852 results on '"Schönert, S"'
Search Results
2. Optimal Operation of Cryogenic Calorimeters Through Deep Reinforcement Learning
- Author
-
Angloher, G., Banik, S., Benato, G., Bento, A., Bertolini, A., Breier, R., Bucci, C., Burkhart, J., Canonica, L., D’Addabbo, A., Di Lorenzo, S., Einfalt, L., Erb, A., v. Feilitzsch, F., Fichtinger, S., Fuchs, D., Garai, A., Ghete, V. M., Gorla, P., Guillaumon, P. V., Gupta, S., Hauff, D., Ješkovský, M., Jochum, J., Kaznacheeva, M., Kinast, A., Kuckuk, S., Kluck, H., Kraus, H., Langenkämper, A., Mancuso, M., Marini, L., Mauri, B., Meyer, L., Mokina, V., Niedermayer, K., Olmi, M., Ortmann, T., Pagliarone, C., Pattavina, L., Petricca, F., Potzel, W., Povinec, P., Pröbst, F., Pucci, F., Reindl, F., Rothe, J., Schäffner, K., Schieck, J., Schönert, S., Schwertner, C., Stahlberg, M., Stodolsky, L., Strandhagen, C., Strauss, R., Usherov, I., Wagner, F., Wagner, V., Willers, M., Zema, V., Heitzinger, C., and Waltenberger, W.
- Published
- 2024
- Full Text
- View/download PDF
3. Detector Development for the CRESST Experiment
- Author
-
Angloher, G., Banik, S., Benato, G., Bento, A., Bertolini, A., Breier, R., Bucci, C., Burkhart, J., Canonica, L., D’Addabbo, A., Di Lorenzo, S., Einfalt, L., Erb, A., Feilitzsch, F. V., Fichtinger, S., Fuchs, D., Garai, A., Ghete, V. M., Gorla, P., Guillaumon, P. V., Gupta, S., Hauff, D., Ješkovský, M., Jochum, J., Kaznacheeva, M., Kinast, A., Kluck, H., Kraus, H., Kuckuk, S., Langenkämper, A., Mancuso, M., Marini, L., Mauri, B., Meyer, L., Mokina, V., Olmi, M., Ortmann, T., Pagliarone, C., Pattavina, L., Petricca, F., Potzel, W., Povinec, P., Pröbst, F., Pucci, F., Reindl, F., Rothe, J., Schäffner, K., Schieck, J., Schönert, S., Schwertner, C., Stahlberg, M., Stodolsky, L., Strandhagen, C., Strauss, R., Usherov, I., Wagner, F., Willers, M., and Zema, V.
- Published
- 2024
- Full Text
- View/download PDF
4. Erratum to: DoubleTES detectors to investigate the CRESST low energy background: results from above-ground prototypes
- Author
-
Angloher, G., Banik, S., Benato, G., Bento, A., Bertolini, A., Breier, R., Bucci, C., Burkhart, J., Canonica, L., D’Addabbo, A., Lorenzo, S. Di, Einfalt, L., Erb, A., Feilitzsch, F. v., Fichtinger, S., Fuchs, D., Garai, A., Ghete, V. M., Gorla, P., Guillaumon, P. V., Gupta, S., Hauff, D., Ješkovský, M., Jochum, J., Kaznacheeva, M., Kinast, A., Kluck, H., Kraus, H., Kuckuk, S., Langenkämper, A., Mancuso, M., Marini, L., Mauri, B., Meyer, L., Mokina, V., Olmi, M., Ortmann, T., Pagliarone, C., Pattavina, L., Petricca, F., Potzel, W., Povinec, P., Pröbst, F., Pucci, F., Reindl, F., Rothe, J., Schäffner, K., Schieck, J., Schönert, S., Schwertner, C., Stahlberg, M., Stodolsky, L., Strandhagen, C., Strauss, R., Usherov, I., Wagner, F., Wagner, V., and Zema, V.
- Published
- 2024
- Full Text
- View/download PDF
5. The Monument experiment: ordinary muon capture studies for 0νββ decay
- Author
-
Araujo, G. R., Bajpai, D., Baudis, L., Belov, V., Bossio, E., Cocolios, T. E., Ejiri, H., Fomina, M., Gusev, K., Hashim, I. H., Heines, M., Kazartsev, S., Knecht, A., Mondragón, E., Ng, Z. W., Ostrovskiy, I., Othman, F., Rumyantseva, N., Schönert, S., Schwarz, M., Shevchik, E., Shirchenko, M., Shitov, Yu, Sushenok, E. O., Suhonen, J., Vogiatzi, S. M., Wiesinger, C., Zhitnikov, I., and Zinatulina, D.
- Published
- 2024
- Full Text
- View/download PDF
6. Constraints on self-interaction cross-sections of dark matter in universal bound states from direct detection
- Author
-
Angloher, G., Banik, S., Benato, G., Bento, A., Bertolini, A., Breier, R., Bucci, C., Burkhart, J., Cipelli, E., Canonica, L., D’Addabbo, A., Di Lorenzo, S., Einfalt, L., Erb, A., Feilitzsch, F. v., Fichtinger, S., Fuchs, D., Garai, A., Ghete, V. M., Gorla, P., Guillaumon, P. V., Gupta, S., Hauff, D., Ješkovský, M., Jochum, J., Kaznacheeva, M., Kinast, A., Kuckuk, S., Kluck, H., Kraus, H., Langenkämper, A., Mancuso, M., Marini, L., Mauri, B., Meyer, L., Mokina, V., Olmi, M., Ortmann, T., Pagliarone, C., Pattavina, L., Petricca, F., Potzel, W., Povinec, P., Pröbst, F., Pucci, F., Reindl, F., Rothe, J., Schäffner, K., Schieck, J., Schönert, S., Schwertner, C., Stahlberg, M., Stodolsky, L., Strandhagen, C., Strauss, R., Usherov, I., Wagner, F., Wagner, V., and Zema, V.
- Published
- 2024
- Full Text
- View/download PDF
7. DoubleTES detectors to investigate the CRESST low energy background: results from above-ground prototypes
- Author
-
Angloher, G., Banik, S., Benato, G., Bento, A., Bertolini, A., Breier, R., Bucci, C., Burkhart, J., Canonica, L., D’Addabbo, A., Lorenzo, S. Di, Einfalt, L., Erb, A., Feilitzsch, F. v., Fichtinger, S., Fuchs, D., Garai, A., Ghete, V. M., Gorla, P., Guillaumon, P. V., Gupta, S., Hauff, D., Ješkovský, M., Jochum, J., Kaznacheeva, M., Kinast, A., Kluck, H., Kraus, H., Kuckuk, S., Langenkämper, A., Mancuso, M., Marini, L., Mauri, B., Meyer, L., Mokina, V., Olmi, M., Ortmann, T., Pagliarone, C., Pattavina, L., Petricca, F., Potzel, W., Povinec, P., Pröbst, F., Pucci, F., Reindl, F., Rothe, J., Schäffner, K., Schieck, J., Schönert, S., Schwertner, C., Stahlberg, M., Stodolsky, L., Strandhagen, C., Strauss, R., Usherov, I., Wagner, F., Wagner, V., and Zema, V.
- Published
- 2024
- Full Text
- View/download PDF
8. A likelihood framework for cryogenic scintillating calorimeters used in the CRESST dark matter search
- Author
-
Angloher, G., Banik, S., Benato, G., Bento, A., Bertolini, A., Breier, R., Bucci, C., Burkhart, J., Canonica, L., D’Addabbo, A., Lorenzo, S. Di, Einfalt, L., Erb, A., Feilitzsch, F. v., Fichtinger, S., Fuchs, D., Garai, A., Ghete, V. M., Gorla, P., Guillaumon, P. V., Gupta, S., Hauff, D., Ješkovský, M., Jochum, J., Kaznacheeva, M., Kinast, A., Kluck, H., Kraus, H., Kuckuk, S., Langenkämper, A., Mancuso, M., Marini, L., Mauri, B., Meyer, L., Mokina, V., Olmi, M., Ortmann, T., Pagliarone, C., Pattavina, L., Petricca, F., Potzel, W., Povinec, P., Pröbst, F., Pucci, F., Reindl, F., Rothe, J., Schäffner, K., Schieck, J., Schmiedmayer, D., Schönert, S., Schwertner, C., Stahlberg, M., Stodolsky, L., Strandhagen, C., Strauss, R., Usherov, I., Wagner, F., Wagner, V., and Zema, V.
- Published
- 2024
- Full Text
- View/download PDF
9. Searches for new physics below twice the electron mass with GERDA
- Author
-
Agostini, M., Alexander, A., Araujo, G., Bakalyarov, A. M., Balata, M., Barabanov, I., Baudis, L., Bauer, C., Belogurov, S., Bettini, A., Bezrukov, L., Biancacci, V., Bossio, E., Bothe, V., Brugnera, R., Caldwell, A., Calgaro, S., Cattadori, C., Chernogorov, A., Chiu, P.-J., Comellato, T., D’Andrea, V., Demidova, E. V., Marco, N. Di, Doroshkevich, E., Fomina, M., Gangapshev, A., Garfagnini, A., Gooch, C., Grabmayr, P., Gurentsov, V., Gusev, K., Hakenmüller, J., Hemmer, S., Hofmann, W., Huang, J., Hult, M., Inzhechik, L. V., Csáthy, J. Janicskó, Jochum, J., Junker, M., Kazalov, V., Kermaïdic, Y., Khushbakht, H., Kihm, T., Kilgus, K., Kirpichnikov, I. V., Klimenko, A., Knöpfle, K. T., Kochetov, O., Kornoukhov, V. N., Krause, P., Kuzminov, V. V., Laubenstein, M., Lindner, M., Lippi, I., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Macolino, C., Majorovits, B., Maneschg, W., Marshall, G., Misiaszek, M., Morella, M., Müller, Y., Nemchenok, I., Neuberger, M., Pandola, L., Pelczar, K., Pertoldi, L., Piseri, P., Pullia, A., Ransom, C., Rauscher, L., Redchuk, M., Riboldi, S., Rumyantseva, N., Sada, C., Sailer, S., Salamida, F., Schönert, S., Schreiner, J., Schütz, A-K., Schulz, O., Schwarz, M., Schwingenheuer, B., Selivanenko, O., Shevchik, E., Shirchenko, M., Shtembari, L., Simgen, H., Smolnikov, A., Stukov, D., Sullivan, S., Vasenko, A. A., Veresnikova, A., Vignoli, C., Sturm, K. von, Wester, T., Wiesinger, C., Wojcik, M., Yanovich, E., Zatschler, B., Zhitnikov, I., Zhukov, S. V., Zinatulina, D., Zschocke, A., Zuber, K., and Zuzel, G.
- Published
- 2024
- Full Text
- View/download PDF
10. Borexino's search for low-energy neutrinos associated with gravitational wave events from GWTC-3 database
- Author
-
BOREXINO Collaboration, Basilico, D., Bellini, G., Benziger, J., Biondi, R., Caccianiga, B., Calaprice, F., Caminata, A., Chepurnov, A., Angelo, D. D', Derbin, A., Di Giacinto, A., Di Marcello, V., Ding, X. F., Di Ludovico, A., Di Noto, L., Drachnev, I., Franco, D., Galbiati, C., Ghiano, C., Giammarchi, M., Goretti, A., Gromov, M., Guffanti, D., Ianni, Aldo, Ianni, Andrea, Jany, A., Kobychev, V., Korga, G., Kumaran, S., Laubenstein, M., Litvinovich, E., Lombardi, P., Lomskaya, I., Ludhova, L., Machulin, I., Martyn, J., Meroni, E., Miramonti, L., Misiaszek, M., Muratova, V., Nugmanov, R., Oberauer, L., Orekhov, V., Ortica, F., Pallavicini, M., Pelicci, L., Penek, O., Pietrofaccia, L., Pilipenko, N., Pocar, A., Raikov, G., Ranalli, M. T., Ranucci, G., Razeto, A., Re, A., Rossi, N., Schonert, S., Semenov, D., Settanta, G., Skorokhvatov, M., Singhal, A., Smirnov, O., Sotnikov, A., Tartaglia, R., Testera, G., Unzhakov, E., Vishneva, A., Vogelaar, R. B., von Feilitzsch, F., Wojcik, M., Wurm, M., Zavatarelli, S., Zuber, K., and Zuzel, G.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,High Energy Physics - Experiment ,High Energy Physics - Phenomenology - Abstract
The search for neutrino events in correlation with gravitational wave (GW) events for three observing runs (O1, O2 and O3) from 09/2015 to 03/2020 has been performed using the Borexino data-set of the same period. We have searched for signals of neutrino-electron scattering with visible energies above 250 keV within a time window of 1000 s centered at the detection moment of a particular GW event. The search was done with three visible energy thresholds of 0.25, 0.8 and 3.0 MeV.Two types of incoming neutrino spectra were considered: the mono-energetic line and the spectrum expected from supernovae. The same spectra were considered for electron antineutrinos detected through inverse beta-decay (IBD) reaction. GW candidates originated by merging binaries of black holes (BHBH), neutron stars (NSNS) and neutron star and black hole (NSBH) were analysed separately. Additionally, the subset of most intensive BHBH mergers at closer distances and with larger radiative mass than the rest was considered. In total, follow-ups of 74 out of 93 gravitational waves reported in the GWTC-3 catalog were analyzed and no statistically significant excess over the background was observed. As a result, the strongest upper limits on GW-associated neutrino and antineutrino fluences for all flavors (\nu_e, \nu_\mu, \nu_\tau) have been obtained in the (0.5 - 5.0) MeV neutrino energy range., Comment: 13 pages, 8 figures
- Published
- 2023
- Full Text
- View/download PDF
11. Coherent elastic neutrino-nucleus scattering: Terrestrial and astrophysical applications
- Author
-
Abdullah, M., Abele, H., Akimov, D., Angloher, G., Aristizabal-Sierra, D., Augier, C., Balantekin, A. B., Balogh, L., Barbeau, P. S., Baudis, L., Baxter, A. L., Beaufort, C., Beaulieu, G., Belov, V., Bento, A., Berge, L., Bernardi, I. A., Billard, J., Bolozdynya, A., Bonhomme, A., Bres, G., Bret, J-. L., Broniatowski, A., Brossard, A., Buck, C., Cadeddu, M., Calvo, M., Canonica, L., Cappella, F., Cardani, L., Casali, N., Cazes, A., Cerulli, R., Chaize, D., Chang, C., Chapellier, M., Chaplinsky, L., Chemin, G., Chen, R., Colantoni, I., Colas, J., Coloma, P., Corcoran, E. C., Crawford, S., Cruciani, A., Fard, A. Dastgheibi, De Jesus, M., de Marcillac, P., De Romeri, V., del Castello, G., del GalloRoccagiovine, M., Delicato, D., Demarteau, M., Deng, Y., Dent, J. B., Denton, P. B., Dering, K., Doblhammer, A., Dordei, F., Dorer, S., Dumoulin, L., Dunford, D., Dutta, B., Erhart, A., Exshaw, O., Ferriol, S., Figueroa-Feliciano, E., Filippini, J. B., Flores, L . J., Formaggio, J. A., Friedl, M., Fuard, S., Gao, F., Garai, A., Garces, E. A., Gascon, J., Gehrlein, J., Gerbier, G., Ghete, V. M., Giomataris, I., Giroux, G., Giuliani, A., Giunti, C., Gorel, P., Goupy, C., Goupy, J., Goy, C., Green, M. P., Gros, M., Guerin, C., Guidi, V., Guillaudin, O., Guy, E., Ha, C., Hauff, D., Hakenmuller, J., Harrington, P. M., Hedges, S., Heine, S. T., Hertel, S., Heusch, M., Hoarau, C., Hoferichter, M., Hoppe, E. W., Hong, Z., Horiuchi, S., Huber, P., Ianigro, J. C., Jachowicz, N., Jericha, E., Jin, Y., Johnston, J. P., Juillard, A., Katsioulas, I., Kazarcev, S., Kaznacheeva, M., Kelly, F., Kelly, K. J., Kim, D., Kinast, A., Klinkenberg, L., Kluck, H., Knights, P., Ko, Y. J., Kosmas, T. S., Kwon, L., Lamblin, J., Lang, R. F., Langenkamper, A., Langrock, S., Lasserre, T., Lattaud, H., Lautridou, P., Lee, H. S., Lenardo, B. G., Lhuillier, D., Li, M., Li, S. C., Li, Y. F., Li, Z., Lindner, M., Liu, J., Loomba, D., Lubashevskiy, A., Machado, P. A. N., Mancuso, M., Maneschg, W., Markoff, D. M., Marnieros, S., Martin, R., Martin, R. D., Mauri, B., Mayer, D. W., Mazzolari, A., Mazzucato, E., Menendez, J., Minet, J., Miranda, O. G., Misiak, D., Mols, J. -P., Monfardini, A., Mounier, F., Muraz, J. F., Neep, T., Neilson, R., Newby, J., Newstead, J. L., Neyrial, H., Ni, K., Nikolopoulos, K., Nones, C., Norcini, D., Pandey, V., O'Brien, P., O'Hare, C. A. J., Oberauer, L., Oliver, W., Olivieri, E., Onillon, A., Oriol, C., Ortmann, T., Owen, R., Palladino, K. J., Papoulias, D. K., Park, J. C., Parno, D. S., Patel, P. K., Pattavina, L., Peinado, E., Perbet, E., Peters, L., Petricca, F., Pinckney, H. D., Piro, M. -C., Ponomarev, D., Poda, D., Potzel, W., Probst, F., Pucci, F., Rarbi, F., Rapp, R., Ray, H., Real, J. -S., Reindl, F., Rich, G. C., Ricol, J. S., Rink, T., Redon, T., Rogly, R., Robert, A., Rothe, J., Rozov, S., Rozova, I., Salagnac, T., Garcia, E. Sanchez, Garcia, G. Sanchez, Sanders, O., Sanglard, V., Santos, D., Sarkis, Y., Savu, V., Savvidis, G., Savvidis, I., Schermer, N., Schieck, J., Schmidt, B., Schonert, S., Scholberg, K., Schwenk, A., Schwertner, C., Scola, L., Shevchik, Ye., Shin, S., Sibille, V., Shoemaker, I. M., Snowden-Ifft, D. P., Soldner, T., Soum, G., Spooner, N. J. C., Stachurska, J., Stodolsky, L., Strauss, R., Strigari, L. E., Stutz, A., Suh, B. D., Suhonen, J., Tabrizi, Z., Takhistov, V., Thompson, A., Tomei, C., Tortola, M., Tripathi, M., Vagneron, L., Valle, J. W. F., Mirbach, K. v., Van De Ponteseele, W., Vignati, M., Vivier, M., Fernandez, F. Vazquez de Sola, Vezzu, F., Vidal, M., Wagner, V., Walker, J. W., Ward, R., Wex, A., Winslow, L., Wong, H. T., Wood, M. H., Xu, J., Yang, L., Yakushev, E., Zampaolo, M., Zettlemoyer, J., Zhang, Y. Y., and Zinatulina, D.
- Subjects
High Energy Physics - Phenomenology ,Astrophysics - High Energy Astrophysical Phenomena ,High Energy Physics - Experiment - Abstract
Coherent elastic neutrino-nucleus scattering (CE$\nu$NS) is a process in which neutrinos scatter on a nucleus which acts as a single particle. Though the total cross section is large by neutrino standards, CE$\nu$NS has long proven difficult to detect, since the deposited energy into the nucleus is $\sim$ keV. In 2017, the COHERENT collaboration announced the detection of CE$\nu$NS using a stopped-pion source with CsI detectors, followed up the detection of CE$\nu$NS using an Ar target. The detection of CE$\nu$NS has spawned a flurry of activities in high-energy physics, inspiring new constraints on beyond the Standard Model (BSM) physics, and new experimental methods. The CE$\nu$NS process has important implications for not only high-energy physics, but also astrophysics, nuclear physics, and beyond. This whitepaper discusses the scientific importance of CE$\nu$NS, highlighting how present experiments such as COHERENT are informing theory, and also how future experiments will provide a wealth of information across the aforementioned fields of physics., Comment: contribution to Snowmasss 2021. Contact authors: P. S. Barbeau, R. Strauss, L. E. Strigari
- Published
- 2022
12. Light dark matter search using a diamond cryogenic detector
- Author
-
Angloher, G., Banik, S., Benato, G., Bento, A., Bertolini, A., Breier, R., Bucci, C., Burkhart, J., Canonica, L., D’Addabbo, A., Lorenzo, S. Di, Einfalt, L., Erb, A., Feilitzsch, F. v., Fichtinger, S., Fuchs, D., Garai, A., Ghete, V. M., Gorla, P., Guillaumon, P. V., Gupta, S., Hauff, D., Jes̆kovský, M., Jochum, J., Kaznacheeva, M., Kinast, A., Kluck, H., Kraus, H., Kuckuk, S., Langenkämper, A., Mancuso, M., Marini, L., Mauri, B., Meyer, L., Mokina, V., Olmi, M., Ortmann, T., Pagliarone, C., Pattavina, L., Petricca, F., Potzel, W., Povinec, P., Pröbst, F., Pucci, F., Reindl, F., Rothe, J., Schäffner, K., Schieck, J., Schönert, S., Schwertner, C., Stahlberg, M., Stodolsky, L., Strandhagen, C., Strauss, R., Usherov, I., Wagner, F., Willers, M., and Zema, V.
- Published
- 2024
- Full Text
- View/download PDF
13. Search for Low-Energy Signals from Fast Radio Bursts with the Borexino Detector
- Author
-
Appel, S., Bagdasarian, Z., Basilico, D., Bellini, G., Benziger, J., Biondi, R., Caccianiga, B., Calaprice, F., Caminata, A., Chepurnov, A., D'Angelo, D., Derbin, A., Di Giacinto, A., Di Marcello, V., Ding, X. F., Di Ludovico, A., Di Noto, L., Drachnev, I., Franco, D., Galbiati, C., Ghiano, C., Giammarchi, M., Goretti, A., Gottel, A. S., Gromov, M., Guffantic, D., Ianni, Aldo, Ianni, Andrea, Jany, A., Kobychev, V., Korga, G., Kumaran, S., Laubenstein, M., Litvinovich, E., Lombardi, P., Lomskaya, I., Ludhova, L., Lukyanchenko, G., Machulin, I., Martyn, J., Meroni, E., Miramonti, L., Misiaszek, M., Muratova, V., Nugmanov, R., Oberauer, L., Orekhov, V., Ortica, F., Pallavicini, M., Pelicci, L., Penek, O., Pietrofaccia, L., Pilipenko, N., Pocar, A., Raikov, G., Ranalli, M. T., Ranucci, G., Razeto, A., Re, A., Redchuk, M., Rossi, N., Schonert, S., Semenov, D., Settanta, G., Skorokhvatov, M., Singhal, A., Smirnov, O., Sotnikov, A., Tartaglia, R., Testera, G., Unzhakov, E., Vishneva, A., Vogelaar, R. B., von Feilitzsch, F., Wojcik, M., Wurm, M., Zavatarelli, S., Zhutikov, I., Zuber, K., and Zuzel, G.
- Subjects
High Energy Physics - Experiment ,Astrophysics - Instrumentation and Methods for Astrophysics ,High Energy Physics - Phenomenology - Abstract
The search for neutrino events in correlation with several of the most intense fast radio bursts (FRBs) has been performed using the Borexino data. We have searched for signals with visible energies above $250$~keV within a time window of $\pm$1000~s corresponding to the detection time of a particular FRB. We also applied an alternative approach based on searching for specific shapes of neutrino-electron scattering spectra in the full exposure spectrum of the Borexino detector. In particular, two incoming neutrino spectra were considered: the monoenergetic line and the spectrum expected from supernovae. The same spectra were considered for electron antineutrinos detected through the inverse beta-decay reaction. No statistically significant excess over the background was observed. As a result, the strongest upper limits on FRB-associated neutrino fluences of all flavors have been obtained in the $0.5 - 50$~MeV neutrino energy range., Comment: 14 pages, 10 figures
- Published
- 2021
- Full Text
- View/download PDF
14. α-event characterization and rejection in point-contact HPGe detectors
- Author
-
Arnquist, IJ, Avignone, FT, Barabash, AS, Barton, CJ, Bertrand, FE, Blalock, E, Bos, B, Busch, M, Buuck, M, Caldwell, TS, Chan, Y-D, Christofferson, CD, Chu, P-H, Clark, ML, Cuesta, C, Detwiler, JA, Drobizhev, A, Edwards, TR, Edwins, DW, Edzards, F, Efremenko, Y, Elliott, SR, Gilliss, T, Giovanetti, GK, Green, MP, Gruszko, J, Guinn, IS, Guiseppe, VE, Haufe, CR, Hegedus, RJ, Henning, R, Aguilar, D Hervas, Hoppe, EW, Hostiuc, A, Kim, I, Kouzes, RT, Lopez, AM, López-Castaño, JM, Martin, EL, Martin, RD, Massarczyk, R, Meijer, SJ, Mertens, S, Myslik, J, Oli, TK, Othman, G, Pettus, W, Poon, AWP, Radford, DC, Rager, J, Reine, AL, Rielage, K, Ruof, NW, Saykı, B, Schönert, S, Stortini, MJ, Tedeschi, D, Varner, RL, Vasilyev, S, Wilkerson, JF, Willers, M, Wiseman, C, Xu, W, Yu, C-H, and Zhu, BX
- Subjects
Nuclear and Plasma Physics ,Particle and High Energy Physics ,Synchrotrons and Accelerators ,Physical Sciences ,Clinical Research ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Quantum Physics ,Nuclear & Particles Physics ,Astronomical sciences ,Atomic ,molecular and optical physics ,Particle and high energy physics - Abstract
P-type point contact (PPC) HPGe detectors are a leading technology for rare event searches due to their excellent energy resolution, low thresholds, and multi-site event rejection capabilities. We have characterized a PPC detector's response to α particles incident on the sensitive passivated and p + surfaces, a previously poorly-understood source of background. The detector studied is identical to those in the Majorana Demonstrator experiment, a search for neutrinoless double-beta decay ( 0νββ ) in 76 Ge. α decays on most of the passivated surface exhibit significant energy loss due to charge trapping, with waveforms exhibiting a delayed charge recovery (DCR) signature caused by the slow collection of a fraction of the trapped charge. The DCR is found to be complementary to existing methods of α identification, reliably identifying α background events on the passivated surface of the detector. We demonstrate effective rejection of all surface α events (to within statistical uncertainty) with a loss of only 0.2% of bulk events by combining the DCR discriminator with previously-used methods. The DCR discriminator has been used to reduce the background rate in the 0νββ region of interest window by an order of magnitude in the Majorana Demonstrator and will be used in the upcoming LEGEND-200 experiment.
- Published
- 2022
15. Search for rare alpha and double beta decays of Yb isotopes to excited levels of daughter nuclei
- Author
-
Laubenstein, M, Lehnert, B, Nagorny, SS, and Schönert, S
- Subjects
Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Quantum Physics ,Nuclear & Particles Physics - Abstract
A search for alpha and double beta decays of ytterbium isotopes was performed with an ultra low-background high purity germanium detector at Gran Sasso Underground Laboratory (Italy). A 194.7 g Yb2(C2O4)3 powder sample was measured for 11.3 days with a total Yb exposure of 1.25 kg× day. Half-life limits for α-decay modes of 168Y b, 170Y b, 171Y b, 172Y b, 173Y b, 174Y b and 176Y b into the first excited states have been obtained between 6 × 10 14 years and 2 × 10 16 years. These are the first experimental constraints of these decay modes. Double electron capture of 168Y b and double beta decay of 176Y b into the first excited 2+ and 0+ states could be excluded with limits between 1 × 10 14 years to 8 × 10 16 years. This improves the experimental information on some of the decay modes compared to previous constraints.
- Published
- 2022
16. A plastic scintillation muon veto for sub-Kelvin temperatures
- Author
-
Erhart, A., Wagner, V., Wex, A., Goupy, C., Lhuillier, D., Namuth, E., Nones, C., Rogly, R., Savu, V., Schwarz, M., Strauss, R., Vivier, M., Abele, H., Angloher, G., Bento, A., Burkhart, J., Canonica, L., Cappella, F., Casali, N., Cerulli, R., Cruciani, A., del Castello, G., del Gallo Roccagiovine, M., Doblhammer, A., Dorer, S., Friedl, M., Garai, A., Ghete, V. M., Hauff, D., Jeanneau, F., Jericha, E., Kaznacheeva, M., Kinast, A., Kluck, H., Langenkämper, A., Lasserre, T., Mancuso, M., Martin, R., Mauri, B., Mazzolari, A., Mazzucato, E., Neyrial, H., Oberauer, L., Ortmann, T., Pattavina, L., Peters, L., Petricca, F., Potzel, W., Pröbst, F., Pucci, F., Reindl, F., Romagnoni, M., Rothe, J., Schermer, N., Schieck, J., Schönert, S., Schwertner, C., Scola, L., Soum-Sidikov, G., Stodolsky, L., Tamisari, M., Tomei, C., and Vignati, M.
- Published
- 2024
- Full Text
- View/download PDF
17. Search for tri-nucleon decays of 76Ge in GERDA
- Author
-
Agostini, M., Alexander, A., Araujo, G., Bakalyarov, A. M., Balata, M., Barabanov, I., Baudis, L., Bauer, C., Belogurov, S., Bettini, A., Bezrukov, L., Biancacci, V., Bossio, E., Bothe, V., Brugnera, R., Caldwell, A., Calgaro, S., Cattadori, C., Chernogorov, A., Chiu, P.-J., Comellato, T., D’Andrea, V., Demidova, E. V., Di Giacinto, A., Di Marco, N., Doroshkevich, E., Fischer, F., Fomina, M., Gangapshev, A., Garfagnini, A., Gooch, C., Grabmayr, P., Gurentsov, V., Gusev, K., Hakenmüller, J., Hemmer, S., Hofmann, W., Hult, M., Inzhechik, L. V., Janicskó Csáthy, J., Jochum, J., Junker, M., Kazalov, V., Kermaïdic, Y., Khushbakht, H., Kihm, T., Kilgus, K., Kirpichnikov, I. V., Klimenko, A., Knöpfle, K. T., Kochetov, O., Kornoukhov, V. N., Krause, P., Kuzminov, V. V., Laubenstein, M., Lindner, M., Lippi, I., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Macolino, C., Majorovits, B., Maneschg, W., Manzanillas, L., Marshall, G., Misiaszek, M., Morella, M., Müller, Y., Nemchenok, I., Neuberger, M., Pandola, L., Pelczar, K., Pertoldi, L., Piseri, P., Pullia, A., Rauscher, L., Redchuk, M., Riboldi, S., Rumyantseva, N., Sada, C., Sailer, S., Salamida, F., Schönert, S., Schreiner, J., Schütt, M., Schütz, A.-K., Schulz, O., Schwarz, M., Schwingenheuer, B., Selivanenko, O., Shevchik, E., Shirchenko, M., Shtembari, L., Simgen, H., Smolnikov, A., Stukov, D., Sullivan, S., Vasenko, A. A., Veresnikova, A., Vignoli, C., von Sturm, K., Wester, T., Wiesinger, C., Wojcik, M., Yanovich, E., Zatschler, B., Zhitnikov, I., Zhukov, S. V., Zinatulina, D., Zschocke, A., Zsigmond, A. J., Zuber, K., and Zuzel, G.
- Published
- 2023
- Full Text
- View/download PDF
18. Nucleus: Searching for Coherent Neutrino Nucleus Scattering at Lowest Energies
- Author
-
Kluck, H., Angloher, G., Bento, A., Canonica, L., Cappella, F., Cardani, L., Casali, N., Cerulli, R., Colantoni, I., Cruciani, A., del Castello, G., Erhart, A., Friedl, M., Garai, A., Ghete, V. M., Goupy, C., Guidi, V., Hauff, D., Kaznacheeva, M., Kinast, A., Klinkenberg, L., Langenkämper, A., Lasserre, T., Lhuillier, D., Mancuso, M., Mauri, B., Mazzolari, A., Mazzucato, E., Neyrial, H., Nones, C., Oberauer, L., Onillon, A., Ortmann, T., Pattavina, L., Petricca, F., Potzel, W., Pröbst, F., Pucci, F., Reindl, F., Rogly, R., Rothe, J., Savu, V., Schermer, N., Schieck, J., Schönert, S., Schwertner, C., Scola, L., Stodolsky, L., Strauss, R., Tomei, C., von Mirbach, K., Vignati, M., Vivier, M., Wagner, V., and Wex, A.
- Published
- 2022
- Full Text
- View/download PDF
19. Improving the Quality of CaWO4 Target Crystals for CRESST
- Author
-
Kinast, A., Angloher, G., Benato, G., Bento, A., Bertolini, A., Breier, R., Bucci, C., Canonica, L., D’Addabbo, A., Lorenzo, S. Di, Einfalt, L., Erb, A., Feilitzsch, F. V., Iachellini, N. Ferreiro, Fichtinger, S., Fuchs, D., Fuss, A., Garai, A., Ghete, V.-M., Gorla, P., Gupta, S., Hamilton, F., Hauff, D., Ješkovský, M., Jochum, J., Kaznacheeva, M., Kluck, H., Kraus, H., Langenkämper, A., Mancuso, M., Marini, L., Mokina, V., Nilima, A., Olmi, M., Ortmann, T., Pagliarone, C., Palušová, V., Pattavina, L., Petricca, F., Potzel, W., Povinec, P., Pröbst, F., Pucci, F., Reindl, F., Rothe, J., Schäffner, K., Schieck, J., Schmiedmayer, D., Schönert, S., Schwertner, C., Stahlberg, M., Stodolsky, L., Strandhagen, C., Strauss, R., Usherov, I., Wagner, F., Willers, M., and Zema, V.
- Published
- 2022
- Full Text
- View/download PDF
20. Speeding up complex multivariate data analysis in Borexino with parallel computing based on Graphics Processing Unit
- Author
-
Ding, X. F., Agostini, M., Altenmuller, K., Appel, S., Atroshchenko, V., Bagdasarian, Z., Basilico, D., Bellini, G., Benziger, J., Bick, D., Bonfini, G., Bravo, D., Caccianiga, B., Calaprice, F., Caminata, A., Caprioli, S., Carlini, M., Cavalcante, P., Chepurnov, A., Choi, K., Collica, L., D'Angelo, D., Davini, S., Derbin, A., Di Ludovico, A., Di Noto, L., Drachnev, I., Fomenko, K., Formozov, A., Franco, D., Froborg, F., Gabriele, F., Galbiati, C., Ghiano, C., Giammarchi, M., Goretti, A., Gromov, M., Guffanti, D., Hagner, C., Houdy, T., Hungerford, E., Ianni, Aldo, Ianni, Andrea, Jany, A., Jeschke, D., Kobychev, V., Korablev, D., Korga, G., Kryn, D., Laubenstein, M., Litvinovich, E., Lombardi, F., Lombardi, P., Ludhova, L., Lukyanchenko, G., Lukyanchenko, L., Machulin, I., Manuzio, G., Marcocci, S., Martyn, J., Meroni, E., Meyer, M., Miramonti, L., Misiaszek, M., Muratova, V., Neumair, B., Oberauer, L., Opitz, B., Orekhov, V., Ortica, F., Pallavicini, M., Papp, L., Penek, O., Pilipenko, N., Pocar, A., Porcelli, A., Ranucci, G., Razeto, A., Re, A., Redchuk, M., Romani, A., Roncin, R., Rossi, N., Schonert, S., Semenov, D., Skorokhvatov, M., Smirnov, O., Sotnikov, A., Stokes, L. F. F., Suvorov, Y., Tartaglia, R., Testera, G., Thurn, J., Toropova, M., Unzhakov, E., Vishneva, A., Vogelaar, R. B., von Feilitzsch, F., Wang, H., Weinz, S., Wojcik, M., Wurm, M., Yokley, Z., Zaimidoroga, O., Zavatarelli, S., Zuber, K., and Zuzel, G.
- Subjects
Physics - Data Analysis, Statistics and Probability ,High Energy Physics - Experiment ,Physics - Computational Physics - Abstract
A spectral fitter based on the graphics processor unit (GPU) has been developed for Borexino solar neutrino analysis. It is able to shorten the fitting time to a superior level compared to the CPU fitting procedure. In Borexino solar neutrino spectral analysis, fitting usually requires around one hour to converge since it includes time-consuming convolutions in order to account for the detector response and pile-up effects. Moreover, the convergence time increases to more than two days when including extra computations for the discrimination of $^{11}$C and external $\gamma$s. In sharp contrast, with the GPU-based fitter it takes less than 10 seconds and less than four minutes, respectively. This fitter is developed utilizing the GooFit project with customized likelihoods, pdfs and infrastructures supporting certain analysis methods. In this proceeding the design of the package, developed features and the comparison with the original CPU fitter are presented., Comment: 5 pages, 2 figures, proceeding for TAUP 2017 XV International Conference on Topics in Astroparticle and Underground Physics
- Published
- 2018
- Full Text
- View/download PDF
21. Characterization of 30 76Ge enriched Broad Energy Ge detectors for GERDA Phase II
- Author
-
Agostini, M, Bakalyarov, AM, Andreotti, E, Balata, M, Barabanov, I, Baudis, L, Barros, N, Bauer, C, Bellotti, E, Belogurov, S, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Borowicz, D, Brudanin, V, Brugnera, R, Budjáš, D, Caldwell, A, Cattadori, C, Chernogorov, A, D’Andrea, V, Demidova, EV, Di Marco, N, Domula, A, Doroshkevich, E, Egorov, V, Falkenstein, R, Freund, K, Gangapshev, A, Garfagnini, A, Gooch, C, Grabmayr, P, Gurentsov, V, Gusev, K, Hakenmüller, J, Hegai, A, Heisel, M, Hemmer, S, Hiller, R, Hofmann, W, Hult, M, Inzhechik, LV, Csáthy, J Janicskó, Jochum, J, Junker, M, Kazalov, V, Kermaïdic, Y, Kihm, T, Kirpichnikov, IV, Kirsch, A, Kish, A, Klimenko, A, Kneißl, R, Knöpfle, KT, Kochetov, O, Kornoukhov, VN, Kuzminov, VV, Laubenstein, M, Lazzaro, A, Lehnert, B, Liao, Y, Lindner, M, Lippi, I, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Majorovits, B, Maneschg, W, Marissens, G, Miloradovic, M, Mingazheva, R, Misiaszek, M, Moseev, P, Nemchenok, I, Panas, K, Pandola, L, Pelczar, K, Pullia, A, Ransom, C, Riboldi, S, Rumyantseva, N, Sada, C, Salamida, F, Salathe, M, Schmitt, C, Schneider, B, Schönert, S, Schütz, A-K, Schulz, O, Schwingenheuer, B, Selivanenko, O, Shevchik, E, Shirchenko, M, Simgen, H, Smolnikov, A, Stanco, L, Vanhoefer, L, and Vasenko, AA
- Subjects
GERDA Collaboration ,physics.ins-det ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Quantum Physics ,Nuclear & Particles Physics - Abstract
The GERmanium Detector Array (Gerda) is a low background experiment located at the Laboratori Nazionali del Gran Sasso in Italy, which searches for neutrinoless double-beta decay of 76 Ge into 76 Se+2e - . Gerda has been conceived in two phases. Phase II, which started in December 2015, features several novelties including 30 new 76Ge enriched detectors. These were manufactured according to the Broad Energy Germanium (BEGe) detector design that has a better background discrimination capability and energy resolution compared to formerly widely-used types. Prior to their installation, the new BEGe detectors were mounted in vacuum cryostats and characterized in detail in the Hades underground laboratory in Belgium. This paper describes the properties and the overall performance of these detectors during operation in vacuum. The characterization campaign provided not only direct input for Gerda Phase II data collection and analyses, but also allowed to study detector phenomena, detector correlations as well as to test the accuracy of pulse shape simulation codes.
- Published
- 2019
22. Liquid argon light collection and veto modeling in GERDA Phase II
- Author
-
Agostini, M., Alexander, A., Araujo, G. R., Bakalyarov, A. M., Balata, M., Barabanov, I., Baudis, L., Bauer, C., Belogurov, S., Bettini, A., Bezrukov, L., Biancacci, V., Bossio, E., Bothe, V., Brugnera, R., Caldwell, A., Calgaro, S., Cattadori, C., Chernogorov, A., Chiu, P. -J., Comellato, T., D’Andrea, V., Demidova, E. V., Di Giacinto, A., Di Marco, N., Doroshkevich, E., Fischer, F., Fomina, M., Gangapshev, A., Garfagnini, A., Gooch, C., Grabmayr, P., Gurentsov, V., Gusev, K., Hakenmüller, J., Hemmer, S., Hofmann, W., Hult, M., Inzhechik, L. V., Csáthy, J. Janicskó, Jochum, J., Junker, M., Kazalov, V., Kermaïdic, Y., Khushbakht, H., Kihm, T., Kilgus, K., Kirpichnikov, I. V., Klimenko, A., Knöpfle, K. T., Kochetov, O., Kornoukhov, V. N., Krause, P., Kuzminov, V. V., Laubenstein, M., Lehnert, B., Lindner, M., Lippi, I., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Macolino, C., Majorovits, B., Maneschg, W., Manzanillas, L., Marshall, G., Miloradovic, M., Mingazheva, R., Misiaszek, M., Morella, M., Müller, Y., Nemchenok, I., Neuberger, M., Pandola, L., Pelczar, K., Pertoldi, L., Piseri, P., Pullia, A., Rauscher, L., Redchuk, M., Riboldi, S., Rumyantseva, N., Sada, C., Sailer, S., Salamida, F., Schönert, S., Schreiner, J., Schütt, M., Schütz, A. -K., Schulz, O., Schwarz, M., Schwingenheuer, B., Selivanenko, O., Shevchik, E., Shirchenko, M., Shtembari, L., Simgen, H., Smolnikov, A., Stukov, D., Sullivan, S., Vasenko, A. A., Veresnikova, A., Vignoli, C., von Sturm, K., Wegmann, A., Wester, T., Wiesinger, C., Wojcik, M., Yanovich, E., Zatschler, B., Zhitnikov, I., Zhukov, S. V., Zinatulina, D., Zschocke, A., Zsigmond, A. J., Zuber, K., and Zuzel, G.
- Published
- 2023
- Full Text
- View/download PDF
23. A plastic scintillation muon veto for sub-Kelvin temperatures
- Author
-
Erhart, A, Wagner, V, Wex, A, Goupy, C, Lhuillier, D, Namuth, E, Nones, C, Rogly, R, Savu, V, Schwarz, M, Strauss, R, Vivier, M, Abele, H, Angloher, G, Bento, A, Burkhart, J, Canonica, L, Cappella, F, Casali, N, Cerulli, R, Cruciani, A, del Castello, G, del Gallo Roccagiovine, M, Doblhammer, A, Dorer, S, Friedl, M, Garai, A, Ghete, V, Hauff, D, Jeanneau, F, Jericha, E, Kaznacheeva, M, Kinast, A, Kluck, H, Langenkämper, A, Lasserre, T, Mancuso, M, Martin, R, Mauri, B, Mazzolari, A, Mazzucato, E, Neyrial, H, Oberauer, L, Ortmann, T, Pattavina, L, Peters, L, Petricca, F, Potzel, W, Pröbst, F, Pucci, F, Reindl, F, Romagnoni, M, Rothe, J, Schermer, N, Schieck, J, Schönert, S, Schwertner, C, Scola, L, Soum-Sidikov, G, Stodolsky, L, Tamisari, M, Tomei, C, Vignati, M, Erhart, A., Wagner, V., Wex, A., Goupy, C., Lhuillier, D., Namuth, E., Nones, C., Rogly, R., Savu, V., Schwarz, M., Strauss, R., Vivier, M., Abele, H., Angloher, G., Bento, A., Burkhart, J., Canonica, L., Cappella, F., Casali, N., Cerulli, R., Cruciani, A., del Castello, G., del Gallo Roccagiovine, M., Doblhammer, A., Dorer, S., Friedl, M., Garai, A., Ghete, V. M., Hauff, D., Jeanneau, F., Jericha, E., Kaznacheeva, M., Kinast, A., Kluck, H., Langenkämper, A., Lasserre, T., Mancuso, M., Martin, R., Mauri, B., Mazzolari, A., Mazzucato, E., Neyrial, H., Oberauer, L., Ortmann, T., Pattavina, L., Peters, L., Petricca, F., Potzel, W., Pröbst, F., Pucci, F., Reindl, F., Romagnoni, M., Rothe, J., Schermer, N., Schieck, J., Schönert, S., Schwertner, C., Scola, L., Soum-Sidikov, G., Stodolsky, L., Tamisari, M., Tomei, C., Vignati, M., Erhart, A, Wagner, V, Wex, A, Goupy, C, Lhuillier, D, Namuth, E, Nones, C, Rogly, R, Savu, V, Schwarz, M, Strauss, R, Vivier, M, Abele, H, Angloher, G, Bento, A, Burkhart, J, Canonica, L, Cappella, F, Casali, N, Cerulli, R, Cruciani, A, del Castello, G, del Gallo Roccagiovine, M, Doblhammer, A, Dorer, S, Friedl, M, Garai, A, Ghete, V, Hauff, D, Jeanneau, F, Jericha, E, Kaznacheeva, M, Kinast, A, Kluck, H, Langenkämper, A, Lasserre, T, Mancuso, M, Martin, R, Mauri, B, Mazzolari, A, Mazzucato, E, Neyrial, H, Oberauer, L, Ortmann, T, Pattavina, L, Peters, L, Petricca, F, Potzel, W, Pröbst, F, Pucci, F, Reindl, F, Romagnoni, M, Rothe, J, Schermer, N, Schieck, J, Schönert, S, Schwertner, C, Scola, L, Soum-Sidikov, G, Stodolsky, L, Tamisari, M, Tomei, C, Vignati, M, Erhart, A., Wagner, V., Wex, A., Goupy, C., Lhuillier, D., Namuth, E., Nones, C., Rogly, R., Savu, V., Schwarz, M., Strauss, R., Vivier, M., Abele, H., Angloher, G., Bento, A., Burkhart, J., Canonica, L., Cappella, F., Casali, N., Cerulli, R., Cruciani, A., del Castello, G., del Gallo Roccagiovine, M., Doblhammer, A., Dorer, S., Friedl, M., Garai, A., Ghete, V. M., Hauff, D., Jeanneau, F., Jericha, E., Kaznacheeva, M., Kinast, A., Kluck, H., Langenkämper, A., Lasserre, T., Mancuso, M., Martin, R., Mauri, B., Mazzolari, A., Mazzucato, E., Neyrial, H., Oberauer, L., Ortmann, T., Pattavina, L., Peters, L., Petricca, F., Potzel, W., Pröbst, F., Pucci, F., Reindl, F., Romagnoni, M., Rothe, J., Schermer, N., Schieck, J., Schönert, S., Schwertner, C., Scola, L., Soum-Sidikov, G., Stodolsky, L., Tamisari, M., Tomei, C., and Vignati, M.
- Abstract
Rare-event search experiments located on-surface, such as short-baseline reactor neutrino experiments, are often limited by muon-induced background events. Highly efficient muon vetos are essential to reduce the detector background and to reach the sensitivity goals. We demonstrate the feasibility of deploying organic plastic scintillators at sub-Kelvin temperatures. For the NUCLEUS experiment, we developed a cryogenic muon veto equipped with wavelength shifting fibers and a silicon photo multiplier operating inside a dilution refrigerator. The achievable compactness of cryostat-internal integration is a key factor in keeping the muon rate to a minimum while maximizing coverage. The thermal and light output properties of a plastic scintillation detector were examined. We report first data on the thermal conductivity and heat capacity of the polystyrene-based scintillator UPS-923A over a wide range of temperatures extending below one Kelvin. The light output was measured down to 0.8 K and observed to increase by a factor of 1.61 ± 0.05 compared to 300 K. The development of an organic plastic scintillation muon veto operating in sub-Kelvin temperature environments opens new perspectives for rare-event searches with cryogenic detectors at sites lacking substantial overburden.
- Published
- 2024
24. Simultaneous Precision Spectroscopy of $pp$, $^7$Be, and $pep$ Solar Neutrinos with Borexino Phase-II
- Author
-
Agostini, M., Altenmuller, K., Appel, S., Atroshchenko, V., Bagdasarian, Z., Basilico, D., Bellini, G., Benziger, J., Bick, D., Bonfini, G., Bravo, D., Caccianiga, B., Calaprice, F., Caminata, A., Caprioli, S., Carlini, M., Cavalcante, P., Chepurnov, A., Choi, K., Collica, L., D'Angelo, D., Davini, S., Derbin, A., Ding, X. F., Di Ludovico, A., Di Noto, L., Drachnev, I., Fomenko, K., Formozov, A., Franco, D., Froborg, F., Gabriele, F., Galbiati, C., Ghiano, C., Giammarchi, M., Goretti, A., Gromov, M., Guffanti, D., Hagner, C., Houdy, T., Hungerford, E., Ianni, Aldo, Ianni, Andrea, Jany, A., Jeschke, D., Kobychev, V., Korablev, D., Korga, G., Kryn, D., Laubenstein, M., Litvinovich, E., Lombardi, F., Lombardi, P., Ludhova, L., Lukyanchenko, G., Lukyanchenko, L., Machulin, I., Manuzio, G., Marcocci, S., Martyn, J., Meroni, E., Meyer, M., Miramonti, L., Misiaszek, M., Muratova, V., Neumair, B., Oberauer, L., Opitz, B., Orekhov, V., Ortica, F., Pallavicini, M., Papp, L., Penek, O., Pilipenko, N., Pocar, A., Porcelli, A., Ranucci, G., Razeto, A., Re, A., Redchuk, M., Romani, A., Roncin, R., Rossi, N., Schonert, S., Semenov, D., Skorokhvatov, M., Smirnov, O., Sotnikov, A., Stokes, L. F. F., Suvorov, Y., Tartaglia, R., Testera, G., Thurn, J., Toropova, M., Unzhakov, E., Vishneva, A., Vogelaar, R. B., von Feilitzsch, F., Wang, H., Weinz, S., Wojcik, M., Wurm, M., Yokley, Z., Zaimidoroga, O., Zavatarelli, S., Zuber, K., and Zuzel, G.
- Subjects
High Energy Physics - Experiment ,Astrophysics - Solar and Stellar Astrophysics - Abstract
We present the first simultaneous measurement of the interaction rates of $pp$, $^7$Be, and $pep$ solar neutrinos performed with a global fit to the Borexino data in an extended energy range (0.19-2.93)$\,$MeV. This result was obtained by analyzing 1291.51$\,$days of Borexino Phase-II data, collected between December 2011 and May 2016 after an extensive scintillator purification campaign. We find: rate($pp$)$\,$=$\,$$134$$\,$$\pm$$\,$$10$$\,$($stat$)$\,$$^{\rm +6}_{\rm -10}$$\,$($sys$)$\,$cpd/100$\,$t, rate($^7$Be)$\,$=$\,$$48.3$$\,$$\pm$$\,$$1.1$$\,$($stat$)$\,$$^{\rm +0.4}_{\rm -0.7}$$\,$($sys$)$\,$cpd/100$\,$t, and rate($pep$)$\,$=$\,$$2.43$$\pm$$\,$$0.36$$\,$($stat$)$^{+0.15}_{-0.22}$$\,$($sys$)$\,$cpd/100$\,$t. These numbers are in agreement with and improve the precision of our previous measurements. In particular, the interaction rate of $^7$Be $\nu$'s is measured with an unprecedented precision of 2.7%, showing that discriminating between the high and low metallicity solar models is now largely dominated by theoretical uncertainties. The absence of $pep$ neutrinos is rejected for the first time at more than 5$\,$$\sigma$. An upper limit of $8.1$$\,$cpd/100$\,$t (95%$\,$C.L.) on the CNO neutrino rate is obtained by setting an additional constraint on the ratio between the $pp$ and $pep$ neutrino rates in the fit. This limit has the same significance as that obtained by the Borexino Phase-I (currently providing the tightest bound on this component), but is obtained by applying a less stringent constraint on the $pep$ $\nu$ flux., Comment: 8 pages, 7 figures
- Published
- 2017
- Full Text
- View/download PDF
25. Silicon PIN diodes as Neganov-Trofimov-Luke cryogenic light detectors
- Author
-
Defay, X., Mondragon, E., Lanfranchi, J. -C., Langenkamper, A., Munster, A., Potzel, W., Schonert, S., Wawoczny, S., and Willers, M.
- Subjects
Physics - Instrumentation and Detectors - Abstract
Cryogenic rare event searches based on heat and light composite calorimeters have a common need for large area photon detectors with high quantum efficiency, good radiopurity and high sensitivity. By employing the Neganov-Trofimov-Luke effect (NTLE), the phonon signal of particle interactions in a semiconductor absorber operated at cryogenic temperatures can be amplified by drifting the photogenerated electrons and holes in an electric field. We present here the last results of a Neganov-Trofimov-Luke effect light detector with an electric field configuration optimized to improve the charge collection within the absorber., Comment: Submitted
- Published
- 2017
- Full Text
- View/download PDF
26. A search for low-energy neutrinos correlated with gravitational wave events GW150914, GW151226 and GW170104 with the Borexino detector
- Author
-
Agostini, M., Altenmuller, K., Appel, S., Atroshchenko, V., Bagdasarian, Z., Basilico, D., Bellini, G., Benziger, J., Bick, D., Bonfini, G., Bravo, D., Caccianiga, B., Calaprice, F., Caminata, A., Caprioli, S., Carlini, M., Cavalcante, P., Chepurnov, A., Choi, K., D'Angelo, D., Davini, S., Derbin, A., Ding, X. F., Di Ludovico, A., Di Noto, L., Drachnev, I., Fomenko, K., Formozov, A., Franco, D., Froborg, F., Gabriele, F., Galbiati, C., Ghiano, C., Giammarchi, M., Goretti, A., Gromov, M., Hagner, C., Houdy, T., Hungerford, E., Ianni, Aldo, Ianni, Andrea, Jany, A., Jeschke, D., Kobychev, V., Korablev, D., Korga, G., Kryn, D., Laubenstein, M., Litvinovich, E., Lombardi, F., Lombardi, P., Ludhova, L., Lukyanchenko, G., Lukyanchenko, L., Machulin, I., Manuzio, G., Marcocci, S., Martyn, J., Meroni, E., Meyer, M., Miramonti, L., Misiaszek, M., Muratova, V., Neumair, B., Oberauer, L., Opitz, B., Ortica, F., Pallavicini, M., Papp, L., Pilipenko, N., Pocar, A., Porcelli, A., Ranucci, G., Razeto, A., Re, A., Romani, A., Roncin, R., Rossi, N., Schonert, S., Semenov, D., Skorokhvatov, M., Smirnov, O., Sotnikov, A., Stokes, L. F. F., Suvorov, Y., Tartaglia, R., Testera, G., Thurn, J., Toropova, M., Unzhakov, E., Vishneva, A., Vogelaar, R. B., von Feilitzsch, F., Wang, H., Weinz, S., Wojcik, M., Wurm, M., Yokley, Z., Zaimidoroga, O., Zavatarelli, S., Zuber, K., and Zuzel, G.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,High Energy Physics - Experiment ,High Energy Physics - Phenomenology - Abstract
We present the results of a low-energy neutrino search using the Borexino detector in coincidence with the gravitational wave (GW) events GW150914, GW151226 and GW170104. We searched for correlated neutrino events with energies greater than 250 keV within a time window of $\pm500$ s centered around the GW detection time. A total of five candidates were found for all three GW150914, GW151226 and GW170104. This is consistent with the number of expected solar neutrino and background events. As a result, we have obtained the best current upper limits on the GW event neutrino fluence of all flavors ($\nu_e, \nu_{\mu}, \nu_{\tau}$) in the energy range $(0.5 - 5.0)$ MeV., Comment: 8 pages, 5 figures
- Published
- 2017
- Full Text
- View/download PDF
27. The Monte Carlo simulation of the Borexino detector
- Author
-
Agostini, M., Altenmuller, K., Appel, S., Atroshchenko, V., Bagdasarian, Z., Basilico, D., Bellini, G., Benziger, J., Bick, D., Bonfini, G., Borodikhina, L., Bravo, D., Caccianiga, B., Calaprice, F., Caminata, A., Caprioli, S., Carlini, M., Cavalcante, P., Chepurnov, A., Choi, K., D'Angelo, D., Davini, S., Derbin, A., Ding, X. F., Di Noto, L., Drachnev, I., Fomenko, K., Formozov, A., Franco, D., Froborg, F., Gabriele, F., Galbiati, C., Ghiano, C., Giammarchi, M., Goeger-Neff, M., Goretti, A., Gromov, M., Hagner, C., Houdy, T., Hungerford, E., Ianni, Aldo, Ianni, Andrea, Jany, A., Jeschke, D., Kobychev, V., Korablev, D., Korga, G., Kryn, D., Laubenstein, M., Litvinovich, E., Lombardi, F., Lombardi, P., Ludhova, L., Lukyanchenko, G., Machulin, I., Manuzio, G., Marcocci, S., Martyn, J., Meroni, E., Meyer, M., Miramonti, L., Misiaszek, M., Muratova, V., Neumair, B., Oberauer, L., Opitz, B., Ortica, F., Pallavicini, M., Papp, L., Pocar, A., Ranucci, G., Re, A., Romani, A., Roncin, R., Rossi, N., Schonert, S., Semenov, D., Shakina, P., Skorokhvatov, M., Smirnov, O., Sotnikov, A., Stokes, L. F. F., Suvorov, Y., Tartaglia, R., Testera, G., Thurn, J., Toropova, M., Unzhakov, E., Vishneva, A., Vogelaar, R. B., von Feilitzsch, F., Wang, H., Weinz, S., Wojcik, M., Wurm, M., Yokley, Z., Zaimidoroga, O., Zavatarelli, S., Zuber, K., and Zuzel, G.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
We describe the Monte Carlo (MC) simulation package of the Borexino detector and discuss the agreement of its output with data. The Borexino MC 'ab initio' simulates the energy loss of particles in all detector components and generates the resulting scintillation photons and their propagation within the liquid scintillator volume. The simulation accounts for absorption, reemission, and scattering of the optical photons and tracks them until they either are absorbed or reach the photocathode of one of the photomultiplier tubes. Photon detection is followed by a comprehensive simulation of the readout electronics response. The algorithm proceeds with a detailed simulation of the electronics chain. The MC is tuned using data collected with radioactive calibration sources deployed inside and around the scintillator volume. The simulation reproduces the energy response of the detector, its uniformity within the fiducial scintillator volume relevant to neutrino physics, and the time distribution of detected photons to better than 1% between 100 keV and several MeV. The techniques developed to simulate the Borexino detector and their level of refinement are of possible interest to the neutrino community, especially for current and future large-volume liquid scintillator experiments such as Kamland-Zen, SNO+, and Juno.
- Published
- 2017
- Full Text
- View/download PDF
28. First Detection of Solar Neutrinos from the CNO Cycle with Borexino
- Author
-
Rossi, N., Agostini, M., Altenmüller, K., Appel, S., Atroshchenko, V., Bagdasarian, Z., Basilico, D., Bellini, G., Benziger, J., Biondi, R., Bravo, D., Caccianiga, B., Caminata, A., Calaprice, F., Cavalcante, P., Chepurnov, A., D’Angelo, D., Davini, S., Derbin, A., Di Giacinto, A., Di Marcello, V., Ding, X. F., Di Ludovico, A., Di Noto, L., Drachnev, I., Formozov, A., Franco, D., Galbiati, C., Ghiano, C., Giammarchi, M., Goretti, A., Göttel, A. S., Gromov, M., Guffanti, D., Ianni, Aldo, Ianni, Andrea, Jany, A., Jeschke, D., Kobychev, V., Korga, G., Kumaran, S., Laubenstein, M., Litvinovich, E., Lombardi, P., Lomskaya, I., Ludhova, L., Lukyanchenko, G., Lukyanchenko, L., Machulin, I., Martyn, J., Meroni, E., Meyer, M., Miramonti, L., Misiaszek, M., Muratova, V., Neumair, B., Nieslony, M., Nugmanov, R., Oberauer, L., Orekhov, V., Ortica, F., Pallavicini, M., Papp, L., Pelicci, L., Penek, Ö., Pietrofaccia, L., Pilipenko, N., Pocar, A., Raikov, G., Ranalli, M. T., Ranucci, G., Razeto, A., Re, A., Redchuk, M., Romani, A., Schönert, S., Semenov, D., Settanta, G., Skorokhvatov, M., Singhal, A., Smirnov, O., Sotnikov, A., Suvorov, Y., Tartaglia, R., Testera, G., Thurn, J., Unzhakov, E., Villante, F., Vishneva, A., Vogelaar, R. B., von Feilitzsch, F., Wojcik, M., Wurm, M., Zavatarelli, S., Zuber, K., and Zuzel, G.
- Published
- 2022
- Full Text
- View/download PDF
29. Upgrade for Phase II of the Gerda experiment
- Author
-
GERDA Collaboration, Agostini, M, Bakalyarov, AM, Balata, M, Barabanov, I, Baudis, L, Bauer, C, Bellotti, E, Belogurov, S, Belyaev, ST, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Borowicz, D, Brudanin, V, Brugnera, R, Caldwell, A, Cattadori, C, Chernogorov, A, D’Andrea, V, Demidova, EV, Di Marco, N, Domula, A, Doroshkevich, E, Egorov, V, Falkenstein, R, Frodyma, N, Gangapshev, A, Garfagnini, A, Grabmayr, P, Gurentsov, V, Gusev, K, Hakenmüller, J, Hegai, A, Heisel, M, Hemmer, S, Hiller, R, Hofmann, W, Hult, M, Inzhechik, LV, Ioannucci, L, Janicskó Csáthy, J, Jochum, J, Junker, M, Kazalov, V, Kermaïdic, Y, Kihm, T, Kirpichnikov, IV, Kirsch, A, Kish, A, Klimenko, A, Kneißl, R, Knöpfle, KT, Kochetov, O, Kornoukhov, VN, Kuzminov, VV, Laubenstein, M, Lazzaro, A, Lebedev, VI, Lehnert, B, Lindner, M, Lippi, I, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Majorovits, B, Maneschg, W, Medinaceli, E, Miloradovic, M, Mingazheva, R, Misiaszek, M, Moseev, P, Nemchenok, I, Nisi, S, Panas, K, Pandola, L, Pelczar, K, Pullia, A, Ransom, C, Riboldi, S, Rumyantseva, N, Sada, C, Salamida, F, Salathe, M, Schmitt, C, Schneider, B, Schönert, S, Schreiner, J, Schütz, A-K, Schulz, O, Schwingenheuer, B, Selivanenko, O, Shevchik, E, Shirchenko, M, Simgen, H, Smolnikov, A, Stanco, L, and Vanhoefer, L
- Subjects
Nuclear and Plasma Physics ,Particle and High Energy Physics ,Physical Sciences ,physics.ins-det ,nucl-ex ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Quantum Physics ,Nuclear & Particles Physics ,Astronomical sciences ,Atomic ,molecular and optical physics ,Particle and high energy physics - Abstract
The Gerda collaboration is performing a sensitive search for neutrinoless double beta decay of 76Ge at the INFN Laboratori Nazionali del Gran Sasso, Italy. The upgrade of the Gerda experiment from Phase I to Phase II has been concluded in December 2015. The first Phase II data release shows that the goal to suppress the background by one order of magnitude compared to Phase I has been achieved. Gerda is thus the first experiment that will remain “background-free” up to its design exposure (100 kgyear). It will reach thereby a half-life sensitivity of more than 10 26 year within 3 years of data collection. This paper describes in detail the modifications and improvements of the experimental setup for Phase II and discusses the performance of individual detector components.
- Published
- 2018
30. Upgrade for Phase II of the Gerda experiment
- Author
-
Agostini, M, Bakalyarov, AM, Balata, M, Barabanov, I, Baudis, L, Bauer, C, Bellotti, E, Belogurov, S, Belyaev, ST, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Borowicz, D, Brudanin, V, Brugnera, R, Caldwell, A, Cattadori, C, Chernogorov, A, D’Andrea, V, Demidova, EV, Di Marco, N, Domula, A, Doroshkevich, E, Egorov, V, Falkenstein, R, Frodyma, N, Gangapshev, A, Garfagnini, A, Grabmayr, P, Gurentsov, V, Gusev, K, Hakenmüller, J, Hegai, A, Heisel, M, Hemmer, S, Hiller, R, Hofmann, W, Hult, M, Inzhechik, LV, Ioannucci, L, Janicskó Csáthy, J, Jochum, J, Junker, M, Kazalov, V, Kermaïdic, Y, Kihm, T, Kirpichnikov, IV, Kirsch, A, Kish, A, Klimenko, A, Kneißl, R, Knöpfle, KT, Kochetov, O, Kornoukhov, VN, Kuzminov, VV, Laubenstein, M, Lazzaro, A, Lebedev, VI, Lehnert, B, Lindner, M, Lippi, I, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Majorovits, B, Maneschg, W, Medinaceli, E, Miloradovic, M, Mingazheva, R, Misiaszek, M, Moseev, P, Nemchenok, I, Nisi, S, Panas, K, Pandola, L, Pelczar, K, Pullia, A, Ransom, C, Riboldi, S, Rumyantseva, N, Sada, C, Salamida, F, Salathe, M, Schmitt, C, Schneider, B, Schönert, S, Schreiner, J, Schütz, AK, Schulz, O, Schwingenheuer, B, Selivanenko, O, Shevchik, E, Shirchenko, M, Simgen, H, Smolnikov, A, Stanco, L, Vanhoefer, L, and Vasenko, AA
- Subjects
physics.ins-det ,nucl-ex ,Nuclear & Particles Physics ,Quantum Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics - Abstract
The Gerda collaboration is performing a sensitive search for neutrinoless double beta decay of 76Ge at the INFN Laboratori Nazionali del Gran Sasso, Italy. The upgrade of the Gerda experiment from Phase I to Phase II has been concluded in December 2015. The first Phase II data release shows that the goal to suppress the background by one order of magnitude compared to Phase I has been achieved. Gerda is thus the first experiment that will remain “background-free” up to its design exposure (100 kgyear). It will reach thereby a half-life sensitivity of more than 10 26 year within 3 years of data collection. This paper describes in detail the modifications and improvements of the experimental setup for Phase II and discusses the performance of individual detector components.
- Published
- 2018
31. Towards an automated data cleaning with deep learning in CRESST
- Author
-
Angloher, G., Banik, S., Bartolot, D., Benato, G., Bento, A., Bertolini, A., Breier, R., Bucci, C., Burkhart, J., Canonica, L., D’Addabbo, A., Di Lorenzo, S., Einfalt, L., Erb, A., Feilitzsch, F. v., Iachellini, N. Ferreiro, Fichtinger, S., Fuchs, D., Fuss, A., Garai, A., Ghete, V. M., Gerster, S., Gorla, P., Guillaumon, P. V., Gupta, S., Hauff, D., Ješkovský, M., Jochum, J., Kaznacheeva, M., Kinast, A., Kluck, H., Kraus, H., Lackner, M., Langenkämper, A., Mancuso, M., Marini, L., Meyer, L., Mokina, V., Nilima, A., Olmi, M., Ortmann, T., Pagliarone, C., Pattavina, L., Petricca, F., Potzel, W., Povinec, P., Pröbst, F., Pucci, F., Reindl, F., Rizvanovic, D., Rothe, J., Schäffner, K., Schieck, J., Schmiedmayer, D., Schönert, S., Schwertner, C., Stahlberg, M., Stodolsky, L., Strandhagen, C., Strauss, R., Usherov, I., Wagner, F., Willers, M., Zema, V., and Waltenberger, W.
- Published
- 2023
- Full Text
- View/download PDF
32. Seasonal Modulation of the $^7$Be Solar Neutrino Rate in Borexino
- Author
-
Agostini, M., Altenmuller, K., Appel, S., Atroshchenko, V., Basilico, D., Bellini, G., Benziger, J., Bick, D., Bonfini, G., Borodikhina, L., Bravo, D., Caccianiga, B., Calaprice, F., Caminata, A., Caprioli, S., Carlini, M., Cavalcante, P., Chepurnov, A., Choi, K., D'Angelo, D., Davini, S., Derbin, A., Ding, X. F., Di Noto, L., Drachnev, I., Fomenko, K., Franco, D., Froborg, F., Gabriele, F., Galbiati, C., Ghiano, C., Giammarchi, M., Goeger-Neff, M., Goretti, A., Gromov, M., Hagner, C., Houdy, T., Hungerford, E., Ianni, Aldo, Ianni, Andrea, Jany, A., Jeschke, D., Kobychev, V., Korablev, D., Korga, G., Kryn, D., Laubenstein, M., Lehnert, B., Litvinovich, E., Lombardi, F., Lombardi, P., Ludhova, L., Lukyanchenko, G., Machulin, I., Manecki, S., Manuzio, G., Marcocci, S., Martyn, J., Meroni, E., Meyer, M., Miramonti, L., Misiaszek, M., Montuschi, M., Muratova, V., Neumair, B., Oberauer, L., Opitz, B., Ortica, F., Pallavicini, M., Papp, L., Pocar, A., Ranucci, G., Razeto, A., Re, A., Romani, A., Roncin, R., Rossi, N., Schonert, S., Semenov, D., Shakina, P., Skorokhvatov, M., Smirnov, O., Sotnikov, A., Stokes, L. F. F., Suvorov, Y., Tartaglia, R., Testera, G., Thurn, J., Toropova, M., Unzhakov, E., Vishneva, A., Vogelaar, R. B., von Feilitzsch, F., Wang, H., Weinz, S., Wojcik, M., Wurm, M., Yokley, Z., Zaimidoroga, O., Zavatarelli, S., Zuber, K., and Zuzel, G.
- Subjects
High Energy Physics - Experiment ,Physics - Instrumentation and Detectors - Abstract
We detected the seasonal modulation of the $^7$Be neutrino interaction rate with the Borexino detector at the Laboratori Nazionali del Gran Sasso in Italy. The period, amplitude, and phase of the observed time evolution of the signal are consistent with its solar origin, and the absence of an annual modulation is rejected at 99.99\% C.L. The data are analyzed using three methods: the sinusoidal fit, the Lomb-Scargle and the Empirical Mode Decomposition techniques, which all yield results in excellent agreement., Comment: 11 palese, 13 figures
- Published
- 2017
- Full Text
- View/download PDF
33. The Main Results of the Borexino Experiment
- Author
-
Derbin, A., Muratova, V., Agostini, M., Altenmuller, K., Appel, S., Bellini, G., Benziger, J., Bick, D., Bonfini, G., Bravo, D., Caccianiga, B., Calaprice, F., Caminata, A., Carlini, M., Cavalcante, P., Chepurnov, A., D'Angelo, D., Davini, S., Di Noto, L., Drachnev, I., Etenko, A., Fomenko, K., Formozov, A., Franco, D., Gabriele, F., Galbiati, C., Ghiano, C., Giammarchi, M., Goeger-Neff, M., Goretti, A., Gromov, M., Hagner, C., Hungerford, E., Ianni, Aldo, Ianni, Andrea, Jedrzejczak, K., Jeschke, D., Kaiser, M., Kobychev, V., Korablev, D., Korga, G., Kryn, D., Laubenstein, M., Lehnert, B., Litvinovich, E., Lombardi, F., Lombardi, P., Ludhova, L., Lukyanchenko, G., Machulin, I., Manecki, S., Maneschg, W., Marcocci, S., Meroni, E., Meyer, M., Miramonti, L., Misiaszek, M., Montuschi, M., Mosteiro, P., Neumair, B, Oberauer, L., Obolensky, M., Ortica, F., Pallavicini, M., Papp, L., Perasso, L., Pocar, A., Ranucci, G., Razeto, A., Re, A., Romani, A., Roncin, R., Rossi, N., Schonert, S., Semenov, D., Simgen, H., Skorokhvatov, M., Smirnov, O., Sotnikov, A., Sukhotin, S., Suvorov, Y., Tartaglia, R., Testera, G., Thurn, J., Toropova, M., Unzhakov, E., Vishneva, A., Vogelaar, R. B., von Feilitzsch, F., Wang, H., Weinz, S., Winter, J., Wojcik, M., Wurm, M., Yokley, Z., Zaimidoroga, O., Zavatarelli, S., Zuber, K., and Zuzel, G.
- Subjects
High Energy Physics - Experiment ,High Energy Physics - Phenomenology ,Physics - Instrumentation and Detectors - Abstract
The main physical results on the registration of solar neutrinos and the search for rare processes obtained by the Borexino collaboration to date are presented., Comment: 8 pages, 8 figgures, To be published as Proceedings of the Third Annual Large Hadron Collider Physics Conference, St. Petersburg, Russia, 2015
- Published
- 2016
34. The Double Chooz antineutrino detectors
- Author
-
de Kerret, H., Abe, Y., Aberle, C., Abrahão, T., Ahijado, J. M., Akiri, T., Alarcón, J. M., Alba, J., Almazan, H., dos Anjos, J. C., Appel, S., Ardellier, F., Barabanov, I., Barriere, J. C., Baussan, E., Baxter, A., Bekman, I., Bergevin, M., Bernstein, A., Bertoli, W., Bezerra, T. J. C., Bezrukov, L., Blanco, C., Bleurvacq, N., Blucher, E., Bonet, H., Bongrand, M., Bowden, N. S, Brugière, T., Buck, C., Avanzini, M. Buizza, Busenitz, J., Cabrera, A., Caden, E., Calvo, E., Camilleri, L., Carr, R., Cazaux, S., Cela, J. M., Cerrada, M., Chang, P. J., Charon, P., Chauveau, E., Chimenti, P., Classen, T., Collin, A. P., Conover, E., Conrad, J. M, Cormon, S., Corpace, O., Courty, B., Crespo-Anadón, J. I., Cribier, M., Crum, K., Cuadrado, S., Cucoanes, A., D’Agostino, M., Damon, E., Dawson, J. V., Dazeley, S., Dierckxsens, M., Dietrich, D., Djurcic, Z., Dorigo, F., Dracos, M., Durand, V., Efremeko, Y., Elnimr, M., Etenko, A., Falk, E., Fallot, M., Fechner, M., Felde, J., Fernandes, S. M., Fernández-Bedoya, C., Francia, D., Franco, D., Fischer, V., Franke, A. J., Franke, M., Furuta, H., Garcia, F., Garcia, J., Gil-Botella, I., Giot, L., Givaudan, A., Göger-Neff, M., Gomez, H., Gonzalez, L. F. G., Goodenough, L., Goodman, M. C., Goon, J., Gramlich, B., Greiner, D., Guertin, A., Guillon, B., Habib, S. M., Haddad, Y., Hara, T., Hartmann, F. X., Hartnell, J., Haser, J., Hatzikoutelis, A., Hellwig, D., Hervé, S., Hofacker, R., Horton-Smith, G., Hourlier, A., Ishitsuka, M., Jänner, K., Jiménez, S., Jochum, J., Jollet, C., Kaether, F., Kale, K., Kalousis, L., Kamyshkov, Y., Kaneda, M., Kaplan, D. M., Karakac, M., Kawasaki, T., Kemp, E., Kibe, Y., Kirchner, T., Konno, T., Kryn, D., Kutter, T., Kuze, M., Lachenmaier, T., Lane, C. E., Langbrandtner, C., Lasserre, T., Lastoria, C., Latron, L., Leonardo, C., Letourneau, A., Lhuillier, D., Lima, Jr, H. P., Lindner, M., López-Castaño, J. M., LoSecco, J. M., Lubsandorzhiev, B., Lucht, S., Maeda, J., Maesano, C. N., Mariani, C., Maricic, J., Marie, F., Martinez, J. J., Martino, J., Matsubara, T., McKee, D., Meigner, F., Mention, G., Meregaglia, A., Meyer, J. P., Miletic, T., Milincic, R., Millot, J. F., Minotti, A., Mirones, V., Miyata, H., Mueller, Th. A., Nagasaka, Y., Nakajima, K., Navas-Nicolás, D., Nikitenko, Y., Novella, P., Oberauer, L., Obolensky, M., Onillon, A., Oralbaev, A., Ostrovskiy, I., Palomares, C., Peeters, S. J. M., Pepe, I. M., Perasso, S., Perrin, P., Pfahler, P., Porta, A., Pronost, G., Puras, J. C., Quéval, R., Ramirez, J. L., Reichenbacher, J., Reinhold, B., Reissfelder, M., Remoto, A., Reyna, D., Rodriguez, I., Röhling, M., Roncin, R., Rudolf, N., Rybolt, B., Sakamoto, Y., Santorelli, R., Sato, F., Schwan, U., Schönert, S., Schoppmann, S., Scola, L., Settimo, M., Shaevitz, M. A., Sharankova, R., Sibille, V., Sida, J.-L., Sinev, V., Shrestha, D., Skorokhvatov, M., Soldin, P., Spitz, J., Stahl, A., Stancu, I., Starzynski, P., Stock, M. R., Stokes, L. F. F., Strait, M., Stüken, A., Suekane, F., Sukhotin, S., Sumiyoshi, T., Sun, Y., Sun, Z., Svoboda, R., Tabata, H., Tamura, N., Terao, K., Tonazzo, A., Toral, F., Toups, M., Thi, H. Trinh, Valdivia, F., Valdiviesso, G., Vassilopoulos, N., Verdugo, A., Veyssiere, C., Viaud, B., Vignaud, D., Vivier, M., Wagner, S., Wiebusch, C., White, B., Winslow, L., Worcester, M., Wurm, M., Wurtz, J., Yang, G., Yáñez, J., Yermia, F., and Zbiri, K.
- Published
- 2022
- Full Text
- View/download PDF
35. First results from GERDA Phase II
- Author
-
Agostini, M, Allardt, M, Bakalyarov, AM, Balata, M, Barabanov, I, Baudis, L, Bauer, C, Bellotti, E, Belogurov, S, Belyaev, ST, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Borowicz, D, Brudanin, V, Brugnera, R, Caldwell, A, Cattadori, C, Chernogorov, A, D’Andrea, V, Demidova, EV, Di Marco, N, Domula, A, Doroshkevich, E, Egorov, V, Falkenstein, R, Frodyma, N, Gangapshev, A, Garfagnini, A, Gooch, C, Grabmayr, P, Gurentsov, V, Gusev, K, Hakenmüller, J, Hegai, A, Heisel, M, Hemmer, S, Hofmann, W, Hult, M, Inzhechik, LV, Csáthy, J Janicskó, Jochum, J, Junker, M, Kazalov, V, Kihm, T, Kirpichnikov, IV, Kirsch, A, Kish, A, Klimenko, A, Kneißl, R, Knöpfle, KT, Kochetov, O, Kornoukhov, VN, Kuzminov, VV, Laubenstein, M, Lazzaro, A, Lebedev, VI, Lehnert, B, Liao, HY, Lindner, M, Lippi, I, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Majorovits, B, Maneschg, W, Medinaceli, E, Miloradovic, M, Mingazheva, R, Misiaszek, M, Moseev, P, Nemchenok, I, Palioselitis, D, Panas, K, Pandola, L, Pelczar, K, Pullia, A, Riboldi, S, Rumyantseva, N, Sada, C, Salamida, F, Salathe, M, Schmitt, C, Schneider, B, Schönert, S, Schreiner, J, Schulz, O, Schütz, A-K, Schwingenheuer, B, Selivanenko, O, Shevchik, E, Shirchenko, M, Simgen, H, Smolnikov, A, Stanco, L, Vanhoefer, L, Vasenko, AA, and Veresnikova, A
- Subjects
Nuclear and Plasma Physics ,Particle and High Energy Physics ,Physical Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Condensed Matter Physics ,Other Physical Sciences ,Physical sciences - Abstract
Gerda is designed for a background-free search of 76Ge neutrinoless double-β decay, using bare Ge detectors in liquid Ar. The experiment was upgraded after the successful completion of Phase I to double the target mass and further reduce the background. Newly-designed Ge detectors were installed along with LAr scintillation sensors. Phase II of data-taking started in Dec 2015 with approximately 36 kg of Ge detectors and is currently ongoing. The first results based on 10.8 kg• yr of exposure are presented. The background goal of 10-3 cts/(keV• kg• yr) is achieved and a search for neutrinoless double-β decay is performed by combining Phase I and II data. No signal is found and a new limit is set at yr (90% C.L.).
- Published
- 2017
36. Study of the GERDA Phase II background spectrum
- Author
-
Agostini, M, Allardt, M, Bakalyarov, AM, Balata, M, Barabanov, I, Baudis, L, Bauer, C, Bellotti, E, Belogurov, S, Belyaev, ST, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Borowicz, D, Brudanin, V, Brugnera, R, Caldwell, A, Cattadori, C, Chernogorov, A, D’Andrea, V, Demidova, EV, Di Marco, N, Domula, A, Doroshkevich, E, Egorov, V, Falkenstein, R, Frodyma, N, Gangapshev, A, Garfagnini, A, Gooch, C, Grabmayr, P, Gurentsov, V, Gusev, K, Hakenmüller, J, Hegai, A, Heisel, M, Hemmer, S, Hofmann, W, Hult, M, Inzhechik, LV, Csáthy, J Janicskó, Jochum, J, Junker, M, Kazalov, V, Kihm, T, Kirpichnikov, IV, Kirsch, A, Kish, A, Klimenko, A, Kneißl, R, Knöpfle, KT, Kochetov, O, Kornoukhov, VN, Kuzminov, VV, Laubenstein, M, Lazzaro, A, Lebedev, VI, Lehnert, B, Liao, HY, Lindner, M, Lippi, I, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Majorovits, B, Maneschg, W, Medinaceli, E, Miloradovic, M, Mingazheva, R, Misiaszek, M, Moseev, P, Nemchenok, I, Palioselitis, D, Panas, K, Pandola, L, Pelczar, K, Pullia, A, Riboldi, S, Rumyantseva, N, Sada, C, Salamida, F, Salathe, M, Schmitt, C, Schneider, B, Schönert, S, Schreiner, J, Schulz, O, Schütz, A-K, Schwingenheuer, B, Selivanenko, O, Shevzik, E, Shirchenko, M, Simgen, H, Smolnikov, A, Stanco, L, Vanhoefer, L, Vasenko, AA, and Veresnikova, A
- Subjects
Nuclear and Plasma Physics ,Particle and High Energy Physics ,Physical Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Condensed Matter Physics ,Other Physical Sciences ,Physical sciences - Abstract
The Gerda experiment, located at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN in Italy, searches for the neutrinoless double beta (0νββ) decay of 76Ge. Gerda Phase II is aiming to reach a sensitivity for the 0νββ half life of 1026 yr in ∼ 3 years of physics data taking with 100 kg•yr of exposure and a background index of ∼ 10-3 cts/(keV•kg•yr). After 6 months of acquisition a first data release with 10.8 kg•yr of exposure is performed, showing that the design background is achieved. In this work a study of the Phase II background spectrum, the main spectral structures and the background sources will be presented and discussed.
- Published
- 2017
37. Active background suppression with the liquid argon scintillation veto of GERDA Phase II
- Author
-
Agostini, M, Allardt, M, Bakalyarov, AM, Balata, M, Barabanov, I, Baudis, L, Bauer, C, Bellotti, E, Belogurov, S, Belyaev, ST, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Borowicz, D, Brudanin, V, Brugnera, R, Caldwell, A, Cattadori, C, Chernogorov, A, D’Andrea, V, Demidova, EV, Di Marco, N, Domula, A, Doroshkevich, E, Egorov, V, Falkenstein, R, Frodyma, N, Gangapshev, A, Garfagnini, A, Gooch, C, Grabmayr, P, Gurentsov, V, Gusev, K, Hakenmüller, J, Hegai, A, Heisel, M, Hemmer, S, Hofmann, W, Hult, M, Inzhechik, LV, Csáthy, J Janicskó, Jochum, J, Junker, M, Kazalov, V, Kihm, T, Kirpichnikov, IV, Kirsch, A, Kish, A, Klimenko, A, Kneißl, R, Knöpfle, KT, Kochetov, O, Kornoukhov, VN, Kuzminov, VV, Laubenstein, M, Lazzaro, A, Lebedev, VI, Lehnert, B, Liao, HY, Lindner, M, Lippi, I, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Majorovits, B, Maneschg, W, Medinaceli, E, Miloradovic, M, Mingazheva, R, Misiaszek, M, Moseev, P, Nemchenok, I, Palioselitis, D, Panas, K, Pandola, L, Pelczar, K, Pullia, A, Riboldi, S, Rumyantseva, N, Sada, C, Salamida, F, Salathe, M, Schmitt, C, Schneider, B, Schönert, S, Schreiner, J, Schulz, O, Schütz, A-K, Schwingenheuer, B, Selivanenko, O, Shevzik, E, Shirchenko, M, Simgen, H, Smolnikov, A, Stanco, L, Vanhoefer, L, Vasenko, AA, and Veresnikova, A
- Subjects
Nuclear and Plasma Physics ,Particle and High Energy Physics ,Physical Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Condensed Matter Physics ,Other Physical Sciences ,Physical sciences - Abstract
The observation of neutrinoless double beta decay would allow to shed light onto the particle nature of neutrinos. Gerda is aiming to perform a background-free search for this process using high purity germanium detectors enriched in 76Ge operated in liquid argon. This goal relies on the application of active background suppression techniques. A low background light instrumentation has been installed for Phase II to detect events with coincident energy deposition in the nearby liquid argon. The intended background index of ∼10-3 cts/(keV•ky•yr) has been confirmed.
- Published
- 2017
38. Limits on uranium and thorium bulk content in GERDA Phase I detectors
- Author
-
collaboration, G, Agostini, M, Allardt, M, Bakalyarov, AM, Balata, M, Barabanov, I, Baudis, L, Bauer, C, Becerici-Schmidt, N, Bellotti, E, Belogurov, S, Belyaev, ST, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Borowicz, D, Brudanin, V, Brugnera, R, Caldwell, A, Cattadori, C, Chernogorov, A, D'Andrea, V, Demidova, EV, di Vacri, A, Domula, A, Doroshkevich, E, Egorov, V, Falkenstein, R, Fedorova, O, Freund, K, Frodyma, N, Gangapshev, A, Garfagnini, A, Grabmayr, P, Gurentsov, V, Gusev, K, Hakemüller, J, Hegai, A, Heisel, M, Hemmer, S, Hofmann, W, Hult, M, Inzhechik, LV, Janicskó Csáthy, J, Jochum, J, Junker, M, Kazalov, V, Kihm, T, Kirpichnikov, IV, Kirsch, A, Kish, A, Klimenko, A, Kneißl, R, Knöpfle, KT, Kochetov, O, Kornoukhov, VN, Kuzminov, VV, Laubenstein, M, Lazzaro, A, Lebedev, VI, Lehnert, B, Liao, HY, Lindner, M, Lippi, I, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Majorovits, B, Maneschg, W, Medinaceli, E, Mingazheva, R, Misiaszek, M, Moseev, P, Nemchenok, I, Palioselitis, D, Panas, K, Pandola, L, Pelczar, K, Pullia, A, Riboldi, S, Rumyantseva, N, Sada, C, Salamida, F, Salathe, M, Schmitt, C, Schneider, B, Schönert, S, Schreiner, J, Schütz, AK, Schulz, O, Schwingenheuer, B, Selivanenko, O, Shevchik, E, Shirchenko, M, Simgen, H, Smolnikov, A, Stanco, L, and Stepaniuk, M
- Subjects
Germanium detectors ,Double beta decay ,Radiopurity ,Uranium and thorium bulk content ,physics.ins-det ,nucl-ex ,Nuclear & Particles Physics ,Astronomical and Space Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics - Abstract
Internal contaminations of 238U, 235U and 232Th in the bulk of high purity germanium detectors are potential backgrounds for experiments searching for neutrinoless double beta decay of 76Ge. The data from GERDA Phase I have been analyzed for alpha events from the decay chain of these contaminations by looking for full decay chains and for time correlations between successive decays in the same detector. No candidate events for a full chain have been found. Upper limits on the activities in the range of a few nBq/kg for 226Ra, 227Ac and 228Th, the long-lived daughter nuclides of 238U, 235U and 232Th, respectively, have been derived. With these upper limits a background index in the energy region of interest from 226Ra and 228Th contamination is estimated which satisfies the prerequisites of a future ton scale germanium double beta decay experiment.
- Published
- 2017
39. Limits on uranium and thorium bulk content in Gerda Phase I detectors
- Author
-
collaboration, GERDA, Agostini, M, Allardt, M, Bakalyarov, AM, Balata, M, Barabanov, I, Baudis, L, Bauer, C, Becerici-Schmidt, N, Bellotti, E, Belogurov, S, Belyaev, ST, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Borowicz, D, Brudanin, V, Brugnera, R, Caldwell, A, Cattadori, C, Chernogorov, A, D’Andrea, V, Demidova, EV, di Vacri, A, Domula, A, Doroshkevich, E, Egorov, V, Falkenstein, R, Fedorova, O, Freund, K, Frodyma, N, Gangapshev, A, Garfagnini, A, Grabmayr, P, Gurentsov, V, Gusev, K, Hakemüller, J, Hegai, A, Heisel, M, Hemmer, S, Hofmann, W, Hult, M, Inzhechik, LV, Csáthy, J Janicskó, Jochum, J, Junker, M, Kazalov, V, Kihm, T, Kirpichnikov, IV, Kirsch, A, Kish, A, Klimenko, A, Kneißl, R, Knöpfle, KT, Kochetov, O, Kornoukhov, VN, Kuzminov, VV, Laubenstein, M, Lazzaro, A, Lebedev, VI, Lehnert, B, Liao, HY, Lindner, M, Lippi, I, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Majorovits, B, Maneschg, W, Medinaceli, E, Mingazheva, R, Misiaszek, M, Moseev, P, Nemchenok, I, Palioselitis, D, Panas, K, Pandola, L, Pelczar, K, Pullia, A, Riboldi, S, Rumyantseva, N, Sada, C, Salamida, F, Salathe, M, Schmitt, C, Schneider, B, Schönert, S, Schreiner, J, Schütz, A-K, Schulz, O, Schwingenheuer, B, Selivanenko, O, Shevchik, E, Shirchenko, M, Simgen, H, Smolnikov, A, Stanco, L, and Stepaniuk, M
- Subjects
Germanium detectors ,Double beta decay ,Radiopurity ,Uranium and thorium bulk content ,physics.ins-det ,nucl-ex ,Astronomical and Space Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Nuclear & Particles Physics - Abstract
Internal contaminations of 238U, 235U and 232Th in the bulk of high purity germanium detectors are potential backgrounds for experiments searching for neutrinoless double beta decay of 76Ge. The data from GERDA Phase I have been analyzed for alpha events from the decay chain of these contaminations by looking for full decay chains and for time correlations between successive decays in the same detector. No candidate events for a full chain have been found. Upper limits on the activities in the range of a few nBq/kg for 226Ra, 227Ac and 228Th, the long-lived daughter nuclides of 238U, 235U and 232Th, respectively, have been derived. With these upper limits a background index in the energy region of interest from 226Ra and 228Th contamination is estimated which satisfies the prerequisites of a future ton scale germanium double beta decay experiment.
- Published
- 2017
40. Cryogenic silicon detectors with implanted contacts for the detection of visible photons using the Neganov-Luke Effect
- Author
-
Defay, X., Mondragon, E., Willers, M., Langenkamper, A., Lanfranchi, J. -C., Munstera, A., Zoller, A., Wawoczny, S., Steiger, H., Hitzler, F., Bruhn, C., Schonert, S., Potzel, W., and Chapellier, M.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Physics - Instrumentation and Detectors - Abstract
There is a common need in astroparticle experiments such as direct dark matter detection, 0{\nu}\b{eta}\b{eta} (double beta decay without emission of neutrinos) and Coherent Neutrino Nucleus Scattering experiments for light detectors with a very low energy threshold. By employing the Neganov-Luke Effect, the thermal signal of particle interactions in a semiconductor absorber operated at cryogenic temperatures, can be amplified by drifting the photogenerated electrons and holes in an electric field. This technology is not used in current experiments, in particular because of a reduction of the signal amplitude with time which is due to trapping of the charges within the absorber. We present here the first results of a novel type of Neganov-Luke Effect detector with an electric field configuration designed to improve the charge collection within the semiconductor., Comment: 6 pages, 5 figures, submitted to Journal of Low Temperature Physics
- Published
- 2015
- Full Text
- View/download PDF
41. Radiopurity of a kg-scale PbWO4 cryogenic detector produced from archaeological Pb for the RES-NOVA experiment
- Author
-
Beeman, J. W., Benato, G., Bucci, C., Canonica, L., Carniti, P., Celi, E., Clemenza, M., D’Addabbo, A., Danevich, F. A., Di Domizio, S., DiLorenzo, S., Dubovik, O. M., Ferreiro Iachellini, N., Ferroni, F., Fiorini, E., Fu, S., Garai, A., Ghislandi, S., Gironi, L., Gorla, P., Gotti, C., Guillaumon, P. V., Helis, D. L., Kovtun, G. P., Mancuso, M., Marini, L., Olmi, M., Pagnanini, L., Pattavina, L., Pessina, G., Petricca, F., Pirro, S., Pozzi, S., Puiu, A., Quitadamo, S., Rothe, J., Scherban, A. P., Schönert, S., Solopikhin, D. A., Strauss, R., Tarabini, E., Tretyak, V. I., Tupitsyna, I. A., and Wagner, V.
- Published
- 2022
- Full Text
- View/download PDF
42. First results of GERDA Phase II and consistency with background models
- Author
-
Agostini, M, Allardt, M, Bakalyarov, AM, Balata, M, Barabanov, I, Baudis, L, Bauer, C, Bellotti, E, Belogurov, S, Belyaev, ST, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Borowicz, D, Brudanin, V, Brugnera, R, Caldwell, A, Cattadori, C, Chernogorov, A, D’Andrea, V, Demidova, EV, Di Marco, N, Domula, A, Doroshkevich, E, Egorov, V, Falkenstein, R, Frodyma, N, Gangapshev, A, Garfagnini, A, Gooch, C, Grabmayr, P, Gurentsov, V, Gusev, K, Hakenmüller, J, Hegai, A, Heisel, M, Hemmer, S, Hofmann, W, Hult, M, Inzhechik, LV, Csáthy, J Janicskó, Jochum, J, Junker, M, Kazalov, V, Kihm, T, Kirpichnikov, IV, Kirsch, A, Kish, A, Klimenko, A, Kneißl, R, Knöpfle, KT, Kochetov, O, Kornoukhov, VN, Kuzminov, VV, Laubenstein, M, Lazzaro, A, Lebedev, VI, Lehnert, B, Liao, HY, Lindner, M, Lippi, I, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Majorovits, B, Maneschg, W, Medinaceli, E, Miloradovic, M, Mingazheva, R, Misiaszek, M, Moseev, P, Nemchenok, I, Palioselitis, D, Panas, K, Pandola, L, Pelczar, K, Pullia, A, Riboldi, S, Rumyantseva, N, Sada, C, Salamida, F, Salathe, M, Schmitt, C, Schneider, B, Schönert, S, Schreiner, J, Schulz, O, Schütz, A-K, Schwingenheuer, B, Selivanenko, O, Shevzik, E, Shirchenko, M, Simgen, H, Smolnikov, A, Stanco, L, Vanhoefer, L, Vasenko, AA, and Veresnikova, A
- Subjects
Physical Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Condensed Matter Physics ,Other Physical Sciences ,Physical sciences - Abstract
The GERDA (GERmanium Detector Array) is an experiment for the search of neutrinoless double beta decay (0νββ) in 76Ge, located at Laboratori Nazionali del Gran Sasso of INFN (Italy). GERDA operates bare high purity germanium detectors submersed in liquid Argon (LAr). Phase II of data-taking started in Dec 2015 and is currently ongoing. In Phase II 35 kg of germanium detectors enriched in 76Ge including thirty newly produced Broad Energy Germanium (BEGe) detectors is operating to reach an exposure of 100 kg•yr within about 3 years data taking. The design goal of Phase II is to reduce the background by one order of magnitude to get the sensitivity for . To achieve the necessary background reduction, the setup was complemented with LAr veto. Analysis of the background spectrum of Phase II demonstrates consistency with the background models. Furthermore 226Ra and 232Th contamination levels consistent with screening results. In the first Phase II data release we found no hint for a 0νββ decay signal and place a limit of this process yr (90% C.L., sensitivity 4.0•1025 yr). First results of GERDA Phase II will be presented.
- Published
- 2017
43. Limit on the radiative neutrinoless double electron capture of 36Ar from GERDA Phase I
- Author
-
Agostini, M, Allardt, M, Bakalyarov, AM, Balata, M, Barabanov, I, Barros, N, Baudis, L, Bauer, C, Bellotti, E, Belogurov, S, Belyaev, ST, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Borowicz, D, Brudanin, V, Brugnera, R, Caldwell, A, Cattadori, C, Chernogorov, A, D’Andrea, V, Demidova, EV, di Vacri, A, Domula, A, Doroshkevich, E, Egorov, V, Falkenstein, R, Fedorova, O, Freund, K, Frodyma, N, Gangapshev, A, Garfagnini, A, Gooch, C, Grabmayr, P, Gurentsov, V, Gusev, K, Hakenmüller, J, Hegai, A, Heisel, M, Hemmer, S, Heusser, G, Hofmann, W, Hult, M, Inzhechik, LV, Csáthy, J Janicskó, Jochum, J, Junker, M, Kazalov, V, Kihm, T, Kirpichnikov, IV, Kirsch, A, Kish, A, Klimenko, A, Kneißl, R, Knöpfle, KT, Kochetov, O, Kornoukhov, VN, Kuzminov, VV, Laubenstein, M, Lazzaro, A, Lebedev, VI, Lehnert, B, Liao, HY, Lindner, M, Lippi, I, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Majorovits, B, Maneschg, W, Medinaceli, E, Miloradovic, M, Mingazheva, R, Misiaszek, M, Moseev, P, Nemchenok, I, Palioselitis, D, Panas, K, Pandola, L, Pelczar, K, Pullia, A, Riboldi, S, Rumyantseva, N, Sada, C, Salamida, F, Salathe, M, Schmitt, C, Schneider, B, Schönert, S, Schreiner, J, Schütz, A-K, Schulz, O, Schwingenheuer, B, Selivanenko, O, Shirchenko, M, Simgen, H, Smolnikov, A, and Stanco, L
- Subjects
Nuclear and Plasma Physics ,Particle and High Energy Physics ,Physical Sciences ,nucl-ex ,hep-ex ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Quantum Physics ,Nuclear & Particles Physics ,Astronomical sciences ,Atomic ,molecular and optical physics ,Particle and high energy physics - Abstract
Neutrinoless double electron capture is a process that, if detected, would give evidence of lepton number violation and the Majorana nature of neutrinos. A search for neutrinoless double electron capture of 36Ar has been performed with germanium detectors installed in liquid argon using data from Phase I of the GERmanium Detector Array (Gerda) experiment at the Gran Sasso Laboratory of INFN, Italy. No signal was observed and an experimental lower limit on the half-life of the radiative neutrinoless double electron capture of 36Ar was established: T1 / 2> 3.6 × 1021 years at 90% CI.
- Published
- 2016
44. Limit on the radiative neutrinoless double electron capture of 36 Ar from GERDA Phase I
- Author
-
Agostini, M, Allardt, M, Bakalyarov, AM, Balata, M, Barabanov, I, Barros, N, Baudis, L, Bauer, C, Bellotti, E, Belogurov, S, Belyaev, ST, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Borowicz, D, Brudanin, V, Brugnera, R, Caldwell, A, Cattadori, C, Chernogorov, A, D’Andrea, V, Demidova, EV, di Vacri, A, Domula, A, Doroshkevich, E, Egorov, V, Falkenstein, R, Fedorova, O, Freund, K, Frodyma, N, Gangapshev, A, Garfagnini, A, Gooch, C, Grabmayr, P, Gurentsov, V, Gusev, K, Hakenmüller, J, Hegai, A, Heisel, M, Hemmer, S, Heusser, G, Hofmann, W, Hult, M, Inzhechik, LV, Csáthy, JJ, Jochum, J, Junker, M, Kazalov, V, Kihm, T, Kirpichnikov, IV, Kirsch, A, Kish, A, Klimenko, A, Kneißl, R, Knöpfle, KT, Kochetov, O, Kornoukhov, VN, Kuzminov, VV, Laubenstein, M, Lazzaro, A, Lebedev, VI, Lehnert, B, Liao, HY, Lindner, M, Lippi, I, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Majorovits, B, Maneschg, W, Medinaceli, E, Miloradovic, M, Mingazheva, R, Misiaszek, M, Moseev, P, Nemchenok, I, Palioselitis, D, Panas, K, Pandola, L, Pelczar, K, Pullia, A, Riboldi, S, Rumyantseva, N, Sada, C, Salamida, F, Salathe, M, Schmitt, C, Schneider, B, Schönert, S, Schreiner, J, Schütz, AK, Schulz, O, Schwingenheuer, B, Selivanenko, O, Shirchenko, M, Simgen, H, Smolnikov, A, and Stanco, L
- Subjects
nucl-ex ,hep-ex ,Nuclear & Particles Physics ,Quantum Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics - Abstract
Neutrinoless double electron capture is a process that, if detected, would give evidence of lepton number violation and the Majorana nature of neutrinos. A search for neutrinoless double electron capture of 36Ar has been performed with germanium detectors installed in liquid argon using data from Phase I of the GERmanium Detector Array (Gerda) experiment at the Gran Sasso Laboratory of INFN, Italy. No signal was observed and an experimental lower limit on the half-life of the radiative neutrinoless double electron capture of 36Ar was established: T1 / 2> 3.6 × 1021 years at 90% CI.
- Published
- 2016
45. Flux modulations seen by the muon veto of the Gerda experiment
- Author
-
collaboration, GERDA, Agostini, M, Allardt, M, Bakalyarov, AM, Balata, M, Barabanov, I, Barros, N, Baudis, L, Bauer, C, Becerici-Schmidt, N, Bellotti, E, Belogurov, S, Belyaev, ST, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Borowicz, D, Brudanin, V, Brugnera, R, Caldwell, A, Cattadori, C, Chernogorov, A, D’Andrea, V, Demidova, EV, di Vacri, A, Domula, A, Doroshkevich, E, Egorov, V, Falkenstein, R, Fedorova, O, Freund, K, Frodyma, N, Gangapshev, A, Garfagnini, A, Grabmayr, P, Gurentsov, V, Gusev, K, Hegai, A, Heisel, M, Hemmer, S, Hofmann, W, Hult, M, Inzhechik, LV, Ioannucci, L, Cs’athy, J Janicsk’o, Jochum, J, Junker, M, Kazalov, V, Kihm, T, Kirpichnikov, IV, Kirsch, A, Klimenko, A, Knapp, M, Knöpfle, KT, Kochetov, O, Kornoukhov, VN, Kuzminov, VV, Laubenstein, M, Lazzaro, A, Lebedev, VI, Lehnert, B, Liao, HY, Lindner, M, Lippi, I, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Majorovits, B, Maneschg, W, Medinaceli, E, Misiaszek, M, Moseev, P, Nemchenok, I, Palioselitis, D, Panas, K, Pandola, L, Pelczar, K, Pullia, A, Riboldi, S, Ritter, F, Rumyantseva, N, Sada, C, Salathe, M, Schmitt, C, Schneider, B, Schönert, S, Schreiner, J, Schütz, A-K, Schulz, O, Schwingenheuer, B, Selivanenko, O, Shevchik, E, Shirchenko, M, Simgen, H, Smolnikov, A, Stanco, L, Stepaniuk, M, and Strecker, H
- Subjects
Water cherenkov detector ,Underground experiment ,Cosmic rays ,Muon interaction ,physics.ins-det ,hep-ex ,Astronomical and Space Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Nuclear & Particles Physics - Abstract
The GERDA experiment at LNGS of INFN is equipped with an active muon veto. The main part of the system is a water Cherenkov veto with 66 PMTs in the water tank surrounding the GERDA cryostat. The muon flux recorded by this veto shows a seasonal modulation. Two causes have been identified: (i) secondary muons from the CNGS neutrino beam (2.2%) and (ii) a temperature modulation of the atmosphere (1.4%). A mean cosmic muon rate of Iμ0=(3.477±0.002stat±0.067sys)×10−4/(s · m2) was found in good agreement with other experiments at LNGS. Combining the present result with those from previous experiments at LNGS the effective temperature coefficient αT,Lngs is determined to 0.93 ± 0.03. A fit of the temperature coefficients measured at various underground sites yields a kaon to pion ratio rK/π of 0.10 ± 0.03.
- Published
- 2016
46. Flux modulations seen by the muon veto of the GERDA experiment
- Author
-
Agostini, M, Balata, M, D'Andrea, V, di Vacri, A, Ioannucci, L, Junker, M, Laubenstein, M, Macolino, C, Pandola, L, Borowicz, D, Frodyma, N, Misiaszek, M, Panas, K, Pelczar, K, Wojcik, M, Zuzel, G, Allardt, M, Barros, N, Domula, A, Lehnert, B, Schneider, B, Wester, T, Wilsenach, H, Zuber, K, Brudanin, V, Egorov, V, Gusev, K, Klimenko, A, Kochetov, O, Lubashevskiy, A, Nemchenok, I, Rumyantseva, N, Shevchik, E, Shirchenko, M, Zhitnikov, I, Zinatulina, D, Hult, M, Lutter, G, Bauer, C, Gangapshev, A, Heisel, M, Hofmann, W, Kihm, T, Kirsch, A, Knöpfle, KT, Lindner, M, Maneschg, W, Salathe, M, Schreiner, J, Schwingenheuer, B, Simgen, H, Smolnikov, A, Stepaniuk, M, Strecker, H, Wagner, V, Wegmann, A, Bellotti, E, Cattadori, C, Pullia, A, Riboldi, S, Barabanov, I, Belogurov, S, Bezrukov, L, Doroshkevich, E, Fedorova, O, Gurentsov, V, Inzhechik, LV, Kazalov, V, Kornoukhov, VN, Kuzminov, VV, Lubsandorzhiev, B, Moseev, P, Selivanenko, O, Veresnikova, A, Yanovich, E, Chernogorov, A, Demidova, EV, Kirpichnikov, IV, Vasenko, AA, Bakalyarov, AM, Belyaev, ST, Lebedev, VI, Zhukov, SV, Becerici-Schmidt, N, Caldwell, A, Liao, HY, Majorovits, B, Palioselitis, D, Schulz, O, Vanhoefer, L, Bode, T, Janicsk'o Cs'athy, J, Lazzaro, A, Schönert, S, Wiesinger, C, Bettini, A, Brugnera, R, Garfagnini, A, Hemmer, S, and Medinaceli, E
- Subjects
Water cherenkov detector ,Underground experiment ,Cosmic rays ,Muon interaction ,physics.ins-det ,hep-ex ,Nuclear & Particles Physics ,Astronomical and Space Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics - Abstract
The GERDA experiment at LNGS of INFN is equipped with an active muon veto. The main part of the system is a water Cherenkov veto with 66 PMTs in the water tank surrounding the GERDA cryostat. The muon flux recorded by this veto shows a seasonal modulation. Two causes have been identified: (i) secondary muons from the CNGS neutrino beam (2.2%) and (ii) a temperature modulation of the atmosphere (1.4%). A mean cosmic muon rate of Iμ0=(3.477±0.002stat±0.067sys)×10−4/(s · m2) was found in good agreement with other experiments at LNGS. Combining the present result with those from previous experiments at LNGS the effective temperature coefficient αT,Lngs is determined to 0.93 ± 0.03. A fit of the temperature coefficients measured at various underground sites yields a kaon to pion ratio rK/π of 0.10 ± 0.03.
- Published
- 2016
47. Search of Neutrinoless Double Beta Decay with the GERDA Experiment
- Author
-
Agostini, M, Allardt, M, Bakalyarov, AM, Balata, M, Barabanov, I, Baudis, L, Bauer, C, Becerici-Schmidt, N, Bellotti, E, Belogurov, S, Belyaev, ST, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Borowicz, D, Brudanin, V, Brugnera, R, Budjáš, D, Caldwell, A, Cattadori, C, Chernogorov, A, D'Andrea, V, Demidova, EV, Domula, A, Doroshkevich, E, Egorov, V, Falkenstein, R, Fedorova, O, Freund, K, Frodyma, N, Gangapshev, A, Garfagnini, A, Gooch, C, Gotti, C, Grabmayr, P, Gurentsov, V, Gusev, K, Hampel, W, Hegai, A, Heisel, M, Hemmer, S, Heusser, G, Hoffmann, W, Hult, M, Inzhechik, LV, Ioannucci, L, Csáthy, J Janicksó, Jochum, J, Junker, M, Kazalov, V, Kihm, T, Kirpichnikov, IV, Kirsch, A, Klimenko, A, Knöpfle, KT, Kochetov, O, Kornoukhov, VN, Kuzminov, VV, Laubenstein, M, Lazzaro, A, Lebedev, VI, Lehnert, B, Liao, HY, Lindner, M, Lippi, I, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Majorovits, B, Maneschg, W, Marissens, G, Medinaceli, E, Misiaszek, M, Moseev, P, Nemchenok, I, Nisi, S, Palioselitis, D, Panas, K, Pandola, L, Pelczar, K, Pessina, G, Pullia, A, Reissfelder, M, Riboldi, S, Rumyantseva, N, Sada, C, Salathe, M, Schmitt, C, Schneider, B, Schreiner, J, Schulz, O, Schwingenheuer, B, Schönert, S, Seitz, H, Selivalenko, O, Shevchik, E, Shirchenko, M, and Simgen, H
- Subjects
neutrinoless double beta decay ,T-1/2(0 nu) ,Ge-76 ,enriched Ge detectors - Abstract
The GERDA (GERmanium Detector Array) is an experiment for the search of neutrinoless double beta decay (0νββ) in 76Ge, located at Laboratori Nazionali del Gran Sasso of INFN (Italy). In the first phase of the experiment, a 90% confidence level (C.L.) sensitivity of 2.4·1025 yr on the 0νββ decay half-life was achieved with a 21.6 kg·yr exposure and an unprecedented background index in the region of interest of 10-2 counts/(keV·kg·yr). No excess of signal events was found, and an experimental lower limit on the half-life of 2.1 · 1025 yr (90% C.L.) was established. Correspondingly, the limit on the effective Majorana neutrino mass is mee
- Published
- 2016
48. Ortho-positronium observation in the Double Chooz Experiment
- Author
-
Abe, Y., Anjos, J. C. dos, Barriere, J. C., Baussan, E., Bekman, I., Bergevin, M., Bezerra, T. J. C., Bezrukov, L., Blucher, E., Buck, C., Busenitz, J., Cabrera, A., Caden, E., Camilleri, L., Carr, R., Cerrada, M., Chang, P. -J., Chauveau, E., Chimenti, P., Collin, A. P., Conover, E., Conrad, J. M., Crespo-Anadon, J. I., Crum, K., Cucoanes, A. S., Damon, E., Dawson, J. V., Dhooghe, J., Dietrich, D., Djurcic, Z., Dracos, M., Elnimr, M., Etenko, A., Fallot, M., von Feilitzsch, F., Felde, J., Fernandes, S. M., Fischer, V., Franco, D., Franke, M., Furuta, H., Gil-Botella, I., Giot, L., Goger-Neff, M., Gonzalez, L. F. G., Goodenough, L., Goodman, M. C., Grant, C., Haag, N., Hara, T., Haser, J., Hofmann, M., Horton-Smith, G. A., Hourlier, A., Ishitsuka, M., Jochum, J., Jollet, C., Kaether, F., Kalousis, L. N., Kamyshkov, Y., Kaplan, D. M., Kawasaki, T., Kemp, E., de Kerret, H., Kryn, D., Kuze, M., Lachenmaier, T., Lane, C. E., Lasserre, T., Letourneau, A., Lhuillier, D., Lima Jr, H. P., Lindner, M., Lopez-Castano, J. M., LoSecco, J. M., Lubsandorzhiev, B., Lucht, S., Maeda, J., Mariani, C., Maricic, J., Martino, J., Matsubara, T., Mention, G., Meregaglia, A., Miletic, T., Milincic, R., Minotti, A., Nagasaka, Y., Nikitenko, Y., Novella, P., Oberauer, L., Obolensky, M., Onillon, A., Osborn, A., Palomares, C., Pepe, I. M., Perasso, S., Pfahler, P., Porta, A., Pronost, G., Reichenbacher, J., Reinhold, B., Rohling, M., Roncin, R., Roth, S., Rybolt, B., Sakamoto, Y., Santorelli, R., Schilithz, A. C., Schonert, S., Schoppmann, S., Shaevitz, M. H., Sharankova, R., Shimojima, S., Shrestha, D., Sibille, V., Sinev, V., Skorokhvatov, M., Smith, E., Spitz, J., Stahl, A., Stancu, I., Stokes, L. F. F., Strait, M., Stuken, A., Suekane, F., Sukhotin, S., Sumiyoshi, T., Sun, Y., Svoboda, R., Terao, K., Tonazzo, A., Thi, H. H. Trinh, Valdiviesso, G., Vassilopoulos, N., Veyssiere, C., Vivier, M., Wagner, S., Walsh, N., Watanabe, H., Wiebusch, C., Winslow, L., Wurm, M., Yang, G., Yermia, F., and Zimmer, V.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
The Double Chooz experiment measures the neutrino mixing angle $\theta_{13}$ by detecting reactor $\bar{\nu}_e$ via inverse beta decay. The positron-neutron space and time coincidence allows for a sizable background rejection, nonetheless liquid scintillator detectors would profit from a positron/electron discrimination, if feasible in large detector, to suppress the remaining background. Standard particle identification, based on particle dependent time profile of photon emission in liquid scintillator, can not be used given the identical mass of the two particles. However, the positron annihilation is sometimes delayed by the ortho-positronium (o-Ps) metastable state formation, which induces a pulse shape distortion that could be used for positron identification. In this paper we report on the first observation of positronium formation in a large liquid scintillator detector based on pulse shape analysis of single events. The o-Ps formation fraction and its lifetime were measured, finding the values of 44$\%$ $\pm$ 12$\%$ (sys.) $\pm$ 5$\%$ (stat.) and $3.68$ns $\pm$ 0.17ns (sys.) $\pm$ 0.15ns (stat.) respectively, in agreement with the results obtained with a dedicated positron annihilation lifetime spectroscopy setup., Comment: 17 pages, 5 figures
- Published
- 2014
- Full Text
- View/download PDF
49. R &D of wavelength-shifting reflectors and characterization of the quantum efficiency of tetraphenyl butadiene and polyethylene naphthalate in liquid argon
- Author
-
Araujo, G. R., Baudis, L., McFadden, N., Krause, P., Schönert, S., and Wu, V. H. S.
- Published
- 2022
- Full Text
- View/download PDF
50. Pulse shape analysis in Gerda Phase II
- Author
-
Agostini, M., Araujo, G., Bakalyarov, A. M., Balata, M., Barabanov, I., Baudis, L., Bauer, C., Bellotti, E., Belogurov, S., Bettini, A., Bezrukov, L., Biancacci, V., Bossio, E., Bothe, V., Brudanin, V., Brugnera, R., Caldwell, A., Cattadori, C., Chernogorov, A., Comellato, T., D’Andrea, V., Demidova, E. V., Marco, N. Di, Doroshkevich, E., Fischer, F., Fomina, M., Gangapshev, A., Garfagnini, A., Gooch, C., Grabmayr, P., Gurentsov, V., Gusev, K., Hakenmüller, J., Hemmer, S., Hiller, R., Hofmann, W., Huang, J., Hult, M., Inzhechik, L. V., Csáthy, J. Janicskó, Jochum, J., Junker, M., Kazalov, V., Kermaïdic, Y., Khushbakht, H., Kihm, T., Kilgus, K., Kirsch, A., Kirpichnikov, I. V., Klimenko, A., Knöpfle, K. T., Kochetov, O., Kornoukhov, V. N., Krause, P., Kuzminov, V. V., Laubenstein, M., Lazzaro, A., Lindner, M., Lippi, I., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Macolino, C., Majorovits, B., Maneschg, W., Manzanillas, L., Miloradovic, M., Mingazheva, R., Misiaszek, M., Müller, Y., Nemchenok, I., Panas, K., Pandola, L., Pelczar, K., Pertoldi, L., Piseri, P., Pullia, A., Ransom, C., Rauscher, L., Redchuk, M., Riboldi, S., Rumyantseva, N., Sada, C., Salamida, F., Schönert, S., Schreiner, J., Schütt, M., Schütz, A. -K., Schulz, O., Schwarz, M., Schwingenheuer, B., Selivanenko, O., Shevchik, E., Shirchenko, M., Shtembari, L., Simgen, H., Smolnikov, A., Stukov, D., Vasenko, A. A., Veresnikova, A., Vignoli, C., Sturm, K. von, Wagner, V., Wester, T., Wiesinger, C., Wojcik, M., Yanovich, E., Zatschler, B., Zhitnikov, I., Zhukov, S. V., Zinatulina, D., Zschocke, A., Zsigmond, A. J., Zuber, K., and Zuzel, G.
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.