalous hall effect ,MBE - Molecular Beam Epitaxy ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Spintronics - Abstract
International audience; Some magnetically ordered phases of the Mn5Si3 crystal are proving to be prototypes for the study of thenew fundamental spin physics related to the spontaneous breaking of the time-reversal symmetry despite a zeronet magnetization. Here, we report on a route to grow epitaxial Mn5Si3 thin films on Si(111). To this end, weuse Mn and Si codeposition in a molecular beam epitaxy system and carefully tune the deposition rates, thegrowth temperature, and the annealing temperature. We assessed the silicide phase-formation and morphologyusing reflection high-energy electron diffraction, x-ray diffraction, high-resolution transmission electron mi-croscopy (HRTEM) and atomic force microscopy. Layers containing only Mn5Si3 could be stabilized undervery restrictive conditions, by tuning the Mn/Si flux ratio to match the compound stoichiometry and adjustingthe substrate temperature during growth to 443 K. HRTEM imaging revealed the existence of an interfacialamorphous layer of few nanometers thickness. Annealing the heterostructure up to 573 K led to the formationof MnSi at the vicinity of the Mn5Si3/Si(111) interface, which significantly reduced the nucleation barrier ofMn5Si3. High-quality crystalline Mn5Si3 thin films were then formed with the following epitaxial relationships:Mn5Si3 (0001)[011̄0]//MnSi(111)[2̄11]//Si(111)[11̄0]. Our experiments showed that the formation of MnSi isenhanced at a growth temperature above 473 K or for a longer annealing step, while the crystalline quality of theMn5Si3 overlayer is correspondingly degraded leading to textured thin films. The growth pathways and structuralproperties of the manganese silicides can be rationalized in terms of reactions maximizing the free-energylowering rate. Moreover, we found that the magnetic and the magnetotransport properties can be used as anefficient tool to track both Mn5Si3 crystallinity and proportion in the deposited layers.
- Published
- 2023