365 results on '"Schaper L"'
Search Results
2. Early bronchodilator action of glycopyrronium versus tiotropium in moderate-to-severe COPD patients: a cross-over blinded randomized study (Symptoms and Pulmonary function in the moRnING)
- Author
-
Marin JM, Beeh KM, Clemens A, Castellani W, Schaper L, Saralaya D, Gunstone A, Casamor R, Kostikas K, and Aalamian-Mattheis M
- Subjects
LAMA ,glycopyrronium ,tiotropium ,lung function ,fast onset ,rapid onset ,patient reported outcome ,COPD ,Diseases of the respiratory system ,RC705-779 - Abstract
Jose M Marin,1 Kai M Beeh,2 Andreas Clemens,3 Walter Castellani,4 Lennart Schaper,5 Dinesh Saralaya,6 Anthony Gunstone,7 Ricard Casamor,8 Konstantinos Kostikas,3 Maryam Aalamian-Mattheis3 1University Hospital Miguel Servet, IISAragón, CIBERES, Zaragoza, Spain; 2Insaf Respiratory Research Institute, Wiesbaden, Germany; 3Novartis Pharma AG, Basel, Switzerland; 4Hospital Piero Palagi, Fiorenze, Italy; 5Research Institute and Practice, Berlin-Brandenburg, Germany; 6Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK; 7Staploe Medical Center, Soham, Cambridge, UK; 8Novartis Farmaceutica SA, Barcelona, Spain Background: Morning symptoms associated with COPD have a negative impact on patients’ quality of life. Long-acting bronchodilators with rapid onset may relieve patients’ symptoms. In the Symptoms and Pulmonary function in the moRnING study, we prospectively compared the rapid onset bronchodilator profile of glycopyrronium (GLY) and tiotropium (TIO) during the first few hours after dosing in patients with moderate-to-severe COPD.Methods: Patients were randomized (1:1) to receive either once-daily GLY (50 µg) or TIO (18 µg) and corresponding placebos in a cross-over design for 28 days. The primary objective was to demonstrate the superiority of GLY versus TIO in area under the curve from 0 to 4 hours (AUC0-4h) forced expiratory volume in 1 second (FEV1) after the first dose. The secondary objective was to compare GLY versus TIO using the patient reported outcomes Morning COPD Symptoms Questionnaire 3 hours post-inhalation.Results: One-hundred and twenty-six patients were randomized (male 70.2%; mean age 65.7 years) and 108 patients completed the study. On Day 1, GLY resulted in significantly higher FEV1 AUC0-4h after the first dose versus TIO (treatment difference [Δ], 0.030 L, 95% confidence interval 0.004–0.056, P=0.025). Improvements in morning COPD symptoms from baseline at Days 1 and 28 were similar between GLY and TIO. Post hoc analysis of the FEV1 AUC0-4h by time point on Day 1 showed significant improvements in patients receiving GLY versus TIO at 5 minutes (Δ=0.029 L, P=0.015), 15 minutes (Δ=0.033 L, P=0.026), and 1 hour (Δ=0.044 L, P=0.014). Safety results were comparable between both treatments.Conclusion: The SPRING study demonstrates the superiority of GLY versus TIO in terms of superior bronchodilation in the first 4 hours after administration, thus extending the clinical data that support a faster onset of action of GLY versus TIO. Keywords: LAMA, glycopyrronium, tiotropium, lung function, fast onset, rapid onset, patient reported outcome, COPD
- Published
- 2016
3. Progress of the FLASHForward X-2 high-beam-quality, high-efficiency plasma-accelerator experiment
- Author
-
Lindstrøm, C. A., Beinortaite, J., Svensson, J. Björklund, Boulton, L., Chappell, J., Garland, J. M., Gonzalez, P., Loisch, G., Peña, F., Schaper, L., Schmidt, B., Schröder, S., Wesch, S., Wood, J., Osterhoff, J., and D'Arcy, R.
- Subjects
Physics - Accelerator Physics ,Physics - Plasma Physics - Abstract
FLASHForward is an experimental facility at DESY dedicated to beam-driven plasma-accelerator research. The X-2 experiment aims to demonstrate acceleration with simultaneous beam-quality preservation and high energy efficiency in a compact plasma stage. We report on the completed commissioning, first experimental results, ongoing research topics, as well as plans for future upgrades., Comment: 5 pages, 2 figures; proceeding of the EPS-HEP2021 conference (Hamburg, July 26-30 2021) submitted to Proceedings of Science
- Published
- 2021
- Full Text
- View/download PDF
4. Multi-kT/m Focusing Gradient in a Linear Active Plasma Lens
- Author
-
Sjobak, K. N., Adli, E., Corsini, R., Farabolini, W., Boyle, G., Lindstrøm, C. A., Meisel, M., Osterhoff, J., Röckemann, J. -H., Schaper, L., and Dyson, A. E.
- Subjects
Physics - Accelerator Physics - Abstract
Active plasma lenses are compact devices developed as a promising beam-focusing alternative for charged particle beams, capable of short focal lengths for high-energy beams. We have previously shown that linear magnetic fields with gradients of around 0.3 kT/m can be achieved in argon-filled plasma lenses that preserve beam emittance [C.A. Lindstr{\o}m et al., Phys. Rev. Lett. 121, 194801 (2018)]. Here we show that with argon in a 500 {\mu}m diameter capillary, the fields are still linear with a focusing gradient of 3.6 kT/m, which is an order of magnitude higher than the gradients of quadrupole magnets. The current pulses that generate the magnetic field are provided by compact Marx banks, and are highly repeatable. These results establish active plasma lenses as an ideal device for pulsed particle beam applications requiring very high focusing gradients that are uniform throughout the lens aperture., Comment: 8 pages, 6 figures. Submitted to Physical Review Applied
- Published
- 2020
- Full Text
- View/download PDF
5. Evolution of longitudinal plasma-density profiles in discharge capillaries for plasma wakefield accelerators
- Author
-
Garland, J. M., Tauscher, G., Bohlen, S., Boyle, G. J., D'Arcy, R., Goldberg, L., Põder, K., Schaper, L., Schmidt, B., and Osterhoff, J.
- Subjects
Physics - Plasma Physics ,Physics - Accelerator Physics ,Physics - Instrumentation and Detectors - Abstract
Precise characterization and tailoring of the spatial and temporal evolution of plasma density within plasma sources is critical for realizing high-quality accelerated beams in plasma wakefield accelerators. The simultaneous use of two independent diagnostic techniques allowed the temporally and spatially resolved detection of plasma density with unprecedented sensitivity and enabled the characterization of the plasma temperature at local thermodynamic equilibrium in discharge capillaries. A common-path two-color laser interferometer for obtaining the average plasma density with a sensitivity of $2\times 10^{15}$ cm$^{-2}$ was developed together with a plasma emission spectrometer for analyzing spectral line broadening profiles with a resolution of $5\times 10^{15}$ cm$^{-3}$. Both diagnostics show good agreement when applying the spectral line broadening analysis methodology of Gigosos and Carde{\~n}oso. Measured longitudinally resolved plasma density profiles exhibit a clear temporal evolution from an initial flat-top to a Gaussian-like shape in the first microseconds as material is ejected out from the capillary, deviating from the often-desired flat-top profile. For plasma with densities of 0.5-$2.5\times 10^{17}$ cm$^{-3}$, temperatures of 1-7 eV were indirectly measured. These measurements pave the way for highly detailed parameter tuning in plasma sources for particle accelerators and beam optics., Comment: 8 pages, 8 figures, submitted to "Review of Scientific Instruments" (AIP)
- Published
- 2020
- Full Text
- View/download PDF
6. Tunable and precise two-bunch generation at FLASHForward
- Author
-
Schröder, S., Ludwig, K., Aschikhin, A., D'Arcy, R., Dinter, M., Gonzalez, P., Karstensen, S., Knetsch, A., Libov, V., Lindstrøm, C. A., Marutzky, F., Niknejadi, P., Rahali, A., Schaper, L., Schleiermacher, A., Schmidt, B., Thiele, S., Wagner, A. de Zubiaurre, Wesch, S., and Osterhoff, J.
- Subjects
Physics - Accelerator Physics - Abstract
Beam-driven plasma-wakefield acceleration based on external injection has the potential to significantly reduce the size of future accelerators. Stability and quality of the acceleration process substantially depends on the incoming bunch parameters. Precise control of the current profile is essential for optimising energy-transfer efficiency and preserving energy spread. At the FLASHForward facility, driver--witness bunch pairs of adjustable bunch length and separation are generated by a set of collimators in a dispersive section, which enables fs-level control of the longitudinal bunch profile. The design of the collimator apparatus and its commissioning is presented., Comment: 7 pages, 5 figures, to be published in the proceedings of the 4th European Advanced Accelerator Concepts Workshop, 15-21 September 2019, La Biodola Bay, Isola d'Elba, Italy
- Published
- 2020
- Full Text
- View/download PDF
7. FLASHForward: Plasma-wakefield accelerator science for high-average-power applications
- Author
-
D'Arcy, R., Aschikhin, A., Bohlen, S., Boyle, G., Brümmer, T., Chappell, J., Diederichs, S., Foster, B., Garland, M. J., Goldberg, L., Gonzalez, P., Karstensen, S., Knetsch, A., Kuang, P., Libov, V., Ludwig, K., de la Ossa, A. Martinez, Marutzky, F., Meisel, M., Mehrling, T. J., Niknejadi, P., Poder, K., Pourmoussavi, P., Quast, M., Röckemann, J. -H., Schaper, L., Schmidt, B., Schröder, S., Schwinkendorf, J. -P., Sheeran, B., Tauscher, G., Wesch, S., Wing, M., Winkler, P., Zeng, M., and Osterhoff, J.
- Subjects
Physics - Accelerator Physics ,Physics - Plasma Physics - Abstract
The FLASHForward experimental facility is a high-performance test-bed for precision plasma-wakefield research, aiming to accelerate high-quality electron beams to GeV-levels in a few centimetres of ionised gas. The plasma is created by ionising gas in a gas cell either by a high-voltage discharge or a high-intensity laser pulse. The electrons to be accelerated will either be injected internally from the plasma background or externally from the FLASH superconducting RF front end. In both cases the wakefield will be driven by electron beams provided by the FLASH gun and linac modules operating with a 10 Hz macro-pulse structure, generating 1.25 GeV, 1 nC electron bunches at up to 3 MHz micro-pulse repetition rates. At full capacity, this FLASH bunch-train structure corresponds to 30 kW of average power, orders of magnitude higher than drivers available to other state-of-the-art LWFA and PWFA experiments. This high-power functionality means FLASHForward is the only plasma-wakefield facility in the world with the immediate capability to develop, explore, and benchmark high-average-power plasma-wakefield research essential for next-generation facilities. The operational parameters and technical highlights of the experiment are discussed, as well as the scientific goals and high-average-power outlook.
- Published
- 2019
- Full Text
- View/download PDF
8. A tunable plasma-based energy dechirper
- Author
-
D'Arcy, R., Wesch, S., Aschikhin, A., Bohlen, S., Behrens, C., Garland, M. J., Goldberg, L., Gonzalez, P., Knetsch, A., Libov, V., de la Ossa, A. Martinez, Meisel, M., Mehrling, T. J., Niknejadi, P., Poder, K., Roeckemann, J. -H., Schaper, L., Schmidt, B., Schroeder, S., Palmer, C., Schwinkendorf, J. -P., Sheeran, B., Streeter, M. J. V., Tauscher, G., Wacker, V., and Osterhoff, J.
- Subjects
Physics - Plasma Physics ,Physics - Accelerator Physics - Abstract
A tunable plasma-based energy dechirper has been developed at FLASHForward to remove the correlated energy spread of a 681~MeV electron bunch. Through the interaction of the bunch with wakefields excited in plasma the projected energy spread was reduced from a FWHM of 1.31$\%$ to 0.33$\%$ without reducing the stability of the incoming beam. The experimental results for variable plasma density are in good agreement with analytic predictions and three-dimensional simulations. The proof-of-principle dechirping strength of $1.8$~GeV/mm/m significantly exceeds those demonstrated for competing state-of-the-art techniques and may be key to future plasma wakefield-based free-electron lasers and high energy physics facilities, where large intrinsic chirps need to be removed.
- Published
- 2018
- Full Text
- View/download PDF
9. Emittance Preservation in an Aberration-Free Active Plasma Lens
- Author
-
Lindstrøm, C. A., Adli, E., Boyle, G., Corsini, R., Dyson, A. E., Farabolini, W., Hooker, S. M., Meisel, M., Osterhoff, J., Röckemann, J. -H., Schaper, L., and Sjobak, K. N.
- Subjects
Physics - Accelerator Physics - Abstract
Active plasma lensing is a compact technology for strong focusing of charged particle beams, which has gained considerable interest for use in novel accelerator schemes. While providing kT/m focusing gradients, active plasma lenses can have aberrations caused by a radially nonuniform plasma temperature profile, leading to degradation of the beam quality. We present the first direct measurement of this aberration, consistent with theory, and show that it can be fully suppressed by changing from a light gas species (helium) to a heavier gas species (argon). Based on this result, we demonstrate emittance preservation for an electron beam focused by an argon-filled active plasma lens., Comment: 6 pages, 3 figures
- Published
- 2018
- Full Text
- View/download PDF
10. Direct Measurement of Focusing Fields in Active Plasma Lenses
- Author
-
Röckemann, J. -H., Schaper, L., Barber, S. K., Bobrova, N. A., Boyle, G., Bulanov, S., Delbos, N., Floettmann, K., Kube, G., Lauth, W., Leemans, W. P., Libov, V., Maier, A., Meisel, M., Messner, P., Sasorov, P. V., Schroeder, C. B., van Tilborg, J., Wesch, S., and Osterhoff, J.
- Subjects
Physics - Accelerator Physics - Abstract
Active plasma lenses have the potential to enable broad-ranging applications of plasma-based accelerators owing to their compact design and radially symmetric kT/m-level focusing fields, facilitating beam-quality preservation and compact beam transport. We report on the direct measurement of magnetic field gradients in active plasma lenses and demonstrate their impact on the emittance of a charged particle beam. This is made possible by the use of a well-characterized electron beam with 1.4 mm mrad normalized emittance from a conventional accelerator. Field gradients of up to 823 T/m are investigated. The observed emittance evolution is supported by numerical simulations, which suggest the potential for conservation of the core beam emittance in such a plasma lens setup., Comment: 17 pages, 7 Figures
- Published
- 2018
- Full Text
- View/download PDF
11. Overview of the CLEAR plasma lens experiment
- Author
-
Lindstrøm, C. A., Sjobak, K. N., Adli, E., Röckemann, J. -H., Schaper, L., Osterhoff, J., Dyson, A. E., Hooker, S. M., Farabolini, W., Gamba, D., and Corsini, R.
- Subjects
Physics - Accelerator Physics - Abstract
Discharge capillary-based active plasma lenses are a promising new technology for strongly focusing charged particle beams, especially when combined with novel high gradient acceleration methods. Still, many questions remain concerning such lenses, including their transverse field uniformity, limitations due to plasma wakefields and whether they can be combined in multi-lens lattices in a way to cancel chromaticity. These questions will be addressed in a new plasma lens experiment at the CLEAR User Facility at CERN. All the subsystems have been constructed, tested and integrated into the CLEAR beam line, and are ready for experiments starting late 2017., Comment: Conference proceeding for the European Advanced Accelerator Concepts (EAAC) Workshop 2017, submitted to NIMA Proceedings
- Published
- 2018
- Full Text
- View/download PDF
12. Tunable Plasma-Based Energy Dechirper
- Author
-
D'Arcy, R, Wesch, S, Aschikhin, A, Bohlen, S, Behrens, C, Garland, MJ, Goldberg, L, Gonzalez, P, Knetsch, A, Libov, V, de la Ossa, A Martinez, Meisel, M, Mehrling, TJ, Niknejadi, P, Poder, K, Röckemann, J-H, Schaper, L, Schmidt, B, Schröder, S, Palmer, C, Schwinkendorf, J-P, Sheeran, B, Streeter, MJV, Tauscher, G, Wacker, V, and Osterhoff, J
- Subjects
Nuclear and Plasma Physics ,Physical Sciences ,Affordable and Clean Energy ,physics.plasm-ph ,physics.acc-ph ,Mathematical Sciences ,Engineering ,General Physics ,Mathematical sciences ,Physical sciences - Abstract
A tunable plasma-based energy dechirper has been developed at FLASHForward to remove the correlated energy spread of a 681 MeV electron bunch. Through the interaction of the bunch with wakefields excited in plasma the projected energy spread was reduced from a FWHM of 1.31% to 0.33% without reducing the stability of the incoming beam. The experimental results for variable plasma density are in good agreement with analytic predictions and three-dimensional simulations. The proof-of-principle dechirping strength of 1.8 GeV/mm/m significantly exceeds those demonstrated for competing state-of-the-art techniques and may be key to future plasma wakefield-based free-electron lasers and high energy physics facilities, where large intrinsic chirps need to be removed.
- Published
- 2019
13. Direct measurement of focusing fields in active plasma lenses
- Author
-
Röckemann, JH, Schaper, L, Barber, SK, Bobrova, NA, Boyle, G, Bulanov, S, Delbos, N, Floettmann, K, Kube, G, Lauth, W, Leemans, WP, Libov, V, Maier, AR, Meisel, M, Messner, P, Sasorov, PV, Schroeder, CB, Van Tilborg, J, Wesch, S, and Osterhoff, J
- Subjects
physics.acc-ph - Abstract
Active plasma lenses have the potential to enable broad-ranging applications of plasma-based accelerators owing to their compact design and radially symmetric kT/m-level focusing fields, facilitating beam-quality preservation and compact beam transport. We report on the direct measurement of magnetic field gradients in active plasma lenses and demonstrate their impact on the emittance of a charged particle beam. This is made possible by the use of a well-characterized electron beam with 1.4 mm mrad normalized emittance from a conventional accelerator. Field gradients of up to 823 T/m are investigated. The observed emittance evolution is supported by numerical simulations, which suggests the potential for conservation of the core beam emittance in such a plasma lens setup.
- Published
- 2018
14. FLASHForward X-2: Towards beam quality preservation in a plasma booster
- Author
-
Libov, V, Aschikhin, A, Dale, J, D'Arcy, R, Ludwig, K, Martinez de la Ossa, A, Mehrling, T, Roeckemann, JH, Schaper, L, Schmidt, B, Schröder, S, Wesch, S, Zemella, J, and Osterhoff, J
- Subjects
Nuclear & Particles Physics ,Astronomical and Space Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Other Physical Sciences - Abstract
Beam quality preservation in the external injection scheme is one of the key missing milestones towards staging of plasma-wakefield accelerators, a prerequisite for their utilisation in particle physics or other applications requiring high energy beams. This topic will be studied at FLASHForward, a unique beam-driven plasma wakefield acceleration facility currently under construction at DESY (Hamburg, Germany), in the frame of the FLASHForward X-2 experiment. High-quality 1 GeV-class electron beams from the free-electron laser FLASH with μm-emittances, kA-scale currents, and less than 100 fs durations will be utilised to generate driver–witness pairs by using a mask in a dispersive section. In this contribution the physics case and the current status of the FLASHForward X-2 experiment are reviewed. The experimental installation is described, with a focus on the electron beamline. Electron beam dynamics and particle-in-cell simulations are presented.
- Published
- 2018
15. X-Ray Science at DESY: Upgrade Programs for the User Facilities FLASH and PETRA III
- Author
-
Baev, K., primary, Bagschik, K., additional, Bartolini, R., additional, Gühr, M., additional, Klumpp, S., additional, Leemans, W., additional, Maier, A. R., additional, Martinez de la Ossa, A., additional, Osterhoff, J., additional, Reichert, H., additional, Schaper, L., additional, Schreiber, S., additional, Schroer, C. G., additional, Schubert, K., additional, Winkler, P., additional, and Weckert, E., additional
- Published
- 2024
- Full Text
- View/download PDF
16. The FLASHForward Facility at DESY
- Author
-
Aschikhin, A., Behrens, C., Bohlen, S., Dale, J., Delbos, N., di Lucchio, L., Elsen, E., Erbe, J. -H., Felber, M., Foster, B., Goldberg, L., Grebenyuk, J., Gruse, J. -N., Hidding, B., Hu, Zhanghu, Karstensen, S., Knetsch, A., Kononenko, O., Libov, V., Ludwig, K., Maier, A. R., de la Ossa, A. Martinez, Mehrling, T., Palmer, C. A. J., Pannek, F., Schaper, L., Schlarb, H., Schmidt, B., Schreiber, S., Schwinkendorf, J. -P., Steel, H., Streeter, M., Tauscher, G., Wacker, V., Weichert, S., Wunderlich, S., Zemella, J., and Osterhoff, J.
- Subjects
Physics - Accelerator Physics - Abstract
The FLASHForward project at DESY is a pioneering plasma-wakefield acceleration experiment that aims to produce, in a few centimetres of ionised hydrogen, beams with energy of order GeV that are of quality sufficient to be used in a free-electron laser. The plasma wave will be driven by high-current density electron beams from the FLASH linear accelerator and will explore both external and internal witness-beam injection techniques. The plasma is created by ionising a gas in a gas cell with a multi-TW laser system, which can also be used to provide optical diagnostics of the plasma and electron beams due to the <30 fs synchronisation between the laser and the driving electron beam. The operation parameters of the experiment are discussed, as well as the scientific program., Comment: 19 pages, 9 figures
- Published
- 2015
- Full Text
- View/download PDF
17. Wakefield-Induced Ionization injection in beam-driven plasma accelerators
- Author
-
de la Ossa, A. Martinez, Mehrling, T. J., Schaper, L., Streeter, M. J. V., and Osterhoff, J.
- Subjects
Physics - Accelerator Physics ,Physics - Plasma Physics - Abstract
We present a detailed analysis of the features and capabilities of Wakefield-Induced Ionization (WII) injection in the blowout regime of beam driven plasma accelerators. This mechanism exploits the electric wakefields to ionize electrons from a dopant gas and trap them in a well-defined region of the accelerating and focusing wake phase, leading to the formation of high-quality witness-bunches [Martinez de la Ossa et al., Phys. Rev. Lett. 111, 245003 (2013)]. The electron-beam drivers must feature high-peak currents ($I_b^0\gtrsim 8.5~\mathrm{kA}$) and a duration comparable to the plasma wavelength to excite plasma waves in the blowout regime and enable WII injection. In this regime, the disparity of the magnitude of the electric field in the driver region and the electric field in the rear of the ion cavity allows for the selective ionization and subsequent trapping from a narrow phase interval. The witness bunches generated in this manner feature a short duration and small values of the normalized transverse emittance ($k_p\sigma_z \sim k_p\epsilon_n \sim 0.1$). In addition, we show that the amount of injected charge can be adjusted by tuning the concentration of the dopant gas species, which allows for controlled beam loading and leads to a reduction of the total energy spread of the witness beams. Electron bunches, produced in this way, fulfil the requirements to drive blowout regime plasma wakes at a higher density and to trigger WII injection in a second stage. This suggests a promising new concept of self-similar staging of WII injection in steps with increasing plasma density, giving rise to the potential of producing electron beams with unprecedented energy and brilliance from plasma-wakefield accelerators.
- Published
- 2015
- Full Text
- View/download PDF
18. The FLASHForward facility at DESY
- Author
-
Aschikhin, A, Behrens, C, Bohlen, S, Dale, J, Delbos, N, Di Lucchio, L, Elsen, E, Erbe, JH, Felber, M, Foster, B, Goldberg, L, Grebenyuk, J, Gruse, JN, Hidding, B, Hu, Z, Karstensen, S, Knetsch, A, Kononenko, O, Libov, V, Ludwig, K, Maier, AR, Martinez De La Ossa, A, Mehrling, T, Palmer, CAJ, Pannek, F, Schaper, L, Schlarb, H, Schmidt, B, Schreiber, S, Schwinkendorf, JP, Steel, H, Streeter, M, Tauscher, G, Wacker, V, Weichert, S, Wunderlich, S, Zemella, J, and Osterhoff, J
- Subjects
Plasma ,Wakefield ,Acceleration ,Beam line ,Spectrometer ,physics.acc-ph ,Nuclear & Particles Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Other Physical Sciences ,Astronomical and Space Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics - Abstract
The FLASHForward project at DESY is a pioneering plasma-wakefield acceleration experiment that aims to produce, in a few centimetres of ionised hydrogen, beams with energy of order GeV that are of quality sufficient to be used in a free-electron laser. The plasma is created by ionising a gas in a gas cell with a multi-TW laser system. The plasma wave will be driven by high-current-density electron beams from the FLASH linear accelerator. The laser system can also be used to provide optical diagnostics of the plasma and electron beams due to the
- Published
- 2016
19. EuPRAXIA Conceptual Design Report
- Author
-
Assmann, R. W., Weikum, M. K., Akhter, T., Alesini, D., Alexandrova, A. S., Anania, M. P., Andreev, N. E., Andriyash, I., Artioli, M., Aschikhin, A., Audet, T., Bacci, A., Barna, I. F., Bartocci, S., Bayramian, A., Beaton, A., Beck, A., Bellaveglia, M., Beluze, A., Bernhard, A., Biagioni, A., Bielawski, S., Bisesto, F. G., Bonatto, A., Boulton, L., Brandi, F., Brinkmann, R., Briquez, F., Brottier, F., Bründermann, E., Büscher, M., Buonomo, B., Bussmann, M. H., Bussolino, G., Campana, P., Cantarella, S., Cassou, K., Chancé, A., Chen, M., Chiadroni, E., Cianchi, A., Cioeta, F., Clarke, J. A., Cole, J. M., Costa, G., Couprie, M. -E., Cowley, J., Croia, M., Cros, B., Crump, P. A., D’Arcy, R., Dattoli, G., Del Dotto, A., Delerue, N., Del Franco, M., Delinikolas, P., De Nicola, S., Dias, J. M., Di Giovenale, D., Diomede, M., Di Pasquale, E., Di Pirro, G., Di Raddo, G., Dorda, U., Erlandson, A. C., Ertel, K., Esposito, A., Falcoz, F., Falone, A., Fedele, R., Ferran Pousa, A., Ferrario, M., Filippi, F., Fils, J., Fiore, G., Fiorito, R., Fonseca, R. A., Franzini, G., Galimberti, M., Gallo, A., Galvin, T. C., Ghaith, A., Ghigo, A., Giove, D., Giribono, A., Gizzi, L. A., Grüner, F. J., Habib, A. F., Haefner, C., Heinemann, T., Helm, A., Hidding, B., Holzer, B. J., Hooker, S. M., Hosokai, T., Hübner, M., Ibison, M., Incremona, S., Irman, A., Iungo, F., Jafarinia, F. J., Jakobsson, O., Jaroszynski, D. A., Jaster-Merz, S., Joshi, C., Kaluza, M., Kando, M., Karger, O. S., Karsch, S., Khazanov, E., Khikhlukha, D., Kirchen, M., Kirwan, G., Kitégi, C., Knetsch, A., Kocon, D., Koester, P., Kononenko, O. S., Korn, G., Kostyukov, I., Kruchinin, K. O., Labate, L., Le Blanc, C., Lechner, C., Lee, P., Leemans, W., Lehrach, A., Li, X., Li, Y., Libov, V., Lifschitz, A., Lindstrøm, C. A., Litvinenko, V., Lu, W., Lundh, O., Maier, A. R., Malka, V., Manahan, G. G., Mangles, S. P. D., Marcelli, A., Marchetti, B., Marcouillé, O., Marocchino, A., Marteau, F., Martinez de la Ossa, A., Martins, J. L., Mason, P. D., Massimo, F., Mathieu, F., Maynard, G., Mazzotta, Z., Mironov, S., Molodozhentsev, A. Y., Morante, S., Mosnier, A., Mostacci, A., Müller, A. -S., Murphy, C. D., Najmudin, Z., Nghiem, P. A. P., Nguyen, F., Niknejadi, P., Nutter, A., Osterhoff, J., Oumbarek Espinos, D., Paillard, J. -L., Papadopoulos, D. N., Patrizi, B., Pattathil, R., Pellegrino, L., Petralia, A., Petrillo, V., Piersanti, L., Pocsai, M. A., Poder, K., Pompili, R., Pribyl, L., Pugacheva, D., Reagan, B. A., Resta-Lopez, J., Ricci, R., Romeo, S., Rossetti Conti, M., Rossi, A. R., Rossmanith, R., Rotundo, U., Roussel, E., Sabbatini, L., Santangelo, P., Sarri, G., Schaper, L., Scherkl, P., Schramm, U., Schroeder, C. B., Scifo, J., Serafini, L., Sharma, G., Sheng, Z. M., Shpakov, V., Siders, C. W., Silva, L. O., Silva, T., Simon, C., Simon-Boisson, C., Sinha, U., Sistrunk, E., Specka, A., Spinka, T. M., Stecchi, A., Stella, A., Stellato, F., Streeter, M. J. V., Sutherland, A., Svystun, E. N., Symes, D., Szwaj, C., Tauscher, G. E., Terzani, D., Toci, G., Tomassini, P., Torres, R., Ullmann, D., Vaccarezza, C., Valléau, M., Vannini, M., Vannozzi, A., Vescovi, S., Vieira, J. M., Villa, F., Wahlström, C. -G., Walczak, R., Walker, P. A., Wang, K., Welsch, A., Welsch, C. P., Weng, S. M., Wiggins, S. M., Wolfenden, J., Xia, G., Yabashi, M., Zhang, H., Zhao, Y., Zhu, J., and Zigler, A.
- Published
- 2020
- Full Text
- View/download PDF
20. Erratum to: EuPRAXIA Conceptual Design Report: Eur. Phys. J. Special Topics 229, 3675-4284 (2020), https://doi.org/10.1140/epjst/e2020-000127-8
- Author
-
Assmann, R. W., Weikum, M. K., Akhter, T., Alesini, D., Alexandrova, A. S., Anania, M. P., Andreev, N. E., Andriyash, I., Artioli, M., Aschikhin, A., Audet, T., Bacci, A., Barna, I. F., Bartocci, S., Bayramian, A., Beaton, A., Beck, A., Bellaveglia, M., Beluze, A., Bernhard, A., Biagioni, A., Bielawski, S., Bisesto, F. G., Bonatto, A., Boulton, L., Brandi, F., Brinkmann, R., Briquez, F., Brottier, F., Bründermann, E., Büscher, M., Buonomo, B., Bussmann, M. H., Bussolino, G., Campana, P., Cantarella, S., Cassou, K., Chancé, A., Chen, M., Chiadroni, E., Cianchi, A., Cioeta, F., Clarke, J. A., Cole, J. M., Costa, G., Couprie, M. -E., Cowley, J., Croia, M., Cros, B., Crump, P. A., D’Arcy, R., Dattoli, G., Del Dotto, A., Delerue, N., Del Franco, M., Delinikolas, P., De Nicola, S., Dias, J. M., Di Giovenale, D., Diomede, M., Di Pasquale, E., Di Pirro, G., Di Raddo, G., Dorda, U., Erlandson, A. C., Ertel, K., Esposito, A., Falcoz, F., Falone, A., Fedele, R., Ferran Pousa, A., Ferrario, M., Filippi, F., Fils, J., Fiore, G., Fiorito, R., Fonseca, R. A., Franzini, G., Galimberti, M., Gallo, A., Galvin, T. C., Ghaith, A., Ghigo, A., Giove, D., Giribono, A., Gizzi, L. A., Grüner, F. J., Habib, A. F., Haefner, C., Heinemann, T., Helm, A., Hidding, B., Holzer, B. J., Hooker, S. M., Hosokai, T., Hübner, M., Ibison, M., Incremona, S., Irman, A., Iungo, F., Jafarinia, F. J., Jakobsson, O., Jaroszynski, D. A., Jaster-Merz, S., Joshi, C., Kaluza, M., Kando, M., Karger, O. S., Karsch, S., Khazanov, E., Khikhlukha, D., Kirchen, M., Kirwan, G., Kitégi, C., Knetsch, A., Kocon, D., Koester, P., Kononenko, O. S., Korn, G., Kostyukov, I., Kruchinin, K. O., Labate, L., Le Blanc, C., Lechner, C., Lee, P., Leemans, W., Lehrach, A., Li, X., Li, Y., Libov, V., Lifschitz, A., Lindstrøm, C. A., Litvinenko, V., Lu, W., Lundh, O., Maier, A. R., Malka, V., Manahan, G. G., Mangles, S. P. D., Marcelli, A., Marchetti, B., Marcouillé, O., Marocchino, A., Marteau, F., Martinez de la Ossa, A., Martins, J. L., Mason, P. D., Massimo, F., Mathieu, F., Maynard, G., Mazzotta, Z., Mironov, S., Molodozhentsev, A. Y., Morante, S., Mosnier, A., Mostacci, A., Müller, A. -S., Murphy, C. D., Najmudin, Z., Nghiem, P. A. P., Nguyen, F., Niknejadi, P., Nutter, A., Osterhoff, J., Oumbarek Espinos, D., Paillard, J. -L., Papadopoulos, D. N., Patrizi, B., Pattathil, R., Pellegrino, L., Petralia, A., Petrillo, V., Piersanti, L., Pocsai, M. A., Poder, K., Pompili, R., Pribyl, L., Pugacheva, D., Reagan, B. A., Resta-Lopez, J., Ricci, R., Romeo, S., Rossetti Conti, M., Rossi, A. R., Rossmanith, R., Rotundo, U., Roussel, E., Sabbatini, L., Santangelo, P., Sarri, G., Schaper, L., Scherkl, P., Schramm, U., Schroeder, C. B., Scifo, J., Serafini, L., Sharma, G., Sheng, Z. M., Shpakov, V., Siders, C. W., Silva, L. O., Silva, T., Simon, C., Simon-Boisson, C., Sinha, U., Sistrunk, E., Specka, A., Spinka, T. M., Stecchi, A., Stella, A., Stellato, F., Streeter, M. J. V., Sutherland, A., Svystun, E. N., Symes, D., Szwaj, C., Tauscher, G. E., Terzani, D., Toci, G., Tomassini, P., Torres, R., Ullmann, D., Vaccarezza, C., Valléau, M., Vannini, M., Vannozzi, A., Vescovi, S., Vieira, J. M., Villa, F., Wahlström, C. -G., Walczak, R., Walker, P. A., Wang, K., Welsch, A., Welsch, C. P., Weng, S. M., Wiggins, S. M., Wolfenden, J., Xia, G., Yabashi, M., Zhang, H., Zhao, Y., Zhu, J., and Zigler, A.
- Published
- 2020
- Full Text
- View/download PDF
21. FLASHForward : plasma wakefield accelerator science for high-average-power applications
- Author
-
D’Arcy, R., Aschikhin, A., Bohlen, S., Boyle, G., Brümmer, T., Chappell, J., Diederichs, S., Foster, B., Garland, M. J., Goldberg, L., Gonzalez, P., Karstensen, S., Knetsch, A., Kuang, P., Libov, V., Ludwig, K., de la Ossa, A. Martinez, Marutzky, F., Meisel, M., Mehrling, T. J., Niknejadi, P., Põder, K., Pourmoussavi, P., Quast, M., Röckemann, J. -H., Schaper, L., Schmidt, B., Schröder, S., Schwinkendorf, J. -P., Sheeran, B., Tauscher, G., Wesch, S., Wing, M., Winkler, P., Zeng, M., and Osterhoff, J.
- Published
- 2019
22. Author Correction: High-resolution sampling of beam-driven plasma wakefields
- Author
-
Schröder, S., Lindstrøm, C. A., Bohlen, S., Boyle, G., D’Arcy, R., Diederichs, S., Garland, M. J., Gonzalez, P., Knetsch, A., Libov, V., Niknejadi, P., Põder, Kris, Schaper, L., Schmidt, B., Sheeran, B., Tauscher, G., Wesch, S., Zemella, J., Zeng, M., and Osterhoff, J.
- Published
- 2021
- Full Text
- View/download PDF
23. Wakefield-induced ionization injection in beam-driven plasma accelerators
- Author
-
de la Ossa, A Martinez, Mehrling, TJ, Schaper, L, Streeter, MJV, and Osterhoff, J
- Subjects
physics.acc-ph ,physics.plasm-ph ,Astronomical and Space Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Classical Physics ,Fluids & Plasmas - Abstract
We present a detailed analysis of the features and capabilities of Wakefield-Induced Ionization (WII) injection in the blowout regime of beam driven plasma accelerators. This mechanism exploits the electric wakefields to ionize electrons from a dopant gas and trap them in a well-defined region of the accelerating and focusing wake phase, leading to the formation of high-quality witness-bunches [Martinez de la Ossa et al., Phys. Rev. Lett. 111, 245003 (2013)]. The electron-beam drivers must feature high-peak currents (Ib0 ≳ 8.5 kA) and a duration comparable to the plasma wavelength to excite plasma waves in the blowout regime and enable WII injection. In this regime, the disparity of the magnitude of the electric field in the driver region and the electric field in the rear of the ion cavity allows for the selective ionization and subsequent trapping from a narrow phase interval. The witness bunches generated in this manner feature a short duration and small values of the normalized transverse emittance (kpσz ∼ kpn ∈ 0.1). In addition, we show that the amount of injected charge can be adjusted by tuning the concentration of the dopant gas species, which allows for controlled beam loading and leads to a reduction of the total energy spread of the witness beams. Electron bunches, produced in this way, fulfil the requirements to drive blowout regime plasma wakes at a higher density and to trigger WII injection in a second stage. This suggests a promising new concept of self-similar staging of WII injection in steps with increasing plasma density, giving rise to the potential of producing electron beams with unprecedented energy and brilliance from plasma-wakefield accelerators.
- Published
- 2015
24. Wakefield-induced ionization injection in beam-driven plasma accelerators
- Author
-
Martinez De La Ossa, A, Mehrling, TJ, Schaper, L, Streeter, MJV, and Osterhoff, J
- Subjects
physics.acc-ph ,physics.plasm-ph ,Fluids & Plasmas ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Astronomical and Space Sciences ,Classical Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics - Abstract
We present a detailed analysis of the features and capabilities of Wakefield-Induced Ionization (WII) injection in the blowout regime of beam driven plasma accelerators. This mechanism exploits the electric wakefields to ionize electrons from a dopant gas and trap them in a well-defined region of the accelerating and focusing wake phase, leading to the formation of high-quality witness-bunches [Martinez de la Ossa et al., Phys. Rev. Lett. 111, 245003 (2013)]. The electron-beam drivers must feature high-peak currents (Ib0 ≳ 8.5 kA) and a duration comparable to the plasma wavelength to excite plasma waves in the blowout regime and enable WII injection. In this regime, the disparity of the magnitude of the electric field in the driver region and the electric field in the rear of the ion cavity allows for the selective ionization and subsequent trapping from a narrow phase interval. The witness bunches generated in this manner feature a short duration and small values of the normalized transverse emittance (kpσz ∼ kpn ∈ 0.1). In addition, we show that the amount of injected charge can be adjusted by tuning the concentration of the dopant gas species, which allows for controlled beam loading and leads to a reduction of the total energy spread of the witness beams. Electron bunches, produced in this way, fulfil the requirements to drive blowout regime plasma wakes at a higher density and to trigger WII injection in a second stage. This suggests a promising new concept of self-similar staging of WII injection in steps with increasing plasma density, giving rise to the potential of producing electron beams with unprecedented energy and brilliance from plasma-wakefield accelerators.
- Published
- 2015
25. High-Quality Electron Beams from Beam-Driven Plasma Accelerators by Wakefield-Induced Ionization Injection
- Author
-
de la Ossa, A. Martinez, Grebenyuk, J., Mehrling, T., Schaper, L., and Osterhoff, J.
- Subjects
Physics - Accelerator Physics ,Physics - Plasma Physics - Abstract
We propose a new and simple strategy for controlled ionization-induced trapping of electrons in a beam-driven plasma accelerator. The presented method directly exploits electric wakefields to ionize electrons from a dopant gas and capture them into a well-defined volume of the accelerating and focusing wake phase, leading to high-quality witness-bunches. This injection principle is explained by example of three-dimensional particle-in-cell (PIC) calculations using the code OSIRIS. In these simulations a high-current-density electron-beam driver excites plasma waves in the blow-out regime inside a fully-ionized hydrogen plasma of density $5\times10^{17} \mathrm{cm^{-3}}$. Within an embedded $100 \mathrm{\mu m}$ long plasma column contaminated with neutral helium gas, the wakefields trigger ionization, trapping of a defined fraction of the released electrons, and subsequent acceleration. The hereby generated electron beam features a $1.5 \mathrm{kA}$ peak current, $1.5 \mathrm{\mu m}$ transverse normalized emittance, an uncorrelated energy spread of 0.3% on a GeV-energy scale, and few femtosecond bunch length.
- Published
- 2013
- Full Text
- View/download PDF
26. High-Quality Electron Beams from Beam-Driven Plasma Accelerators by Wakefield-Induced Ionization Injection
- Author
-
de la Ossa, A Martinez, Grebenyuk, J, Mehrling, T, Schaper, L, and Osterhoff, J
- Subjects
physics.acc-ph ,physics.plasm-ph ,Mathematical Sciences ,Physical Sciences ,Engineering ,General Physics - Abstract
We propose a new and simple strategy for controlled ionization-induced trapping of electrons in a beam-driven plasma accelerator. The presented method directly exploits electric wakefields to ionize electrons from a dopant gas and capture them into a well-defined volume of the accelerating and focusing wake phase, leading to high-quality witness bunches. This injection principle is explained by example of three-dimensional particle-in-cell calculations using the code OSIRIS. In these simulations a high-current-density electron-beam driver excites plasma waves in the blowout regime inside a fully ionized hydrogen plasma of density 5×10(17)cm-3. Within an embedded 100 μm long plasma column contaminated with neutral helium gas, the wakefields trigger ionization, trapping of a defined fraction of the released electrons, and subsequent acceleration. The hereby generated electron beam features a 1.5 kA peak current, 1.5 μm transverse normalized emittance, an uncorrelated energy spread of 0.3% on a GeV-energy scale, and few femtosecond bunch length.
- Published
- 2013
27. High-quality electron beams from beam-driven plasma accelerators by wakefield-induced ionization injection.
- Author
-
Martinez de la Ossa, A, Grebenyuk, J, Mehrling, T, Schaper, L, and Osterhoff, J
- Subjects
physics.acc-ph ,physics.plasm-ph ,General Physics ,Physical Sciences - Abstract
We propose a new and simple strategy for controlled ionization-induced trapping of electrons in a beam-driven plasma accelerator. The presented method directly exploits electric wakefields to ionize electrons from a dopant gas and capture them into a well-defined volume of the accelerating and focusing wake phase, leading to high-quality witness bunches. This injection principle is explained by example of three-dimensional particle-in-cell calculations using the code OSIRIS. In these simulations a high-current-density electron-beam driver excites plasma waves in the blowout regime inside a fully ionized hydrogen plasma of density 5×10(17)cm-3. Within an embedded 100 μm long plasma column contaminated with neutral helium gas, the wakefields trigger ionization, trapping of a defined fraction of the released electrons, and subsequent acceleration. The hereby generated electron beam features a 1.5 kA peak current, 1.5 μm transverse normalized emittance, an uncorrelated energy spread of 0.3% on a GeV-energy scale, and few femtosecond bunch length.
- Published
- 2013
28. FLASHForward X-2: Towards beam quality preservation in a plasma booster
- Author
-
Libov, V., Aschikhin, A., Dale, J., D’Arcy, R., Ludwig, K., Martinez de la Ossa, A., Mehrling, T., Roeckemann, J.-H., Schaper, L., Schmidt, B., Schröder, S., Wesch, S., Zemella, J., and Osterhoff, J.
- Published
- 2018
- Full Text
- View/download PDF
29. A double medium approach to simulate groundwater level variations in a fissured karst aquifer
- Author
-
Robineau, T., Tognelli, A., Goblet, P., Renard, F., and Schaper, L.
- Published
- 2018
- Full Text
- View/download PDF
30. High-resolution sampling of beam-driven plasma wakefields
- Author
-
Schröder, S., Lindstrøm, C. A., Bohlen, S., Boyle, G., D’Arcy, R., Diederichs, S., Garland, M. J., Gonzalez, P., Knetsch, A., Libov, V., Niknejadi, P., Põder, Kris, Schaper, L., Schmidt, B., Sheeran, B., Tauscher, G., Wesch, S., Zemella, J., Zeng, M., and Osterhoff, J.
- Published
- 2020
- Full Text
- View/download PDF
31. Water Level in Observation Wells Simulated From Fracture and Matrix Water Heads Outputted by Dual‐Continuum Hydrogeological Models: POWeR‐FADS
- Author
-
Jeannot, B., primary, Schaper, L., additional, and Habets, F., additional
- Published
- 2023
- Full Text
- View/download PDF
32. Instability Study of a High-Power, High Repetition Rate fs-OPCPA Driven Tunable Femtosecond UV Source for FEL Seeding
- Author
-
Lang, T., primary, Kazemi, M. M., additional, Zheng, J., additional, Hartwell, S., additional, Hoang, N., additional, Ferrari, E., additional, Schaper, L., additional, and Hartl, I., additional
- Published
- 2023
- Full Text
- View/download PDF
33. Understanding MOF Flexibility: An Analysis Focused on Pillared Layer MOFs as a Model System}
- Author
-
Senkovska, I., Bon, V., Abylgazina, L., Mendt, M., Berger, J., Kieslich, G., Petkov, P., Luiz, J., Joswig, J.-O., (0000-0003-2379-6251) Heine, T., Schaper, L., Bachetzky, C., Schmid, R., Fischer, R. A., Pöppl, A., Brunner, E., Kaskel, S., Senkovska, I., Bon, V., Abylgazina, L., Mendt, M., Berger, J., Kieslich, G., Petkov, P., Luiz, J., Joswig, J.-O., (0000-0003-2379-6251) Heine, T., Schaper, L., Bachetzky, C., Schmid, R., Fischer, R. A., Pöppl, A., Brunner, E., and Kaskel, S.
- Abstract
Flexible porous frameworks are at the forefront of materials research. A unique feature is their ability to open and close their pores in an adaptive manner induced by chemical and physical stimuli. Such enzyme-like selective recognition offers a wide range of functions ranging from gas storage and separation to sensing, actuation, mechanical energy storage and catalysis. However, the factors affecting switchability are poorly understood. In particular, the role of building blocks, as well as secondary factors (crystal size, defects, cooperativity) and the role of host–guest interactions, profit from systematic investigations of an idealized model by advanced analytical techniques and simulations. The review describes an integrated approach targeting the deliberate design of pillared layer metal–organic frameworks as idealized model materials for the analysis of critical factors affecting framework dynamics and summarizes the resulting progress in their understanding and application.
- Published
- 2023
34. The FLASHForward facility at DESY
- Author
-
Aschikhin, A., Behrens, C., Bohlen, S., Dale, J., Delbos, N., di Lucchio, L., Elsen, E., Erbe, J.-H., Felber, M., Foster, B., Goldberg, L., Grebenyuk, J., Gruse, J.-N., Hidding, B., Hu, Zhanghu, Karstensen, S., Knetsch, A., Kononenko, O., Libov, V., Ludwig, K., Maier, A.R., Martinez de la Ossa, A., Mehrling, T., Palmer, C.A.J., Pannek, F., Schaper, L., Schlarb, H., Schmidt, B., Schreiber, S., Schwinkendorf, J.-P., Steel, H., Streeter, M., Tauscher, G., Wacker, V., Weichert, S., Wunderlich, S., Zemella, J., and Osterhoff, J.
- Published
- 2016
- Full Text
- View/download PDF
35. Sensitivity of EEHG simulations to dynamic beam parameters
- Author
-
Samoilenko, D, primary, Hillert, W, additional, Pannek, F, additional, Ackermann, S, additional, Ferrari, E, additional, Mirian, N, additional, Niknejadi, P, additional, Paraskaki, G, additional, Schaper, L, additional, Curbis, F, additional, Pop, M, additional, and Werin, S, additional
- Published
- 2023
- Full Text
- View/download PDF
36. Methodology for the Development of the Australian National Nursing and Midwifery Digital Health Capability Framework.
- Author
-
Cummings E., Moran G., Woods L., Almond H., Procter P., Makeham M., Dobroff N., Griffin K., Reeves J., Nowlan S., Ryan A., Schaper L., Cummings E., Moran G., Woods L., Almond H., Procter P., Makeham M., Dobroff N., Griffin K., Reeves J., Nowlan S., Ryan A., and Schaper L.
- Abstract
Internationally healthcare organisations and governments are grappling with the issue of upskilling healthcare workforces in relation to digital health. Significant research has been undertaken in relation to documenting essential digital health capability requirements for the workforce. In 2019 the Australian Digital Health Agency funded work by the Australasian Institute of Digital Health to develop a National Nursing and Midwifery Digital Health Capability Framework. This paper describes the methodological approach used in the development of the Framework.
- Published
- 2022
37. Strong focusing gradient in a linear active plasma lens
- Author
-
Sjobak, K. N., primary, Adli, E., additional, Corsini, R., additional, Farabolini, W., additional, Boyle, G., additional, Lindstrøm, C. A., additional, Meisel, M., additional, Osterhoff, J., additional, Röckemann, J.-H., additional, Schaper, L., additional, and Dyson, A. E., additional
- Published
- 2021
- Full Text
- View/download PDF
38. Status of the Horizon 2020 EuPRAXIA conceptual design study
- Author
-
Weikum, MK, Akhter, T, Alesini, D, Alexandrova, AS, Anania, MP, Andreev, NE, Andriyash, IA, Aschikhin, A, Assmann, RW, Audet, T, Bacci, A, Barna, IF, Beaton, A, Beck, A, Beluze, A, Bernhard, A, Bielawski, S, Bisesto, FG, Brandi, F, Brinkmann, R, Bruendermann, E, Buescher, M, Bussmann, MH, Bussolino, G, Chance, A, Chen, M, Chiadroni, E, Cianchi, A, Clarke, JA, Cole, J, Couprie, ME, Croia, M, Cros, B, Crump, PA, Dattoli, G, Del Dotto, A, Delerue, N, De Nicola, S, Dias, JM, Dorda, U, Fedele, R, Pousa, A Ferran, Ferrario, M, Filippi, F, Fiore, G, Fonseca, RA, Galimberti, M, Gallo, A, Ghaith, A, Giove, D, Giribono, A, Gizzi, LA, Gruener, FJ, Habib, AF, Haefner, C, Heinemann, T, Hidding, B, Holzer, BJ, Hooker, SM, Hosokai, T, Huebner, M, Irman, A, Jafarinia, FJ, Jaroszynski, DA, Joshi, C, Kaluza, M, Kando, M, Karger, OS, Karsch, S, Khazanov, E, Khikhlukha, D, Knetsch, A, Kocon, D, Koester, P, Kononenko, OS, Korn, G, Kostyukov, I, Kruchinin, KO, Labate, L, Le Blanc, C, Lechner, C, Leemans, W, Lehrach, A, Li, X, Libov, V, Lifschitz, A, Litvinenko, V, Lu, W, Lundh, O, Maier, AR, Malka, V, Manahan, GG, Mangles, SPD, Marchetti, B, de la Ossa, A Martinez, Martins, JL, Mason, PD, Massimo, F, Mathieu, F, Maynard, G, Mazzotta, Z, Molodozhentsev, AY, Mostacci, A, Mueller, A-S, Murphy, CD, Najmudin, Z, Nghiem, PAP, Nguyen, F, Niknejadi, P, Osterhoff, J, Espinos, D Oumbarek, Papadopoulos, DN, Patrizi, B, Petrillo, V, Pocsai, MA, Poder, K, Pompili, R, Pribyl, L, Pugacheva, D, Rajeev, PP, Romeo, S, Conti, M Rossetti, Rossi, AR, Rossmanith, R, Roussel, E, Sahai, AA, Sarri, G, Schaper, L, Scherkl, P, Schramm, U, Schroeder, CB, Scifo, J, Serafini, L, Sheng, ZM, Siders, C, Silva, LO, Silva, T, Simon, C, Sinha, U, Specka, A, Streeter, MJV, Svystun, EN, Symes, D, Szwaj, C, Tauscher, GE, Terzani, D, Thompson, N, Toci, G, Tomassini, P, Torres, R, Ullmann, D, Vaccarezza, C, Vannini, M, Vieira, JM, Villa, F, Wahlstrom, C-G, Walczak, R, Walker, PA, Wang, K, Welsch, CP, Wiggins, SM, Wolfenden, J, Xia, G, Yabashi, M, Zhu, J, Zigler, A, IOP, Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique des gaz et des plasmas (LPGP), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Leprince-Ringuet (LLR), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Laboratoire pour l'utilisation des lasers intenses (LULI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'optique appliquée (LOA), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-École Nationale Supérieure de Techniques Avancées (ENSTA Paris), École polytechnique (X), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Weikum, M. K., Akhter, T., Alesini, D., Alexandrova, A. S., Anania, M. P., Andreev, N. E., Andriyash, I. A., Aschikhin, A., Assmann, R. W., Audet, T., Bacci, A., Barna, I. F., Beaton, A., Beck, A., Beluze, A., Bernhard, A., Bielawski, S., Bisesto, F. G., Brandi, F., Brinkmann, R., Bruendermann, E., Buscher, M., Bussmann, M. H., Bussolino, G., Chance, A., Chen, M., Chiadroni, E., Cianchi, A., Clarke, J. A., Cole, J., Couprie, M. E., Croia, M., Cros, B., Crump, P. A., Dattoli, G., Del Dotto, A., Delerue, N., De Nicola, S., Dias, J. M., Dorda, U., Fedele, R., Ferran Pousa, A., Ferrario, M., Filippi, F., Fiore, G., Fonseca, R. A., Galimberti, M., Gallo, A., Ghaith, A., Giove, D., Giribono, A., Gizzi, L. A., Gruner, F. J., Habib, A. F., Haefner, C., Heinemann, T., Hidding, B., Holzer, B. J., Hooker, S. M., Hosokai, T., Huebner, M., Irman, A., Jafarinia, F. J., Jaroszynski, D. A., Joshi, C., Kaluza, M., Kando, M., Karger, O. S., Karsch, S., Khazanov, E., Khikhlukha, D., Knetsch, A., Kocon, D., Koester, P., Kononenko, O. S., Korn, G., Kostyukov, I., Kruchinin, K. O., Labate, L., Blanc, C. L., Lechner, C., Leemans, W., Lehrach, A., Li, X., Libov, V., Lifschitz, A., Litvinenko, V., Lu, W., Lundh, O., Maier, A. R., Malka, V., Manahan, G. G., Mangles, S. P. D., Marchetti, B., Martinez De La Ossa, A., Martins, J. L., Mason, P. D., Massimo, F., Mathieu, F., Maynard, G., Mazzotta, Z., Molodozhentsev, A. Y., Mostacci, A., Mueller, A. -S., Murphy, C. D., Najmudin, Z., Nghiem, P. A. P., Nguyen, F., Niknejadi, P., Osterhoff, J., Oumbarek Espinos, D., Papadopoulos, D. N., Patrizi, B., Petrillo, V., Pocsai, M. A., Poder, K., Pompili, R., Pribyl, L., Pugacheva, D., Rajeev, P. P., Romeo, S., Rossetti Conti, M., Rossi, A. R., Rossmanith, R., Roussel, E., Sahai, A. A., Sarri, G., Schaper, L., Scherkl, P., Schramm, U., Schroeder, C. B., Scifo, J., Serafini, L., Sheng, Z. M., Siders, C., Silva, L. O., Silva, T., Simon, C., Sinha, U., Specka, A., Streeter, M. J. V., Svystun, E. N., Symes, D., Szwaj, C., Tauscher, G. E., Terzani, D., Thompson, N., Toci, G., Tomassini, P., Torres, R., Ullmann, D., Vaccarezza, C., Vannini, M., Vieira, J. M., Villa, F., Wahlstrom, C. -G., Walczak, R., Walker, P. A., Wang, K., Welsch, C. P., Wiggins, S. M., Wolfenden, J., Xia, G., Yabashi, M., Zhu, J., Zigler, A., Weikum, M K, Akhter, T, Alesini, D, Alexandrova, A S, Anania, M P, Andreev, N E, Andriyash, I A, Aschikhin, A, Assmann, R W, Audet, T, Bacci, A, Barna, I F, Beaton, A, Beck, A, Beluze, A, Bernhard, A, Bielawski, S, Bisesto, F G, Brandi, F, Brinkmann, R, Bruendermann, E, Büscher, M, Bussmann, M H, Bussolino, G, Chance, A, Chen, M, Chiadroni, E, Cianchi, A, Clarke, J A, Cole, J, Couprie, M E, Croia, M, Cros, B, Crump, P A, Dattoli, G, Del Dotto, A, Delerue, N, De Nicola, S, Dias, J M, Dorda, U, Fedele, R, Ferran Pousa, A, Ferrario, M, Filippi, F, Fiore, G, Fonseca, R A, Galimberti, M, Gallo, A, Ghaith, A, Giove, D, Giribono, A, Gizzi, L A, Grüner, F J, Habib, A F, Haefner, C, Heinemann, T, Hidding, B, Holzer, B J, Hooker, S M, Hosokai, T, Huebner, M, Irman, A, Jafarinia, F J, Jaroszynski, D A, Joshi, C, Kaluza, M, Kando, M, Karger, O S, Karsch, S, Khazanov, E, Khikhlukha, D, Knetsch, A, Kocon, D, Koester, P, Kononenko, O S, Korn, G, Kostyukov, I, Kruchinin, K O, Labate, L, Blanc, C Le, Lechner, C, Leemans, W, Lehrach, A, Li, X, Libov, V, Lifschitz, A, Litvinenko, V, Lu, W, Lundh, O, Maier, A R, Malka, V, Manahan, G G, Mangles, S P D, Marchetti, B, Martinez de la Ossa, A, Martins, J L, Mason, P D, Massimo, F, Mathieu, F, Maynard, G, Mazzotta, Z, Molodozhentsev, A Y, Mostacci, A, Mueller, A - S, Murphy, C D, Najmudin, Z, Nghiem, P A P, Nguyen, F, Niknejadi, P, Osterhoff, J, Oumbarek Espinos, D, Papadopoulos, D N, Patrizi, B, Petrillo, V, Pocsai, M A, Poder, K, Pompili, R, Pribyl, L, Pugacheva, D, Rajeev, P P, Romeo, S, Rossetti Conti, M, Rossi, A R, Rossmanith, R, Roussel, E, Sahai, A A, Sarri, G, Schaper, L, Scherkl, P, Schramm, U, Schroeder, C B, Scifo, J, Serafini, L, Sheng, Z M, Siders, C, Silva, L O, Silva, T, Simon, C, Sinha, U, Specka, A, Streeter, M J V, Svystun, E N, Symes, D, Szwaj, C, Tauscher, G E, Terzani, Davide, Thompson, N, Toci, G, Tomassini, P, Torres, R, Ullmann, D, Vaccarezza, C, Vannini, M, Vieira, J M, Villa, F, Wahlstrom, C - G, Walczak, R, Walker, P A, Wang, K, Welsch, C P, Wiggins, S M, Wolfenden, J, Xia, G, Yabashi, M, Zhu, J, and Zigler, A
- Subjects
electron ,History ,[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph] ,Physics and Astronomy(all) ,01 natural sciences ,7. Clean energy ,Plasmas, accelerators ,010305 fluids & plasmas ,Education ,Accelerator Physics ,Acceleration ,accelerators ,Conceptual design ,0103 physical sciences ,site ,ddc:530 ,010306 general physics ,plasma ,QC ,Open innovation ,Focus (computing) ,Detector ,acceleration ,Plasma acceleration ,Accelerators and Storage Rings ,Computer Science Applications ,laser ,MC3: Novel Particle Sources and Acceleration Techniques ,Plasmas ,Systems engineering ,Physics::Accelerator Physics ,Plasmas (physics) | Lasers | Laser wakefield - Abstract
The Horizon 2020 Project EuPRAXIA (European Plasma Research Accelerator with eXcellence In Applications) is producing a conceptual design report for a highly compact and cost-effective European facility with multi-GeV electron beams accelerated using plasmas. EuPRAXIA will be set up as a distributed Open Innovation platform with two construction sites, one with a focus on beam-driven plasma acceleration (PWFA) and another site with a focus on laser-driven plasma acceleration (LWFA). User areas at both sites will provide access to FEL pilot experiments, positron generation and acceleration, compact radiation sources, and test beams for HEP detector development. Support centres in four different countries will complement the pan-European implementation of this infrastructure., Proceedings of the 10th Int. Particle Accelerator Conf., IPAC2019, Melbourne, Australia
- Published
- 2019
39. Erratum to: EuPRAXIA Conceptual Design Report (The European Physical Journal Special Topics, (2020), 229, 24, (3675-4284), 10.1140/epjst/e2020-000127-8)
- Author
-
Assmann R. W., Weikum M. K., Akhter T., Alesini D., Alexandrova A. S., Anania M. P., Andreev N. E., Andriyash I., Artioli M., Aschikhin A., Audet T., Bacci A., Barna I. F., Bartocci S., Bayramian A., Beaton A., Beck A., Bellaveglia M., Beluze A., Bernhard A., Biagioni A., Bielawski S., Bisesto F. G., Bonatto A., Boulton L., Brandi F., Brinkmann R., Briquez F., Brottier F., Brundermann E., Buscher M., Buonomo B., Bussmann M. H., Bussolino G., Campana P., Cantarella S., Cassou K., Chance A., Chen M., Chiadroni E., Cianchi A., Cioeta F., Clarke J. A., Cole J. M., Costa G., Couprie M. -E., Cowley J., Croia M., Cros B., Crump P. A., D'Arcy R., Dattoli G., Del Dotto A., Delerue N., Del Franco M., Delinikolas P., De Nicola S., Dias J. M., Di Giovenale D., Diomede M., Di Pasquale E., Di Pirro G., Di Raddo G., Dorda U., Erlandson A. C., Ertel K., Esposito A., Falcoz F., Falone A., Fedele R., Ferran Pousa A., Ferrario M., Filippi F., Fils J., Fiore G., Fiorito R., Fonseca R. A., Franzini G., Galimberti M., Gallo A., Galvin T. C., Ghaith A., Ghigo A., Giove D., Giribono A., Gizzi L. A., Gruner F. J., Habib A. F., Haefner C., Heinemann T., Helm A., Hidding B., Holzer B. J., Hooker S. M., Hosokai T., Hubner M., Ibison M., Incremona S., Irman A., Iungo F., Jafarinia F. J., Jakobsson O., Jaroszynski D. A., Jaster-Merz S., Joshi C., Kaluza M., Kando M., Karger O. S., Karsch S., Khazanov E., Khikhlukha D., Kirchen M., Kirwan G., Kitegi C., Knetsch A., Kocon D., Koester P., Kononenko O. S., Korn G., Kostyukov I., Kruchinin K. O., Labate L., Le Blanc C., Lechner C., Lee P., Leemans W., Lehrach A., Li X., Li Y., Libov V., Lifschitz A., Lindstrom C. A., Litvinenko V., Lu W., Lundh O., Maier A. R., Malka V., Manahan G. G., Mangles S. P. D., Marcelli A., Marchetti B., Marcouille O., Marocchino A., Marteau F., Martinez de la Ossa A., Martins J. L., Mason P. D., Massimo F., Mathieu F., Maynard G., Mazzotta Z., Mironov S., Molodozhentsev A. Y., Morante S., Mosnier A., Mostacci A., Muller A. -S., Murphy C. D., Najmudin Z., Nghiem P. A. P., Nguyen F., Niknejadi P., Nutter A., Osterhoff J., Oumbarek Espinos D., Paillard J. -L., Papadopoulos D. N., Patrizi B., Pattathil R., Pellegrino L., Petralia A., Petrillo V., Piersanti L., Pocsai M. A., Poder K., Pompili R., Pribyl L., Pugacheva D., Reagan B. A., Resta-Lopez J., Ricci R., Romeo S., Rossetti Conti M., Rossi A. R., Rossmanith R., Rotundo U., Roussel E., Sabbatini L., Santangelo P., Sarri G., Schaper L., Scherkl P., Schramm U., Schroeder C. B., Scifo J., Serafini L., Sharma G., Sheng Z. M., Shpakov V., Siders C. W., Silva L. O., Silva T., Simon C., Simon-Boisson C., Sinha U., Sistrunk E., Specka A., Spinka T. M., Stecchi A., Stella A., Stellato F., Streeter M. J. V., Sutherland A., Svystun E. N., Symes D., Szwaj C., Tauscher G. E., Terzani D., Toci G., Tomassini P., Torres R., Ullmann D., Vaccarezza C., Valleau M., Vannini M., Vannozzi A., Vescovi S., Vieira J. M., Villa F., Wahlstrom C. -G., Walczak R., Walker P. A., Wang K., Welsch A., Welsch C. P., Weng S. M., Wiggins S. M., Wolfenden J., Xia G., Yabashi M., Zhang H., Zhao Y., Zhu J., Zigler A., Assmann, R. W., Weikum, M. K., Akhter, T., Alesini, D., Alexandrova, A. S., Anania, M. P., Andreev, N. E., Andriyash, I., Artioli, M., Aschikhin, A., Audet, T., Bacci, A., Barna, I. F., Bartocci, S., Bayramian, A., Beaton, A., Beck, A., Bellaveglia, M., Beluze, A., Bernhard, A., Biagioni, A., Bielawski, S., Bisesto, F. G., Bonatto, A., Boulton, L., Brandi, F., Brinkmann, R., Briquez, F., Brottier, F., Brundermann, E., Buscher, M., Buonomo, B., Bussmann, M. H., Bussolino, G., Campana, P., Cantarella, S., Cassou, K., Chance, A., Chen, M., Chiadroni, E., Cianchi, A., Cioeta, F., Clarke, J. A., Cole, J. M., Costa, G., Couprie, M. -E., Cowley, J., Croia, M., Cros, B., Crump, P. A., D'Arcy, R., Dattoli, G., Del Dotto, A., Delerue, N., Del Franco, M., Delinikolas, P., De Nicola, S., Dias, J. M., Di Giovenale, D., Diomede, M., Di Pasquale, E., Di Pirro, G., Di Raddo, G., Dorda, U., Erlandson, A. C., Ertel, K., Esposito, A., Falcoz, F., Falone, A., Fedele, R., Ferran Pousa, A., Ferrario, M., Filippi, F., Fils, J., Fiore, G., Fiorito, R., Fonseca, R. A., Franzini, G., Galimberti, M., Gallo, A., Galvin, T. C., Ghaith, A., Ghigo, A., Giove, D., Giribono, A., Gizzi, L. A., Gruner, F. J., Habib, A. F., Haefner, C., Heinemann, T., Helm, A., Hidding, B., Holzer, B. J., Hooker, S. M., Hosokai, T., Hubner, M., Ibison, M., Incremona, S., Irman, A., Iungo, F., Jafarinia, F. J., Jakobsson, O., Jaroszynski, D. A., Jaster-Merz, S., Joshi, C., Kaluza, M., Kando, M., Karger, O. S., Karsch, S., Khazanov, E., Khikhlukha, D., Kirchen, M., Kirwan, G., Kitegi, C., Knetsch, A., Kocon, D., Koester, P., Kononenko, O. S., Korn, G., Kostyukov, I., Kruchinin, K. O., Labate, L., Le Blanc, C., Lechner, C., Lee, P., Leemans, W., Lehrach, A., Li, X., Li, Y., Libov, V., Lifschitz, A., Lindstrom, C. A., Litvinenko, V., Lu, W., Lundh, O., Maier, A. R., Malka, V., Manahan, G. G., Mangles, S. P. D., Marcelli, A., Marchetti, B., Marcouille, O., Marocchino, A., Marteau, F., Martinez de la Ossa, A., Martins, J. L., Mason, P. D., Massimo, F., Mathieu, F., Maynard, G., Mazzotta, Z., Mironov, S., Molodozhentsev, A. Y., Morante, S., Mosnier, A., Mostacci, A., Muller, A. -S., Murphy, C. D., Najmudin, Z., Nghiem, P. A. P., Nguyen, F., Niknejadi, P., Nutter, A., Osterhoff, J., Oumbarek Espinos, D., Paillard, J. -L., Papadopoulos, D. N., Patrizi, B., Pattathil, R., Pellegrino, L., Petralia, A., Petrillo, V., Piersanti, L., Pocsai, M. A., Poder, K., Pompili, R., Pribyl, L., Pugacheva, D., Reagan, B. A., Resta-Lopez, J., Ricci, R., Romeo, S., Rossetti Conti, M., Rossi, A. R., Rossmanith, R., Rotundo, U., Roussel, E., Sabbatini, L., Santangelo, P., Sarri, G., Schaper, L., Scherkl, P., Schramm, U., Schroeder, C. B., Scifo, J., Serafini, L., Sharma, G., Sheng, Z. M., Shpakov, V., Siders, C. W., Silva, L. O., Silva, T., Simon, C., Simon-Boisson, C., Sinha, U., Sistrunk, E., Specka, A., Spinka, T. M., Stecchi, A., Stella, A., Stellato, F., Streeter, M. J. V., Sutherland, A., Svystun, E. N., Symes, D., Szwaj, C., Tauscher, G. E., Terzani, D., Toci, G., Tomassini, P., Torres, R., Ullmann, D., Vaccarezza, C., Valleau, M., Vannini, M., Vannozzi, A., Vescovi, S., Vieira, J. M., Villa, F., Wahlstrom, C. -G., Walczak, R., Walker, P. A., Wang, K., Welsch, A., Welsch, C. P., Weng, S. M., Wiggins, S. M., Wolfenden, J., Xia, G., Yabashi, M., Zhang, H., Zhao, Y., Zhu, J., and Zigler, A.
- Abstract
Figure 20.1 was not correct in the published article. The original article has been corrected. The published apologizes for the inconvenience.
- Published
- 2020
40. Stable witness-beam formation in a beam-driven plasma cathode
- Author
-
Knetsch, A., primary, Sheeran, B., additional, Boulton, L., additional, Niknejadi, P., additional, Põder, K., additional, Schaper, L., additional, Zeng, M., additional, Bohlen, S., additional, Boyle, G., additional, Brümmer, T., additional, Chappell, J., additional, D’Arcy, R., additional, Diederichs, S., additional, Foster, B., additional, Garland, M. J., additional, Gonzalez Caminal, P., additional, Hidding, B., additional, Libov, V., additional, Lindstrøm, C. A., additional, Martinez de la Ossa, A., additional, Meisel, M., additional, Parikh, T., additional, Schmidt, B., additional, Schröder, S., additional, Tauscher, G., additional, Wesch, S., additional, Winkler, P., additional, Wood, J. C., additional, and Osterhoff, J., additional
- Published
- 2021
- Full Text
- View/download PDF
41. Reliability study of through-silicon via (TSV) copper filled interconnects
- Author
-
Kamto, A., Liu, Y., Schaper, L., and Burkett, S.L.
- Published
- 2009
- Full Text
- View/download PDF
42. Energy-spread preservation and high efficiency in a plasma-wakefield accelerator
- Author
-
Lindstroem, Carl Andreas, Garland, J. M., Schröder, Sarah, Boulton, Lewis, Boyle, G., Chappell, J., D'Arcy, Richard, Gonzalez Caminal, Pau, Knetsch, A., Libov, Vladyslav, Loisch, G., Martinez De La Ossa, A., Niknejadi, P., Põder, K., Schaper, L., Schmidt, Bernhard, Sheeran, B., Wesch, S., Wood, J., and Osterhoff, Jens
- Subjects
Physics::Plasma Physics ,Physics::Accelerator Physics ,ddc:530 ,QC - Abstract
Physical review letters 126(1), 014801 (1-6) (2021). doi:10.1103/PhysRevLett.126.014801, Energy-efficient plasma-wakefield acceleration of particle bunches with low energy spread is a promising path to realizing compact free-electron lasers and particle colliders. High efficiency and low energy spread can be achieved simultaneously by strong beam loading of plasma wakefields when accelerating bunches with carefully tailored current profiles [M. Tzoufras {et al.}, Phys.Rev.Lett.~101, 145002 (2008)]. We experimentally demonstrate such optimal beam loading in a nonlinear electron-driven plasma accelerator. Bunches with initial energy of 1 GeV were accelerated by 45 MeV with an energy-transfer efficiency of (42±4)% at a gradient of 1.3 GV/m while preserving per-mille energy spreads with full charge coupling, demonstrating wakefield flattening at the few-percent level., Published by APS, College Park, Md.
- Published
- 2021
43. Erratum to: EuPRAXIA Conceptual Design Report
- Author
-
Assmann, RW, Weikum, MK, Akhter, T, Alesini, D, Alexandrova, AS, Anania, MP, Andreev, NE, Andriyash, I, Artioli, M, Aschikhin, A, Audet, T, Bacci, A, Barna, IF, Bartocci, S, Bayramian, A, Beaton, A, Beck, A, Bellaveglia, M, Beluze, A, Bernhard, A, Biagioni, A, Bielawski, S, Bisesto, FG, Bonatto, A, Boulton, L, Brandi, F, Brinkmann, R, Briquez, F, Brottier, F, Bruendermann, E, Buescher, M, Buonomo, B, Bussmann, MH, Bussolino, G, Campana, P, Cantarella, S, Cassou, K, Chance, A, Chen, M, Chiadroni, E, Cianchi, A, Cioeta, F, Clarke, JA, Cole, JM, Costa, G, Couprie, M-E, Cowley, J, Croia, M, Cros, B, Crump, PA, D'Arcy, R, Dattoli, G, Del Dotto, A, Delerue, N, Del Franco, M, Delinikolas, P, De Nicola, S, Dias, JM, Di Giovenale, D, Diomede, M, Di Pasquale, E, Di Pirro, G, Di Raddo, G, Dorda, U, Erlandson, AC, Ertel, K, Esposito, A, Falcoz, F, Falone, A, Fedele, R, Ferran Pousa, A, Ferrario, M, Filippi, F, Fils, J, Fiore, G, Fiorito, R, Fonseca, RA, Franzini, G, Galimberti, M, Gallo, A, Galvin, TC, Ghaith, A, Ghigo, A, Giove, D, Giribono, A, Gizzi, LA, Gruener, FJ, Habib, AF, Haefner, C, Heinemann, T, Helm, A, Hidding, B, Holzer, BJ, Hooker, SM, Hosokai, T, Huebner, M, Ibison, M, Incremona, S, Irman, A, Iungo, F, Jafarinia, FJ, Jakobsson, O, Jaroszynski, DA, Jaster-Merz, S, Joshi, C, Kaluza, M, Kando, M, Karger, OS, Karsch, S, Khazanov, E, Khikhlukha, D, Kirchen, M, Kirwan, G, Kitegi, C, Knetsch, A, Kocon, D, Koester, P, Kononenko, OS, Korn, G, Kostyukov, I, Kruchinin, KO, Labate, L, Le Blanc, C, Lechner, C, Lee, P, Leemans, W, Lehrach, A, Li, X, Li, Y, Libov, V, Lifschitz, A, Lindstrom, CA, Litvinenko, V, Lu, W, Lundh, O, Maier, AR, Malka, V, Manahan, GG, Mangles, SPD, Marcelli, A, Marchetti, B, Marcouille, O, Marocchino, A, Marteau, F, Martinez de la Ossa, A, Martins, JL, Mason, PD, Massimo, F, Mathieu, F, Maynard, G, Mazzotta, Z, Mironov, S, Molodozhentsev, AY, Morante, S, Mosnier, A, Mostacci, A, Mueller, A-S, Murphy, CD, Najmudin, Z, Nghiem, PAP, Nguyen, F, Niknejadi, P, Nutter, A, Osterhoff, J, Oumbarek Espinos, D, Paillard, J-L, Papadopoulos, DN, Patrizi, B, Pattathil, R, Pellegrino, L, Petralia, A, Petrillo, V, Piersanti, L, Pocsai, MA, Poder, K, Pompili, R, Pribyl, L, Pugacheva, D, Reagan, BA, Resta-Lopez, J, Ricci, R, Romeo, S, Rossetti Conti, M, Rossi, AR, Rossmanith, R, Rotundo, U, Roussel, E, Sabbatini, L, Santangelo, P, Sarri, G, Schaper, L, Scherkl, P, Schramm, U, Schroeder, CB, Scifo, J, Serafini, L, Sharma, G, Sheng, ZM, Shpakov, V, Siders, CW, Silva, LO, Silva, T, Simon, C, Simon-Boisson, C, Sinha, U, Sistrunk, E, Specka, A, Spinka, TM, Stecchi, A, Stella, A, Stellato, F, Streeter, MJV, Sutherland, A, Svystun, EN, Symes, D, Szwaj, C, Tauscher, GE, Terzani, D, Toci, G, Tomassini, P, Torres, R, Ullmann, D, Vaccarezza, C, Valleau, M, Vannini, M, Vannozzi, A, Vescovi, S, Vieira, JM, Villa, F, Wahlstrom, C-G, Walczak, R, Walker, PA, Wang, K, Welsch, A, Welsch, CP, Weng, SM, Wiggins, SM, Wolfenden, J, Xia, G, Yabashi, M, Zhang, H, Zhao, Y, Zhu, J, Zigler, A, Engineering & Physical Science Research Council (EPSRC), Commission of the European Communities, and Science and Technology Facilities Council (STFC)
- Subjects
Science & Technology ,02 Physical Sciences ,Physics ,Fluids & Plasmas ,Physical Sciences ,Physics, Multidisciplinary ,ddc:530 ,01 Mathematical Sciences ,Applied Physics - Abstract
Figure 20.1 was not correct in the published article. The original article has been corrected. The published apologizes for the inconvenience.
- Published
- 2020
44. Energy-Spread Preservation and High Efficiency in a Plasma-Wakefield Accelerator
- Author
-
Lindstrøm, C. A., primary, Garland, J. M., additional, Schröder, S., additional, Boulton, L., additional, Boyle, G., additional, Chappell, J., additional, D’Arcy, R., additional, Gonzalez, P., additional, Knetsch, A., additional, Libov, V., additional, Loisch, G., additional, Martinez de la Ossa, A., additional, Niknejadi, P., additional, Põder, K., additional, Schaper, L., additional, Schmidt, B., additional, Sheeran, B., additional, Wesch, S., additional, Wood, J., additional, and Osterhoff, J., additional
- Published
- 2021
- Full Text
- View/download PDF
45. Combining laser interferometry and plasma spectroscopy for spatially resolved high-sensitivity plasma density measurements in discharge capillaries
- Author
-
Garland, J. M., primary, Tauscher, G., additional, Bohlen, S., additional, Boyle, G. J., additional, D’Arcy, R., additional, Goldberg, L., additional, Põder, K., additional, Schaper, L., additional, Schmidt, B., additional, and Osterhoff, J., additional
- Published
- 2021
- Full Text
- View/download PDF
46. Cementless cup fixation in total hip arthroplasty after 5–8 years
- Author
-
Spicer, D., Schaper, L., Pomeroy, D., Badenhausen, W., Curry, J., Suthers, K., and Smith, M.
- Published
- 2001
- Full Text
- View/download PDF
47. Cementless hemispheric acetabular component in total hip replacement
- Author
-
Weber, D., Schaper, L. A., Pomeroy, D. L., Badenhausen Jr., W. E., Curry, J. I., Smith, M. W., and Suthers, K. E.
- Published
- 2000
- Full Text
- View/download PDF
48. Proximally porous coated femoral stem in total hip replacement – 5- to 13-year follow-up report
- Author
-
Weber, D., Pomeroy, D. L., Brown, R., Schaper, L. A., Badenhausen, Jr., W. E., Smith, M. W., Curry, J. I., and Suthers, K. E.
- Published
- 2000
- Full Text
- View/download PDF
49. Tunable and precise two-bunch generation at FLASHForward
- Author
-
Schröder, S, primary, Ludwig, K, additional, Aschikhin, A, additional, D’Arcy, R, additional, Dinter, M, additional, Gonzalez, P, additional, Karstensen, S, additional, Knetsch, A, additional, Libov, V, additional, Lindstrøm, C A, additional, Marutzky, F, additional, Niknejadi, P, additional, Rahali, A, additional, Schaper, L, additional, Schleiermacher, A, additional, Schmidt, B, additional, Thiele, S, additional, Wagner, A de Zubiaurre, additional, Wesch, S, additional, and Osterhoff, J, additional
- Published
- 2020
- Full Text
- View/download PDF
50. NME
- Author
-
Schaper, L.‐A., primary
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.