1. Properties of wild-type and fluorescent protein-tagged mouse tetrodotoxin-resistant sodium channel (Na V 1.8) heterologously expressed in rat sympathetic neurons.
- Author
-
Schofield GG, Puhl HL 3rd, and Ikeda SR
- Subjects
- Animals, Cell Separation, Clone Cells metabolism, DNA, Complementary biosynthesis, DNA, Complementary genetics, Drug Resistance, Electrophysiology, Green Fluorescent Proteins, HeLa Cells, Humans, Mice, NAV1.8 Voltage-Gated Sodium Channel, Neurons drug effects, Neurons physiology, Rats, Reverse Transcriptase Polymerase Chain Reaction, Sodium Channels biosynthesis, Sodium Channels genetics, Superior Cervical Ganglion cytology, Superior Cervical Ganglion metabolism, Sympathetic Nervous System cytology, Sympathetic Nervous System drug effects, Transfection, Neurons metabolism, Sodium Channel Blockers pharmacology, Sodium Channels physiology, Sympathetic Nervous System metabolism, Tetrodotoxin pharmacology
- Abstract
The tetrodotoxin (TTX)-resistant Na(+) current arising from Na(V)1.8-containing channels participates in nociceptive pathways but is difficult to functionally express in traditional heterologous systems. Here, we show that injection of cDNA encoding mouse Na(V)1.8 into the nuclei of rat superior cervical ganglion (SCG) neurons results in TTX-resistant Na(+) currents with amplitudes equal to or exceeding the currents arising from natively expressing channels of mouse dorsal root ganglion (DRG) neurons. The activation and inactivation properties of the heterologously expressed Na(V)1.8 Na(+) channels were similar but not identical to native TTX-resistant channels. Most notably, the half-activation potential of the heterologously expressed Na(V)1.8 channels was shifted about 10 mV toward more depolarized potentials. Fusion of fluorescent proteins to the N- or C-termini of Na(V)1.8 did not substantially affect functional expression in SCG neurons. Unexpectedly, fluorescence was not concentrated at the plasma membrane but found throughout the interior of the neuron in a granular pattern. A similar expression pattern was observed in nodose ganglion neurons expressing the tagged channels. In contrast, expression of tagged Na(V)1.8 in HeLa cells revealed a fluorescence pattern consistent with sequestration in the endoplasmic reticulum, thus providing a basis for poor functional expression in clonal cell lines. Our results establish SCG neurons as a favorable surrogate for the expression and study of molecularly defined Na(V)1.8-containing channels. The data also indicate that unidentified factors may be required for the efficient functional expression of Na(V)1.8 with a biophysical phenotype identical to that found in sensory neurons.
- Published
- 2008
- Full Text
- View/download PDF