1. Probabilistic Forward Modeling of Galaxy Catalogs with Normalizing Flows
- Author
-
Crenshaw, John Franklin, Kalmbach, J. Bryce, Gagliano, Alexander, Yan, Ziang, Connolly, Andrew J., Malz, Alex I., Schmidt, Samuel J., and Collaboration, The LSST Dark Energy Science
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Evaluating the accuracy and calibration of the redshift posteriors produced by photometric redshift (photo-z) estimators is vital for enabling precision cosmology and extragalactic astrophysics with modern wide-field photometric surveys. Evaluating photo-z posteriors on a per-galaxy basis is difficult, however, as real galaxies have a true redshift but not a true redshift posterior. We introduce PZFlow, a Python package for the probabilistic forward modeling of galaxy catalogs with normalizing flows. For catalogs simulated with PZFlow, there is a natural notion of "true" redshift posteriors that can be used for photo-z validation. We use PZFlow to simulate a photometric galaxy catalog where each galaxy has a redshift, noisy photometry, shape information, and a true redshift posterior. We also demonstrate the use of an ensemble of normalizing flows for photo-z estimation. We discuss how PZFlow will be used to validate the photo-z estimation pipeline of the Dark Energy Science Collaboration (DESC), and the wider applicability of PZFlow for statistical modeling of any tabular data., Comment: 19 pages, 13 figures, submitted to AJ
- Published
- 2024