1. The Wolf-Rayet binaries of the nitrogen sequence in the Large Magellanic Cloud: spectroscopy, orbital analysis, formation, and evolution
- Author
-
Shenar, T., Sablowski, D. P., Hainich, R., Todt, H, Moffat, A. F. J., Oskinova, L. M., Ramachandran, V., Sana, H., Sander, A. A. C, Schnurr, O., St-Louis, N., Vanbeveren, D., Goetberg, Y., and Hamann, W. -R.
- Subjects
Astrophysics - Solar and Stellar Astrophysics - Abstract
Massive Wolf-Rayet (WR) stars dominate the radiative and mechanical energy budget of galaxies and probe a critical phase in the evolution of massive stars prior to core-collapse. It is not known whether core He-burning WR stars (classical WR, cWR) form predominantly through wind-stripping (w-WR) or binary stripping (b-WR). With spectroscopy of WR binaries so-far largely avoided due to its complexity, our study focuses on the 44 WR binaries / binary candidates of the Large Magellanic Cloud (LMC, metallicity Z~0.5 Zsun), identified on the basis of radial velocity variations, composite spectra, or high X-ray luminosities. Relying on a diverse spectroscopic database, we aim to derive the physical and orbital parameters of our targets, confronting evolution models of evolved massive stars at sub-solar metallicity, and constraining the impact of binary interaction in forming them. Spectroscopy is performed using the Potsdam Wolf-Rayet (PoWR) code and cross-correlation techniques. Disentanglement is performed using the code Spectangular or the shift-and-add algorithm. Evolutionary status is interpreted using the Binary Population and Spectral Synthesis (BPASS) code, exploring binary interaction and chemically-homogeneous evolution. No obvious dichotomy in the locations of apparently-single and binary WN stars on the Hertzsprung-Russell diagram is apparent. According to commonly used stellar evolution models (BPASS, Geneva), most apparently-single WN stars could not have formed as single stars, implying that they were stripped by an undetected companion. Otherwise, it must follow that pre-WR mass-loss/mixing (e.g., during the red supergiant phase) are strongly underestimated in standard stellar evolution models., Comment: accepted to A&A on 10.05.2019; 69 pages (25 main paper + 44 appendix); Corrigendum: Shenar et al. 2020, A&A, 641, 2: An unfortunate typo in the implementation of the "transformed radius" caused errors of up to ~0.5dex in the derived mass-loss rates. This has now been corrected
- Published
- 2019
- Full Text
- View/download PDF