528 results on '"Sato, Rie"'
Search Results
2. Relationships of rapid eating with visceral and subcutaneous fat mass and plasma adiponectin concentration
- Author
-
Tsumura, Hideki, Fukuda, Mari, Hisamatsu, Takashi, Sato, Rie, Tsuchie, Rina, and Kanda, Hideyuki
- Published
- 2023
- Full Text
- View/download PDF
3. Detailed Design of the Science Operations for the XRISM mission
- Author
-
Terada, Yukikatsu, Holland, Matt, Loewenstein, Michael, Tashiro, Makoto, Takahashi, Hiromitsu, Nobukawa, Masayoshi, Mizuno, Tsunefumi, Tamura, Takayuki, Uno, Shin'ichiro, Watanabe, Shin, Baluta, Chris, Burns, Laura, Ebisawa, Ken, Eguchi, Satoshi, Fukazawa, Yasushi, Hayashi, Katsuhiro, Iizuka, Ryo, Katsuda, Satoru, Kitaguchi, Takao, Kubota, Aya, Miller, Eric, Mukai, Koji, Nakashima, Shinya, Nakazawa, Kazuhiro, Odaka, Hirokazu, Ohno, Masanori, Ota, Naomi, Sato, Rie, Sawada, Makoto, Sugawara, Yasuharu, Shidatsu, Megumi, Tamba, Tsubasa, Tanimoto, Atsushi, Terashima, Yuichi, Tsuboi, Yohko, Uchida, Yuusuke, Uchiyama, Hideki, Yamauchi, Shigeo, and Yaqoob, Tahir
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
XRISM is an X-ray astronomical mission by the JAXA, NASA, ESA and other international participants, that is planned for launch in 2022 (Japanese fiscal year), to quickly restore high-resolution X-ray spectroscopy of astrophysical objects. To enhance the scientific outputs of the mission, the Science Operations Team (SOT) is structured independently from the instrument teams and the Mission Operations Team. The responsibilities of the SOT are divided into four categories: 1) guest observer program and data distributions, 2) distribution of analysis software and the calibration database, 3) guest observer support activities, and 4) performance verification and optimization activities. As the first step, lessons on the science operations learned from past Japanese X-ray missions are reviewed, and 15 kinds of lessons are identified. Among them, a) the importance of early preparation of the operations from the ground stage, b) construction of an independent team for science operations separate from the instrument development, and c) operations with well-defined duties by appointed members are recognized as key lessons. Then, the team structure and the task division between the mission and science operations are defined; the tasks are shared among Japan, US, and Europe and are performed by three centers, the SOC, SDC, and ESAC, respectively. The SOC is designed to perform tasks close to the spacecraft operations, such as spacecraft planning, quick-look health checks, pre-pipeline processing, etc., and the SDC covers tasks regarding data calibration processing, maintenance of analysis tools, etc. The data-archive and user-support activities are covered both by the SOC and SDC. Finally, the science-operations tasks and tools are defined and prepared before launch., Comment: 42 pages, 7 figures, 8 table, Accepted for Publication in JATIS (SPIE)
- Published
- 2021
- Full Text
- View/download PDF
4. Origin of the in-orbit instrumental background of the Hard X-ray Imager onboard Hitomi
- Author
-
Hagino, Kouichi, Odaka, Hirokazu, Sato, Goro, Sato, Tamotsu, Suzuki, Hiromasa, Mizuno, Tsunefumi, Kawaharada, Madoka, Ohno, Masanori, Nakazawa, Kazuhiro, Kobayashi, Shogo B., Murakami, Hiroaki, Miyake, Katsuma, Asai, Makoto, Koi, Tatsumi, Madejski, Greg, Saito, Shinya, Wright, Dennis H., Enoto, Teruaki, Fukazawa, Yasushi, Hayashi, Katsuhiro, Kataoka, Jun, Katsuta, Junichiro, Kokubun, Motohide, Laurent, Philippe, Lebrun, Francois, Limousin, Olivier, Maier, Daniel, Makishima, Kazuo, Mori, Kunishiro, Nakamori, Takeshi, Nakano, Toshio, Noda, Hirofumi, Ohta, Masayuki, Sato, Rie, Tajima, Hiroyasu, Takahashi, Hiromitsu, Takahashi, Tadayuki, Takeda, Shin'ichiro, Tanaka, Takaaki, Terada, Yukikatsu, Uchiyama, Hideki, Uchiyama, Yasunobu, Watanabe, Shin, Yamaoka, Kazutaka, Yatsu, Yoichi, and Yuasa, Takayuki
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
Understanding and reducing the in-orbit instrumental backgrounds are essential to achieving high sensitivity in hard X-ray astronomical observations. The observational data of the Hard X-ray Imager (HXI) on board the Hitomi satellite provides useful information on the background components, owing to its multi-layer configuration with different atomic numbers: the HXI consists of a stack of four layers of Si (Z = 14) detectors and one layer of CdTe (Z = 48, 52) detector surrounded by well-type BGO (Bi4Ge3O12) active shields. Based on the observational data, the backgrounds of top Si layer, the three underlying Si layers, and the CdTe layer are inferred to be dominated by different components, namely, low-energy electrons, albedo neutrons, and proton-induced radioactivation, respectively. Monte Carlo simulations of the in-orbit background of the HXI reproduce the observed background spectrum of each layer well, thereby verifying the above hypothesis quantitatively. In addition, we suggest the inclusion of an electron shield to reduce the background., Comment: 12 pages, 8 figures, accepted for publication in JATIS
- Published
- 2020
- Full Text
- View/download PDF
5. Layer-selective detection of magnetization directions from two layers of antiferromagnetically-coupled magnetizations by ferromagnetic resonance using a spin-torque oscillator
- Author
-
Kanao, Taro, Suto, Hirofumi, Mizushima, Koichi, and Sato, Rie
- Subjects
Physics - Applied Physics ,Condensed Matter - Mesoscale and Nanoscale Physics - Abstract
We use micromagnetic simulation to demonstrate layer-selective detection of magnetization directions from magnetic dots having two recording layers by using a spin-torque oscillator (STO) as a read device. This method is based on ferromagnetic resonance (FMR) excitation of recording-layer magnetizations by the microwave field from the STO. The FMR excitation affects the oscillation of the STO, which is utilized to sense the magnetization states in a recording layer. The recording layers are designed to have different FMR frequencies so that the FMR excitation is selectively induced by tuning the oscillation frequency of the STO. Since all magnetic layers interact with each other through dipolar fields, unnecessary interlayer interferences can occur, which are suppressed by designing magnetic properties of the layers. We move the STO over the magnetic dots, which models a read head moving over recording media, and show that changes in the STO oscillation occur on the one-nanosecond timescale., Comment: 6 pages, 4 figures
- Published
- 2019
- Full Text
- View/download PDF
6. Detection of polarized gamma-ray emission from the Crab nebula with Hitomi Soft Gamma-ray Detector
- Author
-
Hitomi Collaboration, Aharonian, Felix, Akamatsu, Hiroki, Akimoto, Fumie, Allen, Steven W., Angelini, Lorella, Audard, Marc, Awaki, Hisamitsu, Axelsson, Magnus, Bamba, Aya, Bautz, Marshall W., Blandford, Roger, Brenneman, Laura W., Brown, Gregory V., Bulbul, Esra, Cackett, Edward M., Chernyakova, Maria, Chiao, Meng P., Coppi, Paolo S., Costantini, Elisa, de Plaa, Jelle, de Vries, Cor P., Herder, Jan-Willem den, Done, Chris, Dotani, Tadayasu, Ebisawa, Ken, Eckart, Megan E., Enoto, Teruaki, Ezoe, Yuichiro, Fabian, Andrew C., Ferrigno, Carlo, Foster, Adam R., Fujimoto, Ryuichi, Fukazawa, Yasushi, Furuzawa, Akihiro, Galeazzi, Massimiliano, Gallo, Luigi C., Gandhi, Poshak, Giustini, Margherita, Goldwurm, Andrea, Gu, Liyi, Guainazzi, Matteo, Haba, Yoshito, Hagino, Kouichi, Hamaguchi, Kenji, Harrus, Ilana M., Hatsukade, Isamu, Hayashi, Katsuhiro, Hayashi, Takayuki, Hayashida, Kiyoshi, Hiraga, Junko S., Hornschemeier, Ann, Hoshino, Akio, Hughes, John P., Ichinohe, Yuto, Iizuka, Ryo, Inoue, Hajime, Inoue, Yoshiyuki, Ishida, Manabu, Ishikawa, Kumi, Ishisaki, Yoshitaka, Iwai, Masachika, Kaastra, Jelle, Kallman, Tim, Kamae, Tsuneyoshi, Kataoka, Jun, Katsuda, Satoru, Kawai, Nobuyuki, Kelley, Richard L., Kilbourne, Caroline A., Kitaguchi, Takao, Kitamoto, Shunji, Kitayama, Tetsu, Kohmura, Takayoshi, Kokubun, Motohide, Koyama, Katsuji, Koyama, Shu, Kretschmar, Peter, Krimm, Hans A., Kubota, Aya, Kunieda, Hideyo, Laurent, Philippe, Lee, Shiu-Hang, Leutenegger, Maurice A., Limousin, Olivier, Loewenstein, Michael, Long, Knox S., Lumb, David, Madejski, Greg, Maeda, Yoshitomo, Maier, Daniel, Makishima, Kazuo, Markevitch, Maxim, Matsumoto, Hironori, Matsushita, Kyoko, McCammon, Dan, McNamara, Brian R., Mehdipour, Missagh, Miller, Eric D., Miller, Jon M., Mineshige, Shin, Mitsuda, Kazuhisa, Mitsuishi, Ikuyuki, Miyazawa, Takuya, Mizuno, Tsunefumi, Mori, Hideyuki, Mori, Koji, Mukai, Koji, Murakami, Hiroshi, Mushotzky, Richard F., Nakagawa, Takao, Nakajima, Hiroshi, Nakamori, Takeshi, Nakashima, Shinya, Nakazawa, Kazuhiro, Nobukawa, Kumiko K., Nobukawa, Masayoshi, Noda, Hirofumi, Odaka, Hirokazu, Ohashi, Takaya, Ohno, Masanori, Okajima, Takashi, Ota, Naomi, Ozaki, Masanobu, Paerels, Frits, Paltani, Stephane, Petre, Robert, Pinto, Ciro, Porter, Frederick S., Pottschmidt, Katja, Reynolds, Christopher S., Safi-Harb, Samar, Saito, Shinya, Sakai, Kazuhiro, Sasaki, Toru, Sato, Goro, Sato, Kosuke, Sato, Rie, Sawada, Makoto, Schartel, Norbert, Serlemtsos, Peter J., Seta, Hiromi, Shidatsu, Megumi, Simionescu, Aurora, Smith, Randall K., Soong, Yang, Stawarz, Lukasz, Sugawara, Yasuharu, Sugita, Satoshi, Szymkowiak, Andrew, Tajima, Hiroyasu, Takahashi, Hiromitsu, Takahashi, Tadayuki, Takeda, Shin'ichiro, Takei, Yoh, Tamagawa, Toru, Tamura, Takayuki, Tanaka, Takaaki, Tanaka, Yasuo, Tanaka, Yasuyuki T., Tashiro, Makoto S., Tawara, Yuzuru, Terada, Yukikatsu, Terashima, Yuichi, Tombesi, Francesco, Tomida, Hiroshi, Tsuboi, Yohko, Tsujimoto, Masahiro, Tsunemi, Hiroshi, Tsuru, Takeshi Go, Uchida, Hiroyuki, Uchiyama, Hideki, Uchiyama, Yasunobu, Ueda, Shutaro, Ueda, Yoshihiro, Uno, Shin'ichiro, Urry, C. Megan, Ursino, Eugenio, Watanabe, Shin, Werner, Norbert, Wilkins, Dan R., Williams, Brian J., Yamada, Shinya, Yamaguchi, Hiroya, Yamaoka, Kazutaka, Yamasaki, Noriko Y., Yamauchi, Makoto, Yamauchi, Shigeo, Yaqoob, Tahir, Yatsu, Yoichi, Yonetoku, Daisuke, Zhuravleva, Irina, Zoghbi, Abderahmen, and Uchida, Yuusuke
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present the results from the Hitomi Soft Gamma-ray Detector (SGD) observation of the Crab nebula. The main part of SGD is a Compton camera, which in addition to being a spectrometer, is capable of measuring polarization of gamma-ray photons. The Crab nebula is one of the brightest X-ray / gamma-ray sources on the sky, and, the only source from which polarized X-ray photons have been detected. SGD observed the Crab nebula during the initial test observation phase of Hitomi. We performed the data analysis of the SGD observation, the SGD background estimation and the SGD Monte Carlo simulations, and, successfully detected polarized gamma-ray emission from the Crab nebula with only about 5 ks exposure time. The obtained polarization fraction of the phase-integrated Crab emission (sum of pulsar and nebula emissions) is (22.1 $\pm$ 10.6)% and, the polarization angle is 110.7$^o$ + 13.2 / $-$13.0$^o$ in the energy range of 60--160 keV (The errors correspond to the 1 sigma deviation). The confidence level of the polarization detection was 99.3%. The polarization angle measured by SGD is about one sigma deviation with the projected spin axis of the pulsar, 124.0$^o$ $\pm$0.1$^o$., Comment: 19 pages, 18 figures, 6 tables. Accepted for publication in PASJ
- Published
- 2018
- Full Text
- View/download PDF
7. In-orbit performance and calibration of the Hard X-ray Imager onboard Hitomi (ASTRO-H)
- Author
-
Hagino, Kouichi, Nakazawa, Kazuhiro, Sato, Goro, Kokubun, Motohide, Enoto, Teruaki, Fukazawa, Yasushi, Hayashi, Katsuhiro, Kataoka, Jun, Katsuta, Junichiro, Kobayashi, Shogo B., Laurent, Philippe, Lebrun, Francois, Limousin, Olivier, Maier, Daniel, Makishima, Kazuo, Mimura, Taketo, Miyake, Katsuma, Mizuno, Tsunefumi, Mori, Kunishiro, Murakami, Hiroaki, Nakamori, Takeshi, Nakano, Toshio, Noda, Hirofumi, Odaka, Hirokazu, Ohno, Masanori, Ohta, Masayuki, Saito, Shinya, Sato, Rie, Tajima, Hiroyasu, Takahashi, Hiromitsu, Takahashi, Tadayuki, Takeda, Shin'ichiro, Tanaka, Takaaki, Terada, Yukikatsu, Uchiyama, Hideki, Uchiyama, Yasunobu, Watanabe, Shin, Yamaoka, Kazutaka, Yatsu, Yoichi, and Yuasa, Takayuki
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The Hard X-ray Imager (HXI) onboard Hitomi (ASTRO-H) is an imaging spectrometer covering hard X-ray energies of 5-80 keV. Combined with the hard X-ray telescope, it enables imaging spectroscopy with an angular resolution of $1^\prime.7$ half-power diameter, in a field of view of $9^\prime\times9^\prime$. The main imager is composed of 4 layers of Si detectors and 1 layer of CdTe detector, stacked to cover wide energy band up to 80 keV, surrounded by an active shield made of BGO scintillator to reduce the background. The HXI started observations 12 days before the Hitomi loss, and successfully obtained data from G21.5$-$0.9, Crab and blank sky. Utilizing these data, we calibrate the detector response and study properties of in-orbit background. The observed Crab spectra agree well with a powerlaw model convolved with the detector response, within 5% accuracy. We find that albedo electrons in specified orbit strongly affect the background of Si top layer, and establish a screening method to reduce it. The background level over the full field of view after all the processing and screening is as low as the pre-flight requirement of $1$-$3\times10^{-4}$ counts s$^{-1}$ cm$^{-2}$ keV$^{-1}$., Comment: 46 pages, 18 figures, published in Journal of Astronomical Telescopes, Instruments, and Systems
- Published
- 2018
- Full Text
- View/download PDF
8. Modeling of proton-induced radioactivation background in hard X-ray telescopes: Geant4-based simulation and its demonstration by Hitomi's measurement in a low Earth orbit
- Author
-
Odaka, Hirokazu, Asai, Makoto, Hagino, Kouichi, Koi, Tatsumi, Madejski, Greg, Mizuno, Tsunefumi, Ohno, Masanori, Saito, Shinya, Sato, Tamotsu, Wright, Dennis H., Enoto, Teruaki, Fukazawa, Yasushi, Hayashi, Katsuhiro, Kataoka, Jun, Katsuta, Junichiro, Kawaharada, Madoka, Kobayashi, Shogo B., Kokubun, Motohide, Laurent, Philippe, Lebrun, Francois, Limousin, Olivier, Maier, Daniel, Makishima, Kazuo, Mimura, Taketo, Miyake, Katsuma, Mori, Kunishiro, Murakami, Hiroaki, Nakamori, Takeshi, Nakano, Toshio, Nakazawa, Kazuhiro, Noda, Hirofumi, Ohta, Masayuki, Ozaki, Masanobu, Sato, Goro, Sato, Rie, Tajima, Hiroyasu, Takahashi, Hiromitsu, Takahashi, Tadayuki, Takeda, Shin'ichiro, Tanaka, Takaaki, Tanaka, Yasuyuki, Terada, Yukikatsu, Uchiyama, Hideki, Uchiyama, Yasunobu, Watanabe, Shin, Yamaoka, Kazutaka, Yasuda, Tetsuya, Yatsu, Yoichi, Yuasa, Takayuki, and Zoglauer, Andreas
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
Hard X-ray astronomical observatories in orbit suffer from a significant amount of background due to radioactivation induced by cosmic-ray protons and/or geomagnetically trapped protons. Within the framework of a full Monte Carlo simulation, we present modeling of in-orbit instrumental background dominated by radioactivation. To reduce the computation time required by straightforward simulations of delayed emissions from activated isotopes, we insert a semi-analytical calculation that converts production probabilities of radioactive isotopes by interaction of the primary protons into decay rates at measurement time of all secondary isotopes. Therefore, our simulation method is separated into three steps: (1) simulation of isotope production, (2) semi-analytical conversion to decay rates, and (3) simulation of decays of the isotopes at measurement time. This method is verified by a simple setup that has a CdTe semiconductor detector, and shows a 100-fold improvement in efficiency over the straightforward simulation. The simulation framework was tested against data measured with a CdTe sensor in the Hard X-ray Imager onboard the Hitomi X-ray Astronomy Satellite, which was put into a low Earth orbit with an altitude of 570 km and an inclination of 31 degrees, and thus experienced a large amount of irradiation from geomagnetically trapped protons during its passages through the South Atlantic Anomaly. The simulation is able to treat full histories of the proton irradiation and multiple measurement windows. The simulation results agree very well with the measured data, showing that the measured background is well described by the combination of proton-induced radioactivation of the CdTe detector itself and thick Bi4Ge3O12 scintillator shields, leakage of cosmic X-ray background and albedo gamma-ray radiation, and emissions from naturally contaminated isotopes in the detector system., Comment: 18 pages, 13 figures
- Published
- 2018
- Full Text
- View/download PDF
9. Hitomi X-ray Observation of the Pulsar Wind Nebula G21.5$-$0.9
- Author
-
Hitomi Collaboration, Aharonian, Felix, Akamatsu, Hiroki, Akimoto, Fumie, Allen, Steven W., Angelini, Lorella, Audard, Marc, Awaki, Hisamitsu, Axelsson, Magnus, Bamba, Aya, Bautz, Marshall W., Blandford, Roger, Brenneman, Laura W., Brown, Gregory V., Bulbul, Esra, Cackett, Edward M., Chernyakova, Maria, Chiao, Meng P., Coppi, Paolo S., Costantini, Elisa, de Plaa, Jelle, de Vries, Cor P., Herder, Jan-Willem den, Done, Chris, Dotani, Tadayasu, Ebisawa, Ken, Eckart, Megan E., Enoto, Teruaki, Ezoe, Yuichiro, Fabian, Andrew C., Ferrigno, Carlo, Foster, Adam R., Fujimoto, Ryuichi, Fukazawa, Yasushi, Furuzawa, Akihiro, Galeazzi, Massimiliano, Gallo, Luigi C., Gandhi, Poshak, Giustini, Margherita, Goldwurm, Andrea, Gu, Liyi, Guainazzi, Matteo, Haba, Yoshito, Hagino, Kouichi, Hamaguchi, Kenji, Harrus, Ilana M., Hatsukade, Isamu, Hayashi, Katsuhiro, Hayashi, Takayuki, Hayashida, Kiyoshi, Hiraga, Junko S., Hornschemeier, Ann, Hoshino, Akio, Hughes, John P., Ichinohe, Yuto, Iizuka, Ryo, Inoue, Hajime, Inoue, Yoshiyuki, Ishida, Manabu, Ishikawa, Kumi, Ishisaki, Yoshitaka, Iwai, Masachika, Kaastra, Jelle, Kallman, Tim, Kamae, Tsuneyoshi, Kataoka, Jun, Katsuda, Satoru, Kawai, Nobuyuki, Kelley, Richard L., Kilbourne, Caroline A., Kitaguchi, Takao, Kitamoto, Shunji, Kitayama, Tetsu, Kohmura, Takayoshi, Kokubun, Motohide, Koyama, Katsuji, Koyama, Shu, Kretschmar, Peter, Krimm, Hans A., Kubota, Aya, Kunieda, Hideyo, Laurent, Philippe, Lee, Shiu-Hang, Leutenegger, Maurice A., Limousin, Olivier, Loewenstein, Michael, Long, Knox S., Lumb, David, Madejski, Greg, Maeda, Yoshitomo, Maier, Daniel, Makishima, Kazuo, Markevitch, Maxim, Matsumoto, Hironori, Matsushita, Kyoko, McCammon, Dan, McNamara, Brian R., Mehdipour, Missagh, Miller, Eric D., Miller, Jon M., Mineshige, Shin, Mitsuda, Kazuhisa, Mitsuishi, Ikuyuki, Miyazawa, Takuya, Mizuno, Tsunefumi, Mori, Hideyuki, Mori, Koji, Mukai, Koji, Murakami, Hiroshi, Mushotzky, Richard F., Nakagawa, Takao, Nakajima, Hiroshi, Nakamori, Takeshi, Nakashima, Shinya, Nakazawa, Kazuhiro, Nobukawa, Kumiko K., Nobukawa, Masayoshi, Noda, Hirofumi, Odaka, Hirokazu, Ohashi, Takaya, Ohno, Masanori, Okajima, Takashi, Ota, Naomi, Ozaki, Masanobu, Paerels, Frits, Paltani, Stéphane, Petre, Robert, Pinto, Ciro, Porter, Frederick S., Pottschmidt, Katja, Reynolds, Christopher S., Safi-Harb, Samar, Saito, Shinya, Sakai, Kazuhiro, Sasaki, Toru, Sato, Goro, Sato, Kosuke, Sato, Rie, Sato, Toshiki, Sawada, Makoto, Schartel, Norbert, Serlemtsos, Peter J., Seta, Hiromi, Shidatsu, Megumi, Simionescu, Aurora, Smith, Randall K., Soong, Yang, Stawarz, Łukasz, Sugawara, Yasuharu, Sugita, Satoshi, Szymkowiak, Andrew, Tajima, Hiroyasu, Takahashi, Hiromitsu, Takahashi, Tadayuki, Takeda, Shin'ichiro, Takei, Yoh, Tamagawa, Toru, Tamura, Takayuki, Tanaka, Takaaki, Tanaka, Yasuo, Tanaka, Yasuyuki T., Tashiro, Makoto S., Tawara, Yuzuru, Terada, Yukikatsu, Terashima, Yuichi, Tombesi, Francesco, Tomida, Hiroshi, Tsuboi, Yohko, Tsujimoto, Masahiro, Tsunemi, Hiroshi, Tsuru, Takeshi Go, Uchida, Hiroyuki, Uchiyama, Hideki, Uchiyama, Yasunobu, Ueda, Shutaro, Ueda, Yoshihiro, Uno, Shin'ichiro, Urry, C. Megan, Ursino, Eugenio, Watanabe, Shin, Werner, Norbert, Wilkins, Dan R., Williams, Brian J., Yamada, Shinya, Yamaguchi, Hiroya, Yamaoka, Kazutaka, Yamasaki, Noriko Y., Yamauchi, Makoto, Yamauchi, Shigeo, Yaqoob, Tahir, Yatsu, Yoichi, Yonetoku, Daisuke, Zhuravleva, Irina, Zoghbi, Abderahmen, Nakaniwa, Nozomu, Murakami, Hiroaki, and Guest, Benson
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present results from the Hitomi X-ray observation of a young composite-type supernova remnant (SNR) G21.5$-$0.9, whose emission is dominated by the pulsar wind nebula (PWN) contribution. The X-ray spectra in the 0.8-80 keV range obtained with the Soft X-ray Spectrometer (SXS), Soft X-ray Imager (SXI) and Hard X-ray Imager (HXI) show a significant break in the continuum as previously found with the NuSTAR observation. After taking into account all known emissions from the SNR other than the PWN itself, we find that the Hitomi spectra can be fitted with a broken power law with photon indices of $\Gamma_1=1.74\pm0.02$ and $\Gamma_2=2.14\pm0.01$ below and above the break at $7.1\pm0.3$ keV, which is significantly lower than the NuSTAR result ($\sim9.0$ keV). The spectral break cannot be reproduced by time-dependent particle injection one-zone spectral energy distribution models, which strongly indicates that a more complex emission model is needed, as suggested by recent theoretical models. We also search for narrow emission or absorption lines with the SXS, and perform a timing analysis of PSR J1833$-$1034 with the HXI and SGD. No significant pulsation is found from the pulsar. However, unexpectedly, narrow absorption line features are detected in the SXS data at 4.2345 keV and 9.296 keV with a significance of 3.65 $\sigma$. While the origin of these features is not understood, their mere detection opens up a new field of research and was only possible with the high resolution, sensitivity and ability to measure extended sources provided by an X-ray microcalorimeter., Comment: 16 pages, 8 figures, 4 tables. Accepted for publication in PASJ
- Published
- 2018
- Full Text
- View/download PDF
10. Temperature Structure in the Perseus Cluster Core Observed with Hitomi
- Author
-
Hitomi Collaboration, Aharonian, Felix, Akamatsu, Hiroki, Akimoto, Fumie, Allen, Steven W., Angelini, Lorella, Audard, Marc, Awaki, Hisamitsu, Axelsson, Magnus, Bamba, Aya, Bautz, Marshall W., Blandford, Roger, Brenneman, Laura W., Brown, Gregory V., Bulbul, Esra, Cackett, Edward M., Chernyakova, Maria, Chiao, Meng P., Coppi, Paolo S., Costantini, Elisa, de Plaa, Jelle, de Vries, Cor P., Herder, Jan-Willem den, Done, Chris, Dotani, Tadayasu, Ebisawa, Ken, Eckart, Megan E., Enoto, Teruaki, Ezoe, Yuichiro, Fabian, Andrew C., Ferrigno, Carlo, Foster, Adam R., Fujimoto, Ryuichi, Fukazawa, Yasushi, Furukawa, Maki, Furuzawa, Akihiro, Galeazzi, Massimiliano, Gallo, Luigi C., Gandhi, Poshak, Giustini, Margherita, Goldwurm, Andrea, Gu, Liyi, Guainazzi, Matteo, Haba, Yoshito, Hagino, Kouichi, Hamaguchi, Kenji, Harrus, Ilana M., Hatsukade, Isamu, Hayashi, Katsuhiro, Hayashi, Takayuki, Hayashida, Kiyoshi, Hiraga, Junko S., Hornschemeier, Ann, Hoshino, Akio, Hughes, John P., Ichinohe, Yuto, Iizuka, Ryo, Inoue, Hajime, Inoue, Yoshiyuki, Ishida, Manabu, Ishikawa, Kumi, Ishisaki, Yoshitaka, Iwai, Masachika, Kaastra, Jelle, Kallman, Tim, Kamae, Tsuneyoshi, Kataoka, Jun, Kato, Yuichi, Katsuda, Satoru, Kawai, Nobuyuki, Kelley, Richard L., Kilbourne, Caroline A., Kitaguchi, Takao, Kitamoto, Shunji, Kitayama, Tetsu, Kohmura, Takayoshi, Kokubun, Motohide, Koyama, Katsuji, Koyama, Shu, Kretschmar, Peter, Krimm, Hans A., Kubota, Aya, Kunieda, Hideyo, Laurent, Philippe, Lee, Shiu-Hang, Leutenegger, Maurice A., Limousin, Olivier, Loewenstein, Michael, Long, Knox S., Lumb, David, Madejski, Greg, Maeda, Yoshitomo, Maier, Daniel, Makishima, Kazuo, Markevitch, Maxim, Matsumoto, Hironori, Matsushita, Kyoko, McCammon, Dan, McNamara, Brian R., Mehdipour, Missagh, Miller, Eric D., Miller, Jon M., Mineshige, Shin, Mitsuda, Kazuhisa, Mitsuishi, Ikuyuki, Miyazawa, Takuya, Mizuno, Tsunefumi, Mori, Hideyuki, Mori, Koji, Mukai, Koji, Murakami, Hiroshi, Mushotzky, Richard F., Nakagawa, Takao, Nakajima, Hiroshi, Nakamori, Takeshi, Nakashima, Shinya, Nakazawa, Kazuhiro, Nobukawa, Kumiko K., Nobukawa, Masayoshi, Noda, Hirofumi, Odaka, Hirokazu, Ohashi, Takaya, Ohno, Masanori, Okajima, Takashi, Ota, Naomi, Ozaki, Masanobu, Paerels, Frits, Paltani, Stéphane, Petre, Robert, Pinto, Ciro, Porter, Frederick S., Pottschmidt, Katja, Reynolds, Christopher S., Safi-Harb, Samar, Saito, Shinya, Sakai, Kazuhiro, Sasaki, Toru, Sato, Goro, Sato, Kosuke, Sato, Rie, Sawada, Makoto, Schartel, Norbert, Serlemtsos, Peter J., Seta, Hiromi, Shidatsu, Megumi, Simionescu, Aurora, Smith, Randall K., Soong, Yang, Stawarz, Łukasz, Sugawara, Yasuharu, Sugita, Satoshi, Szymkowiak, Andrew, Tajima, Hiroyasu, Takahashi, Hiromitsu, Takahashi, Tadayuki, Takeda, Shiníchiro, Takei, Yoh, Tamagawa, Toru, Tamura, Takayuki, Tanaka, Takaaki, Tanaka, Yasuo, Tanaka, Yasuyuki T., Tashiro, Makoto S., Tawara, Yuzuru, Terada, Yukikatsu, Terashima, Yuichi, Tombesi, Francesco, Tomida, Hiroshi, Tsuboi, Yohko, Tsujimoto, Masahiro, Tsunemi, Hiroshi, Tsuru, Takeshi Go, Uchida, Hiroyuki, Uchiyama, Hideki, Uchiyama, Yasunobu, Ueda, Shutaro, Ueda, Yoshihiro, Uno, Shiníchiro, Urry, C. Megan, Ursino, Eugenio, Watanabe, Shin, Werner, Norbert, Wilkins, Dan R., Williams, Brian J., Yamada, Shinya, Yamaguchi, Hiroya, Yamaoka, Kazutaka, Yamasaki, Noriko Y., Yamauchi, Makoto, Yamauchi, Shigeo, Yaqoob, Tahir, Yatsu, Yoichi, Yonetoku, Daisuke, Zhuravleva, Irina, and Zoghbi, Abderahmen
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The present paper investigates the temperature structure of the X-ray emitting plasma in the core of the Perseus cluster using the 1.8--20.0 keV data obtained with the Soft X-ray Spectrometer (SXS) onboard the Hitomi Observatory. A series of four observations were carried out, with a total effective exposure time of 338 ks and covering a central region $\sim7'$ in diameter. The SXS was operated with an energy resolution of $\sim$5 eV (full width at half maximum) at 5.9 keV. Not only fine structures of K-shell lines in He-like ions but also transitions from higher principal quantum numbers are clearly resolved from Si through Fe. This enables us to perform temperature diagnostics using the line ratios of Si, S, Ar, Ca, and Fe, and to provide the first direct measurement of the excitation temperature and ionization temperature in the Perseus cluster. The observed spectrum is roughly reproduced by a single temperature thermal plasma model in collisional ionization equilibrium, but detailed line ratio diagnostics reveal slight deviations from this approximation. In particular, the data exhibit an apparent trend of increasing ionization temperature with increasing atomic mass, as well as small differences between the ionization and excitation temperatures for Fe, the only element for which both temperatures can be measured. The best-fit two-temperature models suggest a combination of 3 and 5 keV gas, which is consistent with the idea that the observed small deviations from a single temperature approximation are due to the effects of projection of the known radial temperature gradient in the cluster core along the line of sight. Comparison with the Chandra/ACIS and the XMM-Newton/RGS results on the other hand suggests that additional lower-temperature components are present in the ICM but not detectable by Hitomi SXS given its 1.8--20 keV energy band., Comment: 29 pages, 19 figures, 9 tables. Accepted for publication in PASJ
- Published
- 2017
- Full Text
- View/download PDF
11. Atomic data and spectral modeling constraints from high-resolution X-ray observations of the Perseus cluster with Hitomi
- Author
-
Hitomi Collaboration, Aharonian, Felix, Akamatsu, Hiroki, Akimoto, Fumie, Allen, Steven W., Angelini, Lorella, Audard, Marc, Awaki, Hisamitsu, Axelsson, Magnus, Bamba, Aya, Bautz, Marshall W., Blandford, Roger, Brenneman, Laura W., Brown, Gregory V., Bulbul, Esra, Cackett, Edward M., Chernyakova, Maria, Chiao, Meng P., Coppi, Paolo S., Costantini, Elisa, de Plaa, Jelle, de Vries, Cor P., Herder, Jan-Willem den, Done, Chris, Dotani, Tadayasu, Ebisawa, Ken, Eckart, Megan E., Enoto, Teruaki, Ezoe, Yuichiro, Fabian, Andrew C., Ferrigno, Carlo, Foster, Adam R., Fujimoto, Ryuichi, Fukazawa, Yasushi, Furuzawa, Akihiro, Galeazzi, Massimiliano, Gallo, Luigi C., Gandhi, Poshak, Giustini, Margherita, Goldwurm, Andrea, Gu, Liyi, Guainazzi, Matteo, Haba, Yoshito, Hagino, Kouichi, Hamaguchi, Kenji, Harrus, Ilana M., Hatsukade, Isamu, Hayashi, Katsuhiro, Hayashi, Takayuki, Hayashida, Kiyoshi, Hell, Natalie, Hiraga, Junko S., Hornschemeier, Ann, Hoshino, Akio, Hughes, John P., Ichinohe, Yuto, Iizuka, Ryo, Inoue, Hajime, Inoue, Yoshiyuki, Ishida, Manabu, Ishikawa, Kumi, Ishisaki, Yoshitaka, Iwai, Masachika, Kaastra, Jelle, Kallman, Tim, Kamae, Tsuneyoshi, Kataoka, Jun, Katsuda, Satoru, Kawai, Nobuyuki, Kelley, Richard L., Kilbourne, Caroline A., Kitaguchi, Takao, Kitamoto, Shunji, Kitayama, Tetsu, Kohmura, Takayoshi, Kokubun, Motohide, Koyama, Katsuji, Koyama, Shu, Kretschmar, Peter, Krimm, Hans A., Kubota, Aya, Kunieda, Hideyo, Laurent, Philippe, Lee, Shiu-Hang, Leutenegger, Maurice A., Limousin, Olivier, Loewenstein, Michael, Long, Knox S., Lumb, David, Madejski, Greg, Maeda, Yoshitomo, Maier, Daniel, Makishima, Kazuo, Markevitch, Maxim, Matsumoto, Hironori, Matsushita, Kyoko, McCammon, Dan, McNamara, Brian R., Mehdipour, Missagh, Miller, Eric D., Miller, Jon M., Mineshige, Shin, Mitsuda, Kazuhisa, Mitsuishi, Ikuyuki, Miyazawa, Takuya, Mizuno, Tsunefumi, Mori, Hideyuki, Mori, Koji, Mukai, Koji, Murakami, Hiroshi, Mushotzky, Richard F., Nakagawa, Takao, Nakajima, Hiroshi, Nakamori, Takeshi, Nakashima, Shinya, Nakazawa, Kazuhiro, Nobukawa, Kumiko K., Nobukawa, Masayoshi, Noda, Hirofumi, Odaka, Hirokazu, Ohashi, Takaya, Ohno, Masanori, Okajima, Takashi, Ota, Naomi, Ozaki, Masanobu, Paerels, Frits, Paltani, Stéphane, Petre, Robert, Pinto, Ciro, Porter, Frederick S., Pottschmidt, Katja, Reynolds, Christopher S., Safi-Harb, Samar, Saito, Shinya, Sakai, Kazuhiro, Sasaki, Toru, Sato, Goro, Sato, Kosuke, Sato, Rie, Sawada, Makoto, Schartel, Norbert, Serlemtsos, Peter J., Seta, Hiromi, Shidatsu, Megumi, Simionescu, Aurora, Smith, Randall K., Soong, Yang, Stawarz, Łukasz, Sugawara, Yasuharu, Sugita, Satoshi, Szymkowiak, Andrew, Tajima, Hiroyasu, Takahashi, Hiromitsu, Takahashi, Tadayuki, Takeda, Shin'ichiro, Takei, Yoh, Tamagawa, Toru, Tamura, Takayuki, Tanaka, Takaaki, Tanaka, Yasuo, Tanaka, Yasuyuki T., Tashiro, Makoto S., Tawara, Yuzuru, Terada, Yukikatsu, Terashima, Yuichi, Tombesi, Francesco, Tomida, Hiroshi, Tsuboi, Yohko, Tsujimoto, Masahiro, Tsunemi, Hiroshi, Tsuru, Takeshi Go, Uchida, Hiroyuki, Uchiyama, Hideki, Uchiyama, Yasunobu, Ueda, Shutaro, Ueda, Yoshihiro, Uno, Shin'ichiro, Urry, C. Megan, Ursino, Eugenio, Watanabe, Shin, Werner, Norbert, Wilkins, Dan R., Williams, Brian J., Yamada, Shinya, Yamaguchi, Hiroya, Yamaoka, Kazutaka, Yamasaki, Noriko Y., Yamauchi, Makoto, Yamauchi, Shigeo, Yaqoob, Tahir, Yatsu, Yoichi, Yonetoku, Daisuke, Zhuravleva, Irina, Zoghbi, Abderahmen, and Raassen, A. J. J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The Hitomi SXS spectrum of the Perseus cluster, with $\sim$5 eV resolution in the 2-9 keV band, offers an unprecedented benchmark of the atomic modeling and database for hot collisional plasmas. It reveals both successes and challenges of the current atomic codes. The latest versions of AtomDB/APEC (3.0.8), SPEX (3.03.00), and CHIANTI (8.0) all provide reasonable fits to the broad-band spectrum, and are in close agreement on best-fit temperature, emission measure, and abundances of a few elements such as Ni. For the Fe abundance, the APEC and SPEX measurements differ by 16%, which is 17 times higher than the statistical uncertainty. This is mostly attributed to the differences in adopted collisional excitation and dielectronic recombination rates of the strongest emission lines. We further investigate and compare the sensitivity of the derived physical parameters to the astrophysical source modeling and instrumental effects. The Hitomi results show that an accurate atomic code is as important as the astrophysical modeling and instrumental calibration aspects. Substantial updates of atomic databases and targeted laboratory measurements are needed to get the current codes ready for the data from the next Hitomi-level mission., Comment: 46 pages, 25 figures, 11 tables. Accepted for publication in PASJ
- Published
- 2017
- Full Text
- View/download PDF
12. Hitomi Observations of the LMC SNR N132D: Highly Redshifted X-ray Emission from Iron Ejecta
- Author
-
Hitomi Collaboration, Aharonian, Felix, Akamatsu, Hiroki, Akimoto, Fumie, Allen, Steven W., Angelini, Lorella, Audard, Marc, Awaki, Hisamitsu, Axelsson, Magnus, Bamba, Aya, Bautz, Marshall W., Blandford, Roger, Brenneman, Laura W., Brown, Gregory V., Bulbul, Esra, Cackett, Edward M., Chernyakova, Maria, Chiao, Meng P., Coppi, Paolo S., Costantini, Elisa, de Plaa, Jelle, de Vries, Cor P., Herder, Jan-Willem den, Done, Chris, Dotani, Tadayasu, Ebisawa, Ken, Eckart, Megan E., Enoto, Teruaki, Ezoe, Yuichiro, Fabian, Andrew C., Ferrigno, Carlo, Foster, Adam R., Fujimoto, Ryuichi, Fukazawa, Yasushi, Furuzawa, Akihiro, Galeazzi, Massimiliano, Gallo, Luigi C., Gandhi, Poshak, Giustini, Margherita, Goldwurm, Andrea, Gu, Liyi, Guainazzi, Matteo, Haba, Yoshito, Hagino, Kouichi, Hamaguchi, Kenji, Harrus, Ilana M., Hatsukade, Isamu, Hayashi, Katsuhiro, Hayashi, Takayuki, Hayashida, Kiyoshi, Hiraga, Junko S., Hornschemeier, Ann, Hoshino, Akio, Hughes, John P., Ichinohe, Yuto, Iizuka, Ryo, Inoue, Hajime, Inoue, Yoshiyuki, Ishida, Manabu, Ishikawa, Kumi, Ishisaki, Yoshitaka, Iwai, Masachika, Kaastra, Jelle, Kallman, Tim, Kamae, Tsuneyoshi, Kataoka, Jun, Katsuda, Satoru, Kawai, Nobuyuki, Kelley, Richard L., Kilbourne, Caroline A., Kitaguchi, Takao, Kitamoto, Shunji, Kitayama, Tetsu, Kohmura, Takayoshi, Kokubun, Motohide, Koyama, Katsuji, Koyama, Shu, Kretschmar, Peter, Krimm, Hans A., Kubota, Aya, Kunieda, Hideyo, Laurent, Philippe, Lee, Shiu-Hang, Leutenegger, Maurice A., Limousin, Olivier, Loewenstein, Michael, Long, Knox S., Lumb, David, Madejski, Greg, Maeda, Yoshitomo, Maier, Daniel, Makishima, Kazuo, Markevitch, Maxim, Matsumoto, Hironori, Matsushita, Kyoko, McCammon, Dan, McNamara, Brian R., Mehdipour, Missagh, Miller, Eric D., Miller, Jon M., Mineshige, Shin, Mitsuda, Kazuhisa, Mitsuishi, Ikuyuki, Miyazawa, Takuya, Mizuno, Tsunefumi, Mori, Hideyuki, Mori, Koji, Mukai, Koji, Murakami, Hiroshi, Mushotzky, Richard F., Nakagawa, Takao, Nakajima, Hiroshi, Nakamori, Takeshi, Nakashima, Shinya, Nakazawa, Kazuhiro, Nobukawa, Kumiko K., Nobukawa, Masayoshi, Noda, Hirofumi, Odaka, Hirokazu, Ohashi, Takaya, Ohno, Masanori, Okajima, Takashi, Ota, Naomi, Ozaki, Masanobu, Paerels, Frits, Paltani, Stéphane, Petre, Robert, Pinto, Ciro, Porter, Frederick S., Pottschmidt, Katja, Reynolds, Christopher S., Safi-Harb, Samar, Saito, Shinya, Sakai, Kazuhiro, Sasaki, Toru, Sato, Goro, Sato, Kosuke, Sato, Rie, Sato, Toshiki, Sawada, Makoto, Schartel, Norbert, Serlemtsos, Peter J., Seta, Hiromi, Shidatsu, Megumi, Simionescu, Aurora, Smith, Randall K., Soong, Yang, Stawarz, Łukasz, Sugawara, Yasuharu, Sugita, Satoshi, Szymkowiak, Andrew, Tajima, Hiroyasu, Takahashi, Hiromitsu, Takahashi, Tadayuki, Takeda, Shin'ichiro, Takei, Yoh, Tamagawa, Toru, Tamura, Takayuki, Tanaka, Takaaki, Tanaka, Yasuo, Tanaka, Yasuyuki T., Tashiro, Makoto S., Tawara, Yuzuru, Terada, Yukikatsu, Terashima, Yuichi, Tombesi, Francesco, Tomida, Hiroshi, Tsuboi, Yohko, Tsujimoto, Masahiro, Tsunemi, Hiroshi, Tsuru, Takeshi Go, Uchida, Hiroyuki, Uchiyama, Hideki, Uchiyama, Yasunobu, Ueda, Shutaro, Ueda, Yoshihiro, Uno, Shin'ichiro, Urry, C. Megan, Ursino, Eugenio, Watanabe, Shin, Werner, Norbert, Wilkins, Dan R., Williams, Brian J., Yamada, Shinya, Yamaguchi, Hiroya, Yamaoka, Kazutaka, Yamasaki, Noriko Y., Yamauchi, Makoto, Yamauchi, Shigeo, Yaqoob, Tahir, Yatsu, Yoichi, Yonetoku, Daisuke, Zhuravleva, Irina, and Zoghbi, Abderahmen
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present Hitomi observations of N132D, a young, X-ray bright, O-rich core-collapse supernova remnant in the Large Magellanic Cloud (LMC). Despite a very short observation of only 3.7 ks, the Soft X-ray Spectrometer (SXS) easily detects the line complexes of highly ionized S K and Fe K with 16-17 counts in each. The Fe feature is measured for the first time at high spectral resolution. Based on the plausible assumption that the Fe K emission is dominated by He-like ions, we find that the material responsible for this Fe emission is highly redshifted at ~800 km/s compared to the local LMC interstellar medium (ISM), with a 90% credible interval of 50-1500 km/s if a weakly informative prior is placed on possible line broadening. This indicates (1) that the Fe emission arises from the supernova ejecta, and (2) that these ejecta are highly asymmetric, since no blue-shifted component is found. The S K velocity is consistent with the local LMC ISM, and is likely from swept-up ISM material. These results are consistent with spatial mapping that shows the He-like Fe concentrated in the interior of the remnant and the S tracing the outer shell. The results also show that even with a very small number of counts, direct velocity measurements from Doppler-shifted lines detected in extended objects like supernova remnants are now possible. Thanks to the very low SXS background of ~1 event per spectral resolution element per 100 ks, such results are obtainable during short pointed or slew observations with similar instruments. This highlights the power of high-spectral-resolution imaging observations, and demonstrates the new window that has been opened with Hitomi and will be greatly widened with future missions such as the X-ray Astronomy Recovery Mission (XARM) and Athena., Comment: 18 pages, 15 figures, 1 table. Accepted for publication by PASJ
- Published
- 2017
- Full Text
- View/download PDF
13. Glimpse of the highly obscured HMXB IGR J16318-4848 with Hitomi
- Author
-
Hitomi Collaboration, Aharonian, Felix, Akamatsu, Hiroki, Akimoto, Fumie, Allen, Steven W., Angelini, Lorella, Audard, Marc, Awaki, Hisamitsu, Axelsson, Magnus, Bamba, Aya, Bautz, Marshall W., Blandford, Roger, Brenneman, Laura W., Brown, Gregory V., Bulbul, Esra, Cackett, Edward M., Chernyakova, Maria, Chiao, Meng P., Coppi, Paolo S., Costantini, Elisa, de Plaa, Jelle, de Vries, Cor P., Herder, Jan-Willem den, Done, Chris, Dotani, Tadayasu, Ebisawa, Ken, Eckart, Megan E., Enoto, Teruaki, Ezoe, Yuichiro, Fabian, Andrew C., Ferrigno, Carlo, Foster, Adam R., Fujimoto, Ryuichi, Fukazawa, Yasushi, Furuzawa, Akihiro, Galeazzi, Massimiliano, Gallo, Luigi C., Gandhi, Poshak, Giustini, Margherita, Goldwurm, Andrea, Gu, Liyi, Guainazzi, Matteo, Haba, Yoshito, Hagino, Kouichi, Hamaguchi, Kenji, Harrus, Ilana M., Hatsukade, Isamu, Hayashi, Katsuhiro, Hayashi, Takayuki, Hayashida, Kiyoshi, Hiraga, Junko S., Hornschemeier, Ann, Hoshino, Akio, Hughes, John P., Ichinohe, Yuto, Iizuka, Ryo, Inoue, Hajime, Inoue, Yoshiyuki, Ishida, Manabu, Ishikawa, Kumi, Ishisaki, Yoshitaka, Iwai, Masachika, Kaastra, Jelle, Kallman, Tim, Kamae, Tsuneyoshi, Kataoka, Jun, Katsuda, Satoru, Kawai, Nobuyuki, Kelley, Richard L., Kilbourne, Caroline A., Kitaguchi, Takao, Kitamoto, Shunji, Kitayama, Tetsu, Kohmura, Takayoshi, Kokubun, Motohide, Koyama, Katsuji, Koyama, Shu, Kretschmar, Peter, Krimm, Hans A., Kubota, Aya, Kunieda, Hideyo, Laurent, Philippe, Lee, Shiu-Hang, Leutenegger, Maurice A., Limousin, Olivier O., Loewenstein, Michael, Long, Knox S., Lumb, David, Madejski, Greg, Maeda, Yoshitomo, Maier, Daniel, Makishima, Kazuo, Markevitch, Maxim, Matsumoto, Hironori, Matsushita, Kyoko, McCammon, Dan, McNamara, Brian R., Mehdipour, Missagh, Miller, Eric D., Miller, Jon M., Mineshige, Shin, Mitsuda, Kazuhisa, Mitsuishi, Ikuyuki, Miyazawa, Takuya, Mizuno, Tsunefumi, Mori, Hideyuki, Mori, Koji, Mukai, Koji, Murakami, Hiroshi, Mushotzky, Richard F., Nakagawa, Takao, Nakajima, Hiroshi, Nakamori, Takeshi, Nakashima, Shinya, Nakazawa, Kazuhiro, Nobukawa, Kumiko K., Nobukawa, Masayoshi, Noda, Hirofumi, Odaka, Hirokazu, Ohashi, Takaya, Ohno, Masanori, Okajima, Takashi, Ota, Naomi, Ozaki, Masanobu, Paerels, Frits, Paltani, Stéphane, Petre, Robert, Pinto, Ciro, Porter, Frederick S., Pottschmidt, Katja, Reynolds, Christopher S., Safi-Harb, Samar, Saito, Shinya, Sakai, Kazuhiro, Sasaki, Toru, Sato, Goro, Sato, Kosuke, Sato, Rie, Sawada, Makoto, Schartel, Norbert, Serlemitsos, Peter J., Seta, Hiromi, Shidatsu, Megumi, Simionescu, Aurora, Smith, Randall K., Soong, Yang, Stawarz, Łukasz, Sugawara, Yasuharu, Sugita, Satoshi, Szymkowiak, Andrew, Tajima, Hiroyasu, Takahashi, Hiromitsu, Takahashi, Tadayuki, Takeda, Shin'ichiro, Takei, Yoh, Tamagawa, Toru, Tamura, Takayuki, Tanaka, Takaaki, Tanaka, Yasuo, Tanaka, Yasuyuki T., Tashiro, Makoto S., Tawara, Yuzuru, Terada, Yukikatsu, Terashima, Yuichi, Tombesi, Francesco, Tomida, Hiroshi, Tsuboi, Yohko, Tsujimoto, Masahiro, Tsunemi, Hiroshi, Tsuru, Takeshi Go, Uchida, Hiroyuki, Uchiyama, Hideki, Uchiyama, Yasunobu, Ueda, Shutaro, Ueda, Yoshihiro, Uno, Shin'ichiro, Urry, C. Megan, Ursino, Eugenio, Watanabe, Shin, Werner, Norbert, Wilkins, Dan R., Williams, Brian J., Yamada, Shinya, Yamaguchi, Hiroya, Yamaoka, Kazutaka, Yamasaki, Noriko Y., Yamauchi, Makoto, Yamauchi, Shigeo, Yaqoob, Tahir, Yatsu, Yoichi, Yonetoku, Daisuke, Zhuravleva, Irina, Zoghbi, Abderahmen, and Nakaniwa, Nozomi
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We report a Hitomi observation of IGR J16318-4848, a high-mass X-ray binary system with an extremely strong absorption of N_H~10^{24} cm^{-2}. Previous X-ray studies revealed that its spectrum is dominated by strong fluorescence lines of Fe as well as continuum emission. For physical and geometrical insight into the nature of the reprocessing material, we utilize the high spectroscopic resolving power of the X-ray microcalorimeter (the soft X-ray spectrometer; SXS) and the wide-band sensitivity by the soft and hard X-ray imager (SXI and HXI) aboard Hitomi. Even though photon counts are limited due to unintended off-axis pointing, the SXS spectrum resolves Fe K{\alpha_1} and K{\alpha_2} lines and puts strong constraints on the line centroid and width. The line width corresponds to the velocity of 160^{+300}_{-70} km s^{-1}. This represents the most accurate, and smallest, width measurement of this line made so far from any X-ray binary, much less than the Doppler broadening and shift expected from speeds which are characteristic of similar systems. Combined with the K-shell edge energy measured by the SXI and HXI spectra, the ionization state of Fe is estimated to be in the range of Fe I--IV. Considering the estimated ionization parameter and the distance between the X-ray source and the absorber, the density and thickness of the materials are estimated. The extraordinarily strong absorption and the absence of a Compton shoulder component is confirmed. These characteristics suggest reprocessing materials which are distributed in a narrow solid angle or scattering primarily with warm free electrons or neutral hydrogen., Comment: 17 pages, 9 figures, 2 tables, accepted for publication in PASJ
- Published
- 2017
- Full Text
- View/download PDF
14. Hitomi Observation of Radio Galaxy NGC 1275: The First X-ray Microcalorimeter Spectroscopy of Fe-K{\alpha} Line Emission from an Active Galactic Nucleus
- Author
-
Hitomi Collaboration, Aharonian, Felix, Akamatsu, Hiroki, Akimoto, Fumie, Allen, Steven W., Angelini, Lorella, Audard, Marc, Awaki, Hisamitsu, Axelsson, Magnus, Bamba, Aya, Bautz, Marshall W., Blandford, Roger, Brenneman, Laura W., Brown, Gregory V., Bulbul, Esra, Cackett, Edward M., Chernyakova, Maria, Chiao, Meng P., Coppi, Paolo S., Costantini, Elisa, de Plaa, Jelle, de Vries, Cor P., Herder, Jan-Willem den, Done, Chris, Dotani, Tadayasu, Ebisawa, Ken, Eckart, Megan E., Enoto, Teruaki, Ezoe, Yuichiro, Fabian, Andrew C., Ferrigno, Carlo, Foster, Adam R., Fujimoto, Ryuichi, Fukazawa, Yasushi, Furuzawa, Akihiro, Galeazzi, Massimiliano, Gallo, Luigi C., Gandhi, Poshak, Giustini, Margherita, Goldwurm, Andrea, Gu, Liyi, Guainazzi, Matteo, Haba, Yoshito, Hagino, Kouichi, Hamaguchi, Kenji, Harrus, Ilana M., Hatsukade, Isamu, Hayashi, Katsuhiro, Hayashi, Takayuki, Hayashida, Kiyoshi, Hiraga, Junko S., Hornschemeier, Ann, Hoshino, Akio, Hughes, John P., Ichinohe, Yuto, Iizuka, Ryo, Inoue, Hajime, Inoue, Yoshiyuki, Ishida, Manabu, Ishikawa, Kumi, Ishisaki, Yoshitaka, Iwai, Masachika, Kaastra, Jelle, Kallman, Tim, Kamae, Tsuneyoshi, Kataoka, Jun, Katsuda, Satoru, Kawai, Nobuyuki, Kelley, Richard L., Kilbourne, Caroline A., Kitaguchi, Takao, Kitamoto, Shunji, Kitayama, Tetsu, Kohmura, Takayoshi, Kokubun, Motohide, Koyama, Katsuji, Koyama, Shu, Kretschmar, Peter, Krimm, Hans A., Kubota, Aya, Kunieda, Hideyo, Laurent, Philippe, Lee, Shiu-Hang, Leutenegger, Maurice A., Limousin, Olivier O., Loewenstein, Michael, Long, Knox S., Lumb, David, Madejski, Greg, Maeda, Yoshitomo, Maier, Daniel, Makishima, Kazuo, Markevitch, Maxim, Matsumoto, Hironori, Matsushita, Kyoko, McCammon, Dan, McNamara, Brian R., Mehdipour, Missagh, Miller, Eric D., Miller, Jon M., Mineshige, Shin, Mitsuda, Kazuhisa, Mitsuishi, Ikuyuki, Miyazawa, Takuya, Mizuno, Tsunefumi, Mori, Hideyuki, Mori, Koji, Mukai, Koji, Murakami, Hiroshi, Mushotzky, Richard F., Nakagawa, Takao, Nakajima, Hiroshi, Nakamori, Takeshi, Nakashima, Shinya, Nakazawa, Kazuhiro, Nobukawa, Kumiko K., Nobukawa, Masayoshi, Noda, Hirofumi, Odaka, Hirokazu, Ohashi, Takaya, Ohno, Masanori, Okajima, Takashi, Ota, Naomi, Ozaki, Masanobu, Paerels, Frits, Paltani, Stéphane, Petre, Robert, Pinto, Ciro, Porter, Frederick S., Pottschmidt, Katja, Reynolds, Christopher S., Safi-Harb, Samar, Saito, Shinya, Sakai, Kazuhiro, Sasaki, Toru, Sato, Goro, Sato, Kosuke, Sato, Rie, Sawada, Makoto, Schartel, Norbert, Serlemitsos, Peter J., Seta, Hiromi, Shidatsu, Megumi, Simionescu, Aurora, Smith, Randall K., Soong, Yang, Stawarz, Łukasz, Sugawara, Yasuharu, Sugita, Satoshi, Szymkowiak, Andrew, Tajima, Hiroyasu, Takahashi, Hiromitsu, Takahashi, Tadayuki, Takeda, Shin'ichiro, Takei, Yoh, Tamagawa, Toru, Tamura, Takayuki, Tanaka, Takaaki, Tanaka, Yasuo, Tanaka, Yasuyuki T., Tashiro, Makoto S., Tawara, Yuzuru, Terada, Yukikatsu, Terashima, Yuichi, Tombesi, Francesco, Tomida, Hiroshi, Tsuboi, Yohko, Tsujimoto, Masahiro, Tsunemi, Hiroshi, Tsuru, Takeshi Go, Uchida, Hiroyuki, Uchiyama, Hideki, Uchiyama, Yasunobu, Ueda, Shutaro, Ueda, Yoshihiro, Uno, Shin'ichiro, Urry, C. Megan, Ursino, Eugenio, Watanabe, Shin, Werner, Norbert, Wilkins, Dan R., Williams, Brian J., Yamada, Shinya, Yamaguchi, Hiroya, Yamaoka, Kazutaka, Yamasaki, Noriko Y., Yamauchi, Makoto, Yamauchi, Shigeo, Yaqoob, Tahir, Yatsu, Yoichi, Yonetoku, Daisuke, Zhuravleva, Irina, Zoghbi, Abderahmen, and Kawamuro, Taiki
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The origin of the narrow Fe-K{\alpha} fluorescence line at 6.4 keV from active galactic nuclei has long been under debate; some of the possible sites are the outer accretion disk, the broad line region, a molecular torus, or interstellar/intracluster media. In February-March 2016, we performed the first X-ray microcalorimeter spectroscopy with the Soft X-ray Spectrometer (SXS) onboard the Hitomi satellite of the Fanaroff-Riley type I radio galaxy NGC 1275 at the center of the Perseus cluster of galaxies. With the high energy resolution of ~5 eV at 6 keV achieved by Hitomi/SXS, we detected the Fe-K{\alpha} line with ~5.4 {\sigma} significance. The velocity width is constrained to be 500-1600 km s$^{-1}$ (FWHM for Gaussian models) at 90% confidence. The SXS also constrains the continuum level from the NGC 1275 nucleus up to ~20 keV, giving an equivalent width ~20 eV of the 6.4 keV line. Because the velocity width is narrower than that of broad H{\alpha} line of ~2750 km s$^{-1}$, we can exclude a large contribution to the line flux from the accretion disk and the broad line region. Furthermore, we performed pixel map analyses on the Hitomi/SXS data and image analyses on the Chandra archival data, and revealed that the Fe-K{\alpha} line comes from a region within ~1.6 kpc from the NGC 1275 core, where an active galactic nucleus emission dominates, rather than that from intracluster media. Therefore, we suggest that the source of the Fe-K{\alpha} line from NGC 1275 is likely a low-covering fraction molecular torus or a rotating molecular disk which probably extends from a pc to hundreds pc scale in the active galactic nucleus system., Comment: 20 pages, 8 figures, 6 tables, accepted for publication in PASJ
- Published
- 2017
- Full Text
- View/download PDF
15. Atmospheric gas dynamics in the Perseus cluster observed with Hitomi
- Author
-
Hitomi Collaboration, Aharonian, Felix, Akamatsu, Hiroki, Akimoto, Fumie, Allen, Steven W., Angelini, Lorella, Audard, Marc, Awaki, Hisamitsu, Axelsson, Magnus, Bamba, Aya, Bautz, Marshall W., Blandford, Roger, Brenneman, Laura W., Brown, Gregory V., Bulbul, Esra, Cackett, Edward M., Canning, Rebecca E. A., Chernyakova, Maria, Chiao, Meng P., Coppi, Paolo S., Costantini, Elisa, de Plaa, Jelle, de Vries, Cor P., Herder, Jan-Willem den, Done, Chris, Dotani, Tadayasu, Ebisawa, Ken, Eckart, Megan E., Enoto, Teruaki, Ezoe, Yuichiro, Fabian, Andrew C., Ferrigno, Carlo, Foster, Adam R., Fujimoto, Ryuichi, Fukazawa, Yasushi, Furuzawa, Akihiro, Galeazzi, Massimiliano, Gallo, Luigi C., Gandhi, Poshak, Giustini, Margherita, Goldwurm, Andrea, Gu, Liyi, Guainazzi, Matteo, Haba, Yoshito, Hagino, Kouichi, Hamaguchi, Kenji, Harrus, Ilana M., Hatsukade, Isamu, Hayashi, Katsuhiro, Hayashi, Takayuki, Hayashi, Tasuku, Hayashida, Kiyoshi, Hiraga, Junko S., Hornschemeier, Ann, Hoshino, Akio, Hughes, John P., Ichinohe, Yuto, Iizuka, Ryo, Inoue, Hajime, Inoue, Shota, Inoue, Yoshiyuki, Ishida, Manabu, Ishikawa, Kumi, Ishisaki, Yoshitaka, Iwai, Masachika, Kaastra, Jelle, Kallman, Tim, Kamae, Tsuneyoshi, Kataoka, Jun, Katsuda, Satoru, Kawai, Nobuyuki, Kelley, Richard L., Kilbourne, Caroline A., Kitaguchi, Takao, Kitamoto, Shunji, Kitayama, Tetsu, Kohmura, Takayoshi, Kokubun, Motohide, Koyama, Katsuji, Koyama, Shu, Kretschmar, Peter, Krimm, Hans A., Kubota, Aya, Kunieda, Hideyo, Laurent, Philippe, Lee, Shiu-Hang, Leutenegger, Maurice A., Limousin, Olivier, Loewenstein, Michael, Long, Knox S., Lumb, David, Madejski, Greg, Maeda, Yoshitomo, Maier, Daniel, Makishima, Kazuo, Markevitch, Maxim, Matsumoto, Hironori, Matsushita, Kyoko, McCammon, Dan, McNamara, Brian R., Mehdipour, Missagh, Miller, Eric D., Miller, Jon M., Mineshige, Shin, Mitsuda, Kazuhisa, Mitsuishi, Ikuyuki, Miyazawa, Takuya, Mizuno, Tsunefumi, Mori, Hideyuki, Mori, Koji, Mukai, Koji, Murakami, Hiroshi, Mushotzky, Richard F., Nakagawa, Takao, Nakajima, Hiroshi, Nakamori, Takeshi, Nakashima, Shinya, Nakazawa, Kazuhiro, Nobukawa, Kumiko K., Nobukawa, Masayoshi, Noda, Hirofumi, Odaka, Hirokazu, Ohashi, Takaya, Ohno, Masanori, Okajima, Takashi, Ota, Naomi, Ozaki, Masanobu, Paerels, Frits, Paltani, Stéphane, Petre, Robert, Pinto, Ciro, Porter, Frederick S., Pottschmidt, Katja, Reynolds, Christopher S., Safi-Harb, Samar, Saito, Shinya, Sakai, Kazuhiro, Sasaki, Toru, Sato, Goro, Sato, Kosuke, Sato, Rie, Sawada, Makoto, Schartel, Norbert, Serlemtsos, Peter J., Seta, Hiromi, Shidatsu, Megumi, Simionescu, Aurora, Smith, Randall K., Soong, Yang, Stawarz, Łukasz, Sugawara, Yasuharu, Sugita, Satoshi, Szymkowiak, Andrew, Tajima, Hiroyasu, Takahashi, Hiromitsu, Takahashi, Tadayuki, Takeda, Shin'ichiro, Takei, Yoh, Tamagawa, Toru, Tamura, Takayuki, Tanaka, Keigo, Tanaka, Takaaki, Tanaka, Yasuo, Tanaka, Yasuyuki T., Tashiro, Makoto S., Tawara, Yuzuru, Terada, Yukikatsu, Terashima, Yuichi, Tombesi, Francesco, Tomida, Hiroshi, Tsuboi, Yohko, Tsujimoto, Masahiro, Tsunemi, Hiroshi, Tsuru, Takeshi Go, Uchida, Hiroyuki, Uchiyama, Hideki, Uchiyama, Yasunobu, Ueda, Shutaro, Ueda, Yoshihiro, Uno, Shin'ichiro, Urry, C. Megan, Ursino, Eugenio, Wang, Qian H. S., Watanabe, Shin, Werner, Norbert, Wilkins, Dan R., Williams, Brian J., Yamada, Shinya, Yamaguchi, Hiroya, Yamaoka, Kazutaka, Yamasaki, Noriko Y., Yamauchi, Makoto, Yamauchi, Shigeo, Yaqoob, Tahir, Yatsu, Yoichi, Yonetoku, Daisuke, Zhuravleva, Irina, and Zoghbi, Abderahmen
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
Extending the earlier measurements reported in Hitomi collaboration (2016, Nature, 535, 117), we examine the atmospheric gas motions within the central 100~kpc of the Perseus cluster using observations obtained with the Hitomi satellite. After correcting for the point spread function of the telescope and using optically thin emission lines, we find that the line-of-sight velocity dispersion of the hot gas is remarkably low and mostly uniform. The velocity dispersion reaches maxima of approximately 200~km~s$^{-1}$ toward the central active galactic nucleus (AGN) and toward the AGN inflated north-western `ghost' bubble. Elsewhere within the observed region, the velocity dispersion appears constant around 100~km~s$^{-1}$. We also detect a velocity gradient with a 100~km~s$^{-1}$ amplitude across the cluster core, consistent with large-scale sloshing of the core gas. If the observed gas motions are isotropic, the kinetic pressure support is less than 10\% of the thermal pressure support in the cluster core. The well-resolved optically thin emission lines have Gaussian shapes, indicating that the turbulent driving scale is likely below 100~kpc, which is consistent with the size of the AGN jet inflated bubbles. We also report the first measurement of the ion temperature in the intracluster medium, which we find to be consistent with the electron temperature. In addition, we present a new measurement of the redshift to the brightest cluster galaxy NGC~1275., Comment: 52 pages, 16 figures, 8 tables, accepted for publication in PASJ
- Published
- 2017
- Full Text
- View/download PDF
16. Measurements of resonant scattering in the Perseus cluster core with Hitomi SXS
- Author
-
Hitomi Collaboration, Aharonian, Felix, Akamatsu, Hiroki, Akimoto, Fumie, Allen, Steven W., Angelini, Lorella, Audard, Marc, Awaki, Hisamitsu, Axelsson, Magnus, Bamba, Aya, Bautz, Marshall W., Blandford, Roger, Brenneman, Laura W., Brown, Greg V., Bulbul, Esra, Cackett, Edward M., Chernyakova, Maria, Chiao, Meng P., Coppi, Paolo S., Costantini, Elisa, de Plaa, Jelle, de Vries, Cor P., Herder, Jan-Willem den, Done, Chris, Dotani, Tadayasu, Ebisawa, Ken, Eckart, Megan E., Enoto, Teruaki, Ezoe, Yuichiro, Fabian, Andrew C., Ferrigno, Carlo, Foster, Adam R., Fujimoto, Ryuichi, Fukazawa, Yasushi, Furuzawa, Akihiro, Galeazzi, Massimiliano, Gallo, Luigi C., Gandhi, Poshak, Giustini, Margherita, Goldwurm, Andrea, Gu, Liyi, Guainazzi, Matteo, Haba, Yoshito, Hagino, Kouichi, Hamaguchi, Kenji, Harrus, Ilana M., Hatsukade, Isamu, Hayashi, Katsuhiro, Hayashi, Takayuki, Hayashida, Kiyoshi, Hiraga, Junko S., Hornschemeier, Ann, Hoshino, Akio, Hughes, John P., Ichinohe, Yuto, Iizuka, Ryo, Inoue, Hajime, Inoue, Yoshiyuki, Ishida, Manabu, Ishikawa, Kumi, Ishisaki, Yoshitaka, Kaastra, Jelle, Kallman, Tim, Kamae, Tsuneyoshi, Kataoka, Jun, Katsuda, Satoru, Kawai, Nobuyuki, Kelley, Richard L., Kilbourne, Caroline A., Kitaguchi, Takao, Kitamoto, Shunji, Kitayama, Tetsu, Kohmura, Takayoshi, Kokubun, Motohide, Koyama, Katsuji, Koyama, Shu, Kretschmar, Peter, Krimm, Hans A., Kubota, Aya, Kunieda, Hideyo, Laurent, Philippe, Lee, Shiu-Hang, Leutenegger, Maurice A., Limousin, Olivier O., Loewenstein, Michael, Long, Knox S., Lumb, David, Madejski, Greg, Maeda, Yoshitomo, Maier, Daniel, Makishima, Kazuo, Markevitch, Maxim, Matsumoto, Hironori, Matsushita, Kyoko, McCammon, Dan, McNamara, Brian R., Mehdipour, Missagh, Miller, Eric D., Miller, Jon M., Mineshige, Shin, Mitsuda, Kazuhisa, Mitsuishi, Ikuyuki, Miyazawa, Takuya, Mizuno, Tsunefumi, Mori, Hideyuki, Mori, Koji, Mukai, Koji, Murakami, Hiroshi, Mushotzky, Richard F., Nakagawa, Takao, Nakajima, Hiroshi, Nakamori, Takeshi, Nakashima, Shinya, Nakazawa, Kazuhiro, Nobukawa, Kumiko K., Nobukawa, Masayoshi, Noda, Hirofumi, Odaka, Hirokazu, Ohashi, Takaya, Ohno, Masanori, Okajima, Takashi, Ota, Naomi, Ozaki, Masanobu, Paerels, Frits, Paltani, Stephane, Petre, Robert, Pinto, Ciro, Porter, Frederick S., Pottschmidt, Katja, Reynolds, Christopher S., Safi-Harb, Samar, Saito, Shinya, Sakai, Kazuhiro, Sasaki, Toru, Sato, Goro, Sato, Kosuke, Sato, Rie, Sato, Toshiki, Sawada, Makoto, Schartel, Norbert, Serlemtsos, Peter J., Seta, Hiromi, Shidatsu, Megumi, Simionescu, Aurora, Smith, Randall K., Soong, Yang, Stawarz, Lukasz, Sugawara, Yasuharu, Sugita, Satoshi, Szymkowiak, Andrew, Tajima, Hiroyasu, Takahashi, Hiromitsu, Takahashi, Tadayuki, Takeda, Shinichiro, Takei, Yoh, Tamagawa, Toru, Tamura, Takayuki, Tanaka, Takaaki, Tanaka, Yasuo, Tanaka, Yasuyuki T., Tashiro, Makoto S., Tawara, Yuzuru, Terada, Yukikatsu, Terashima, Yuichi, Tombesi, Francesco, Tomida, Hiroshi, Tsuboi, Yohko, Tsujimoto, Masahiro, Tsunemi, Hiroshi, Tsuru, Takeshi Go, Uchida, Hiroyuki, Uchiyama, Hideki, Uchiyama, Yasunobu, Ueda, Shutaro, Ueda, Yoshihiro, Uno, Shinichiro, Urry, C. Megan, Ursino, Eugenio, Watanabe, Shin, Werner, Norbert, Wilkins, Dan R., Williams, Brian J., Yamada, Shinya, Yamaguchi, Hiroya, Yamaoka, Kazutaka, Yamasaki, Noriko Y., Yamauchi, Makoto, Yamauchi, Shigeo, Yaqoob, Tahir, Yatsu, Yoichi, Yonetoku, Daisuke, Zhuravleva, Irina, Zoghbi, Abderahmen, Furukawa, Maki, and Ogorzalek, Anna
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
Thanks to its high spectral resolution (~5 eV at 6 keV), the Soft X-ray Spectrometer (SXS) on board Hitomi enables us to measure the detailed structure of spatially resolved emission lines from highly ionized ions in galaxy clusters for the first time. In this series of papers, using the SXS we have measured the velocities of gas motions, metallicities and the multi-temperature structure of the gas in the core of the Perseus cluster. Here, we show that when inferring physical properties from line emissivities in systems like Perseus, the resonant scattering (RS) effect should be taken into account. In the Hitomi waveband, RS mostly affects the FeXXV He$\alpha$ line ($w$) - the strongest line in the spectrum. The flux measured by Hitomi in this line is suppressed by a factor ~1.3 in the inner ~30 kpc, compared to predictions for an optically thin plasma; the suppression decreases with the distance from the center. The $w$ line also appears slightly broader than other lines from the same ion. The observed distortions of the $w$ line flux, shape and distance dependence are all consistent with the expected effect of the resonant scattering in the Perseus core. By measuring the ratio of fluxes in optically thick ($w$) and thin (FeXXV forbidden, He$\beta$, Ly$\alpha$) lines, and comparing these ratios with predictions from Monte Carlo radiative transfer simulations, the velocities of gas motions have been obtained. The results are consistent with the direct measurements of gas velocities from line broadening described elsewhere in this series, although the systematic and statistical uncertainties remain significant. Further improvements in the predictions of line emissivities in plasma models, and deeper observations with future X-ray missions will enable RS measurements to provide powerful constraints on the amplitude and anisotropy of clusters gas motions., Comment: 30 pages, 17 figure, 6 tables, accepted for publication in PASJ
- Published
- 2017
- Full Text
- View/download PDF
17. Hitomi X-ray studies of Giant Radio Pulses from the Crab pulsar
- Author
-
Hitomi Collaboration, Aharonian, Felix, Akamatsu, Hiroki, Akimoto, Fumie, Allen, Steven W., Angelini, Lorella, Audard, Marc, Awaki, Hisamitsu, Axelsson, Magnus, Bamba, Aya, Bautz, Marshall W., Blandford, Roger, Brenneman, Laura W., Brown, Gregory V., Bulbul, Esra, Cackett, Edward M., Chernyakova, Maria, Chiao, Meng P., Coppi, Paolo S., Costantini, Elisa, de Plaa, Jelle, de Vries, Cor P., Herder, Jan-Willem den, Done, Chris, Dotani, Tadayasu, Ebisawa, Ken, Eckart, Megan E., Enoto, Teruaki, Ezoe, Yuichiro, Fabian, Andrew C., Ferrigno, Carlo, Foster, Adam R., Fujimoto, Ryuichi, Fukazawa, Yasushi, Furuzawa, Akihiro, Galeazzi, Massimiliano, Gallo, Luigi C., Gandhi, Poshak, Giustini, Margherita, Goldwurm, Andrea, Gu, Liyi, Guainazzi, Matteo, Haba, Yoshito, Hagino, Kouichi, Hamaguchi, Kenji, Harrus, Ilana M., Hatsukade, Isamu, Hayashi, Katsuhiro, Hayashi, Takayuki, Hayashida, Kiyoshi, Hiraga, Junko S., Hornschemeier, Ann, Hoshino, Akio, Hughes, John P., Ichinohe, Yuto, Iizuka, Ryo, Inoue, Hajime, Inoue, Yoshiyuki, Ishida, Manabu, Ishikawa, Kumi, Ishisaki, Yoshitaka, Iwai, Masachika, Kaastra, Jelle, Kallman, Tim, Kamae, Tsuneyoshi, Kataoka, Jun, Katsuda, Satoru, Kawai, Nobuyuki, Kelley, Richard L., Kilbourne, Caroline A., Kitaguchi, Takao, Kitamoto, Shunji, Kitayama, Tetsu, Kohmura, Takayoshi, Kokubun, Motohide, Koyama, Katsuji, Koyama, Shu, Kretschmar, Peter, Krimm, Hans A., Kubota, Aya, Kunieda, Hideyo, Laurent, Philippe, Lee, Shiu-Hang, Leutenegger, Maurice A., Limousin, Olivier O., Loewenstein, Michael, Long, Knox S., Lumb, David, Madejski, Greg, Maeda, Yoshitomo, Maier, Daniel, Makishima, Kazuo, Markevitch, Maxim, Matsumoto, Hironori, Matsushita, Kyoko, McCammon, Dan, McNamara, Brian R., Mehdipour, Missagh, Miller, Eric D., Miller, Jon M., Mineshige, Shin, Mitsuda, Kazuhisa, Mitsuishi, Ikuyuki, Miyazawa, Takuya, Mizuno, Tsunefumi, Mori, Hideyuki, Mori, Koji, Mukai, Koji, Murakami, Hiroshi, Mushotzky, Richard F., Nakagawa, Takao, Nakajima, Hiroshi, Nakamori, Takeshi, Nakashima, Shinya, Nakazawa, Kazuhiro, Nobukawa, Kumiko K., Nobukawa, Masayoshi, Noda, Hirofumi, Odaka, Hirokazu, Ohashi, Takaya, Ohno, Masanori, Okajima, Takashi, Oshimizu, Kenya, Ota, Naomi, Ozaki, Masanobu, Paerels, Frits, Paltani, Stéphane, Petre, Robert, Pinto, Ciro, Porter, Frederick S., Pottschmidt, Katja, Reynolds, Christopher S., Safi-Harb, Samar, Saito, Shinya, Sakai, Kazuhiro, Sasaki, Toru, Sato, Goro, Sato, Kosuke, Sato, Rie, Sawada, Makoto, Schartel, Norbert, Serlemtsos, Peter J., Seta, Hiromi, Shidatsu, Megumi, Simionescu, Aurora, Smith, Randall K., Soong, Yang, Stawarz, Ł ukasz, Sugawara, Yasuharu, Sugita, Satoshi, Szymkowiak, Andrew, Tajima, Hiroyasu, Takahashi, Hiromitsu, Takahashi, Tadayuki, Takeda, Shiníchiro, Takei, Yoh, Tamagawa, Toru, Tamura, Takayuki, Tanaka, Takaaki, Tanaka, Yasuo, Tanaka, Yasuyuki T., Tashiro, Makoto S., Tawara, Yuzuru, Terada, Yukikatsu, Terashima, Yuichi, Tombesi, Francesco, Tomida, Hiroshi, Tsuboi, Yohko, Tsujimoto, Masahiro, Tsunemi, Hiroshi, Tsuru, Takeshi Go, Uchida, Hiroyuki, Uchiyama, Hideki, Uchiyama, Yasunobu, Ueda, Shutaro, Ueda, Yoshihiro, Uno, Shiníchiro, Urry, C. Megan, Ursino, Eugenio, Watanabe, Shin, Werner, Norbert, Wilkins, Dan R., Williams, Brian J., Yamada, Shinya, Yamaguchi, Hiroya, Yamaoka, Kazutaka, Yamasaki, Noriko Y., Yamauchi, Makoto, Yamauchi, Shigeo, Yaqoob, Tahir, Yatsu, Yoichi, Yonetoku, Daisuke, Zhuravleva, Irina, Zoghbi, Abderahmen, Terasawa, Toshio, Sekido, Mamoru, Takefuji, Kazuhiro, Kawai, Eiji, Misawa, Hiroaki, Tsuchiya, Fuminori, Yamazaki, Ryo, Kobayashi, Eiji, Kisaka, Shota, and Aoki, Takahiro
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
To search for giant X-ray pulses correlated with the giant radio pulses (GRPs) from the Crab pulsar, we performed a simultaneous observation of the Crab pulsar with the X-ray satellite Hitomi in the 2 -- 300 keV band and the Kashima NICT radio observatory in the 1.4 -- 1.7 GHz band with a net exposure of about 2 ks on 25 March 2016, just before the loss of the Hitomi mission.The timing performance of the Hitomi instruments was confirmed to meet the timing requirement and about 1,000 and 100 GRPs were simultaneously observed at the main and inter-pulse phases, respectively, and we found no apparent correlation between the giant radio pulses and the X-ray emission in either the main or inter-pulse phases.All variations are within the 2 sigma fluctuations of the X-ray fluxes at the pulse peaks, and the 3 sigma upper limits of variations of main- or inter- pulse GRPs are 22\% or 80\% of the peak flux in a 0.20 phase width, respectively, in the 2 -- 300 keV band.The values become 25\% or 110\% for main or inter-pulse GRPs, respectively, when the phase width is restricted into the 0.03 phase.Among the upper limits from the Hitomi satellite, those in the 4.5-10 keV and the 70-300 keV are obtained for the first time, and those in other bands are consistent with previous reports.Numerically, the upper limits of main- and inter-pulse GRPs in the 0.20 phase width are about (2.4 and 9.3) $\times 10^{-11}$ erg cm$^{-2}$, respectively. No significant variability in pulse profiles implies that the GRPs originated from a local place within the magnetosphere and the number of photon-emitting particles temporally increases.However, the results do not statistically rule out variations correlated with the GRPs, because the possible X-ray enhancement may appear due to a $>0.02$\% brightening of the pulse-peak flux under such conditions., Comment: 18 pages, 7 figure, 6 tables, accepted for publication in PASJ
- Published
- 2017
- Full Text
- View/download PDF
18. Search for Thermal X-ray Features from the Crab nebula with Hitomi Soft X-ray Spectrometer
- Author
-
Hitomi Collaboration, Aharonian, Felix, Akamatsu, Hiroki, Akimoto, Fumie, Allen, Steven W., Angelini, Lorella, Audard, Marc, Awaki, Hisamitsu, Axelsson, Magnus, Bamba, Aya, Bautz, Marshall W., Blandford, Roger, Brenneman, Laura W., Brown, Greg V., Bulbul, Esra, Cackett, Edward M., Chernyakova, Maria, Chiao, Meng P., Coppi, Paolo S., Costantini, Elisa, de Plaa, Jelle, de Vries, Cor P., Herder, Jan-Willem den, Done, Chris, Dotani, Tadayasu, Ebisawa, Ken, Eckart, Megan E., Enoto, Teruaki, Ezoe, Yuichiro, Fabian, Andrew C., Ferrigno, Carlo, Foster, Adam R., Fujimoto, Ryuichi, Fukazawa, Yasushi, Furuzawa, Akihiro, Galeazzi, Massimiliano, Gallo, Luigi C., Gandhi, Poshak, Giustini, Margherita, Goldwurm, Andrea, Gu, Liyi, Guainazzi, Matteo, Haba, Yoshito, Hagino, Kouichi, Hamaguchi, Kenji, Harrus, Ilana M., Hatsukade, Isamu, Hayashi, Katsuhiro, Hayashi, Takayuki, Hayashida, Kiyoshi, Hiraga, Junko S., Hornschemeier, Ann, Hoshino, Akio, Hughes, John P., Ichinohe, Yuto, Iizuka, Ryo, Inoue, Hajime, Inoue, Yoshiyuki, Ishida, Manabu, Ishikawa, Kumi, Ishisaki, Yoshitaka, Kaastra, Jelle, Kallman, Tim, Kamae, Tsuneyoshi, Kataoka, Jun, Katsuda, Satoru, Kawai, Nobuyuki, Kelley, Richard L., Kilbourne, Caroline A., Kitaguchi, Takao, Kitamoto, Shunji, Kitayama, Tetsu, Kohmura, Takayoshi, Kokubun, Motohide, Koyama, Katsuji, Koyama, Shu, Kretschmar, Peter, Krimm, Hans A., Kubota, Aya, Kunieda, Hideyo, Laurent, Philippe, Lee, Shiu-Hang, Leutenegger, Maurice A., Limousin, Olivier O., Loewenstein, Michael, Long, Knox S., Lumb, David, Madejski, Greg, Maeda, Yoshitomo, Maier, Daniel, Makishima, Kazuo, Markevitch, Maxim, Matsumoto, Hironori, Matsushita, Kyoko, McCammon, Dan, McNamara, Brian R., Mehdipour, Missagh, Miller, Eric D., Miller, Jon M., Mineshige, Shin, Mitsuda, Kazuhisa, Mitsuishi, Ikuyuki, Miyazawa, Takuya, Mizuno, Tsunefumi, Mori, Hideyuki, Mori, Koji, Mukai, Koji, Murakami, Hiroshi, Mushotzky, Richard F., Nakagawa, Takao, Nakajima, Hiroshi, Nakamori, Takeshi, Nakashima, Shinya, Nakazawa, Kazuhiro, Nobukawa, Kumiko K., Nobukawa, Masayoshi, Noda, Hirofumi, Odaka, Hirokazu, Ohashi, Takaya, Ohno, Masanori, Okajima, Takashi, Ota, Naomi, Ozaki, Masanobu, Paerels, Frits, Paltani, Stephane, Petre, Robert, Pinto, Ciro, Porter, Frederick S., Pottschmidt, Katja, Reynolds, Christopher S., Safi-Harb, Samar, Saito, Shinya, Sakai, Kazuhiro, Sasaki, Toru, Sato, Goro, Sato, Kosuke, Sato, Rie, Sato, Toshiki, Sawada, Makoto, Schartel, Norbert, Serlemtsos, Peter J., Seta, Hiromi, Shidatsu, Megumi, Simionescu, Aurora, Smith, Randall K., Soong, Yang, Stawarz, Lukasz, Sugawara, Yasuharu, Sugita, Satoshi, Szymkowiak, Andrew, Tajima, Hiroyasu, Takahashi, Hiromitsu, Takahashi, Tadayuki, Takeda, Shinichiro, Takei, Yoh, Tamagawa, Toru, Tamura, Takayuki, Tanaka, Takaaki, Tanaka, Yasuo, Tanaka, Yasuyuki T., Tashiro, Makoto S., Tawara, Yuzuru, Terada, Yukikatsu, Terashima, Yuichi, Tombesi, Francesco, Tomida, Hiroshi, Tsuboi, Yohko, Tsujimoto, Masahiro, Tsunemi, Hiroshi, Tsuru, Takeshi Go, Uchida, Hiroyuki, Uchiyama, Hideki, Uchiyama, Yasunobu, Ueda, Shutaro, Ueda, Yoshihiro, Uno, Shinichiro, Urry, C. Megan, Ursino, Eugenio, Watanabe, Shin, Werner, Norbert, Wilkins, Dan R., Williams, Brian J., Yamada, Shinya, Yamaguchi, Hiroya, Yamaoka, Kazutaka, Yamasaki, Noriko Y., Yamauchi, Makoto, Yamauchi, Shigeo, Yaqoob, Tahir, Yatsu, Yoichi, Yonetoku, Daisuke, Zhuravleva, Irina, Zoghbi, Abderahmen, Tominaga, Nozomu, and Moriya, Takashi J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Astrophysics of Galaxies - Abstract
The Crab nebula originated from a core-collapse supernova (SN) explosion observed in 1054 A.D. When viewed as a supernova remnant (SNR), it has an anomalously low observed ejecta mass and kinetic energy for an Fe-core collapse SN. Intensive searches were made for a massive shell that solves this discrepancy, but none has been detected. An alternative idea is that the SN1054 is an electron-capture (EC) explosion with a lower explosion energy by an order of magnitude than Fe-core collapse SNe. In the X-rays, imaging searches were performed for the plasma emission from the shell in the Crab outskirts to set a stringent upper limit to the X-ray emitting mass. However, the extreme brightness of the source hampers access to its vicinity. We thus employed spectroscopic technique using the X-ray micro-calorimeter onboard the Hitomi satellite. By exploiting its superb energy resolution, we set an upper limit for emission or absorption features from yet undetected thermal plasma in the 2-12 keV range. We also re-evaluated the existing Chandra and XMM-Newton data. By assembling these results, a new upper limit was obtained for the X-ray plasma mass of <~ 1Mo for a wide range of assumed shell radius, size, and plasma temperature both in and out of the collisional equilibrium. To compare with the observation, we further performed hydrodynamic simulations of the Crab SNR for two SN models (Fe-core versus EC) under two SN environments (uniform ISM versus progenitor wind). We found that the observed mass limit can be compatible with both SN models if the SN environment has a low density of <~ 0.03 cm-3 (Fe core) or <~ 0.1 cm-3 (EC) for the uniform density, or a progenitor wind density somewhat less than that provided by a mass loss rate of 10-5 Mo yr-1 at 20 km s-1 for the wind environment., Comment: PASJ in press. Figures are now properly included
- Published
- 2017
- Full Text
- View/download PDF
19. Hitomi constraints on the 3.5 keV line in the Perseus galaxy cluster
- Author
-
Hitomi Collaboration, Aharonian, Felix A., Akamatsu, Hiroki, Akimoto, Fumie, Allen, Steven W., Angelini, Lorella, Arnaud, Keith A., Audard, Marc, Awaki, Hisamitsu, Axelsson, Magnus, Bamba, Aya, Bautz, Marshall W., Blandford, Roger D., Brenneman, Laura W., Brown, Gregory V., Bulbul, Esra, Cackett, Edward M., Chernyakova, Maria, Chiao, Meng P., Coppi, Paolo, Costantini, Elisa, de Plaa, Jelle, Herder, Jan-Willem den, Done, Chris, Dotani, Tadayasu, Ebisawa, Ken, Eckart, Megan E., Enoto, Teruaki, Ezoe, Yuichiro, Fabian, Andrew C., Ferrigno, Carlo, Foster, Adam R., Fujimoto, Ryuichi, Fukazawa, Yasushi, Furuzawa, Akihiro, Galeazzi, Massimiliano, Gallo, Luigi C., Gandhi, Poshak, Giustini, Margherita, Goldwurm, Andrea, Gu, Liyi, Guainazzi, Matteo, Haba, Yoshito, Hagino, Kouichi, Hamaguchi, Kenji, Harrus, Ilana, Hatsukade, Isamu, Hayashi, Katsuhiro, Hayashi, Takayuki, Hayashida, Kiyoshi, Hiraga, Junko, Hornschemeier, Ann E., Hoshino, Akio, Hughes, John P., Ichinohe, Yuto, Iizuka, Ryo, Inoue, Hajime, Inoue, Shota, Inoue, Yoshiyuki, Ishibashi, Kazunori, Ishida, Manabu, Ishikawa, Kumi, Ishisaki, Yoshitaka, Itoh, Masayuki, Iwai, Masachika, Iyomoto, Naoko, Kaastra, Jelle S., Kallman, Timothy, Kamae, Tuneyoshi, Kara, Erin, Kataoka, Jun, Katsuda, Satoru, Katsuta, Junichiro, Kawaharada, Madoka, Kawai, Nobuyuki, Kelley, Richard L., Khangulyan, Dmitry, Kilbourne, Caroline A., King, Ashley L., Kitaguchi, Takao, Kitamoto, Shunji, Kitayama, Tetsu, Kohmura, Takayoshi, Kokubun, Motohide, Koyama, Shu, Koyama, Katsuji, Kretschmar, Peter, Krimm, Hans A., Kubota, Aya, Kunieda, Hideyo, Laurent, Philippe, Lebrun, Francois, Lee, Shiu-Hang, Leutenegger, Maurice, Limousin, Olivier, Loewenstein, Michael, Long, Knox S., Lumb, David, Madejski, Grzegorz M., Maeda, Yoshitomo, Maier, Daniel, Makishima, Kazuo, Markevitch, Maxim, Matsumoto, Hironori, Matsushita, Kyoko, McCammon, Dan, McNamara, Brian R., Mehdipour, Missagh, Miller, Eric D., Miller, Jon M., Mineshige, Shin, Mitsuda, Kazuhisa, Mitsuishi, Ikuyuki, Miyazawa, Takuya, Mizuno, Tsunefumi, Mori, Hideyuki, Mori, Koji, Moseley, Harvey, Mukai, Koji, Murakami, Hiroshi, Murakami, Toshio, Mushotzky, Richard F., Nakagawa, Takao, Nakajima, Hiroshi, Nakamori, Takeshi, Nakano, Toshio, Nakashima, Shinya, Nakazawa, Kazuhiro, Nobukawa, Kumiko, Nobukawa, Masayoshi, Noda, Hirofumi, Nomachi, Masaharu, O'Dell, Steve L., Odaka, Hirokazu, Ohashi, Takaya, Ohno, Masanori, Okajima, Takashi, Ota, Naomi, Ozaki, Masanobu, Paerels, Frits, Paltani, Stephane, Parmar, Arvind, Petre, Robert, Pinto, Ciro, Pohl, Martin, Porter, F. Scott, Pottschmidt, Katja, Ramsey, Brian D., Reynolds, Christopher S., Russell, Helen R., Safi-Harb, Samar, Saito, Shinya, Sakai, Kazuhiro, Sameshima, Hiroaki, Sasaki, Toru, Sato, Goro, Sato, Kosuke, Sato, Rie, Sawada, Makoto, Schartel, Norbert, Serlemitsos, Peter J., Seta, Hiromi, Shidatsu, Megumi, Simionescu, Aurora, Smith, Randall K., Soong, Yang, Stawarz, Lukasz, Sugawara, Yasuharu, Sugita, Satoshi, Szymkowiak, Andrew E., Tajima, Hiroyasu, Takahashi, Hiromitsu, Takahashi, Tadayuki, Takeda, Shin'ichiro, Takei, Yoh, Tamagawa, Toru, Tamura, Keisuke, Tamura, Takayuki, Tanaka, Takaaki, Tanaka, Yasuo, Tanaka, Yasuyuki, Tashiro, Makoto, Tawara, Yuzuru, Terada, Yukikatsu, Terashima, Yuichi, Tombesi, Francesco, Tomida, Hiroshi, Tsuboi, Yohko, Tsujimoto, Masahiro, Tsunemi, Hiroshi, Tsuru, Takeshi, Uchida, Hiroyuki, Uchiyama, Hideki, Uchiyama, Yasunobu, Ueda, Shutaro, Ueda, Yoshihiro, Ueno, Shiro, Uno, Shin'ichiro, Urry, C. Meg, Ursino, Eugenio, de Vries, Cor P., Watanabe, Shin, Werner, Norbert, Wik, Daniel R., Wilkins, Dan R., Williams, Brian J., Yamada, Shinya, Yamaguchi, Hiroya, Yamaoka, Kazutaka, Yamasaki, Noriko Y., Yamauchi, Makoto, Yamauchi, Shigeo, Yaqoob, Tahir, Yatsu, Yoichi, Yonetoku, Daisuke, Yoshida, Atsumasa, Zhuravleva, Irina, and Zoghbi, Abderahmen
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
High-resolution X-ray spectroscopy with Hitomi was expected to resolve the origin of the faint unidentified E=3.5 keV emission line reported in several low-resolution studies of various massive systems, such as galaxies and clusters, including the Perseus cluster. We have analyzed the Hitomi first-light observation of the Perseus cluster. The emission line expected for Perseus based on the XMM-Newton signal from the large cluster sample under the dark matter decay scenario is too faint to be detectable in the Hitomi data. However, the previously reported 3.5 keV flux from Perseus was anomalously high compared to the sample-based prediction. We find no unidentified line at the reported high flux level. Taking into account the XMM measurement uncertainties for this region, the inconsistency with Hitomi is at a 99% significance for a broad dark-matter line and at 99.7% for a narrow line from the gas. We do not find anomalously high fluxes of the nearby faint K line or the Ar satellite line that were proposed as explanations for the earlier 3.5 keV detections. We do find a hint of a broad excess near the energies of high-n transitions of Sxvi (E=3.44 keV rest-frame) -- a possible signature of charge exchange in the molecular nebula and another proposed explanation for the unidentified line. While its energy is consistent with XMM pn detections, it is unlikely to explain the MOS signal. A confirmation of this interesting feature has to wait for a more sensitive observation with a future calorimeter experiment., Comment: Discussion of systematics significantly expanded. 9 pages, 5 figures; ApJ Lett. in press
- Published
- 2016
- Full Text
- View/download PDF
20. The Quiescent Intracluster Medium in the Core of the Perseus Cluster
- Author
-
Hitomi Collaboration, Aharonian, Felix, Akamatsu, Hiroki, Akimoto, Fumie, Allen, Steven W., Anabuki, Naohisa, Angelini, Lorella, Arnaud, Keith, Audard, Marc, Awaki, Hisamitsu, Axelsson, Magnus, Bamba, Aya, Bautz, Marshall, Blandford, Roger, Brenneman, Laura, Brown, Gregory V., Bulbul, Esra, Cackett, Edward, Chernyakova, Maria, Chiao, Meng, Coppi, Paolo, Costantini, Elisa, de Plaa, Jelle, Herder, Jan-Willem den, Done, Chris, Dotani, Tadayasu, Ebisawa, Ken, Eckart, Megan, Enoto, Teruaki, Ezoe, Yuichiro, Fabian, Andrew, Ferrigno, Carlo, Foster, Adam, Fujimoto, Ryuichi, Fukazawa, Yasushi, Furuzawa, Akihiro, Galeazzi, Massimiliano, Gallo, Luigi, Gandhi, Poshak, Giustini, Margherita, Goldwurm, Andrea, Gu, Liyi, Guainazzi, Matteo, Haba, Yoshito, Hagino, Kouichi, Hamaguchi, Kenji, Harrus, Ilana, Hatsukade, Isamu, Hayashi, Katsuhiro, Hayashi, Takayuki, Hayashida, Kiyoshi, Hiraga, Junko, Hornschemeier, Ann, Hoshino, Akio, Hughes, John, Iizuka, Ryo, Inoue, Hajime, Inoue, Yoshiyuki, Ishibashi, Kazunori, Ishida, Manabu, Ishikawa, Kumi, Ishisaki, Yoshitaka, Itoh, Masayuki, Iyomoto, Naoko, Kaastra, Jelle, Kallman, Timothy, Kamae, Tuneyoshi, Kara, Erin, Kataoka, Jun, Katsuda, Satoru, Katsuta, Junichiro, Kawaharada, Madoka, Kawai, Nobuyuki, Kelley, Richard, Khangulyan, Dmitry, Kilbourne, Caroline, King, Ashley, Kitaguchi, Takao, Kitamoto, Shunji, Kitayama, Tetsu, Kohmura, Takayoshi, Kokubun, Motohide, Koyama, Shu, Koyama, Katsuji, Kretschmar, Peter, Krimm, Hans, Kubota, Aya, Kunieda, Hideyo, Laurent, Philippe, Lebrun, Francois, Lee, Shiu-Hang, Leutenegger, Maurice, Limousin, Olivier, Loewenstein, Michael, Long, Knox S., Lumb, David, Madejski, Grzegorz, Maeda, Yoshitomo, Maier, Daniel, Makishima, Kazuo, Markevitch, Maxim, Matsumoto, Hironori, Matsushita, Kyoko, McCammon, Dan, McNamara, Brian, Mehdipour, Missagh, Miller, Eric, Miller, Jon, Mineshige, Shin, Mitsuda, Kazuhisa, Mitsuishi, Ikuyuki, Miyazawa, Takuya, Mizuno, Tsunefumi, Mori, Hideyuki, Mori, Koji, Moseley, Harvey, Mukai, Koji, Murakami, Hiroshi, Murakami, Toshio, Mushotzky, Richard, Nagino, Ryo, Nakagawa, Takao, Nakajima, Hiroshi, Nakamori, Takeshi, Nakano, Toshio, Nakashima, Shinya, Nakazawa, Kazuhiro, Nobukawa, Masayoshi, Noda, Hirofumi, Nomachi, Masaharu, O'Dell, Steve, Odaka, Hirokazu, Ohashi, Takaya, Ohno, Masanori, Okajima, Takashi, Ota, Naomi, Ozaki, Masanobu, Paerels, Frits, Paltani, Stephane, Parmar, Arvind, Petre, Robert, Pinto, Ciro, Pohl, Martin, Porter, F. Scott, Pottschmidt, Katja, Ramsey, Brian, Reynolds, Christopher, Russell, Helen, Safi-Harb, Samar, Saito, Shinya, Sakai, Kazuhiro, Sameshima, Hiroaki, Sato, Goro, Sato, Kosuke, Sato, Rie, Sawada, Makoto, Schartel, Norbert, Serlemitsos, Peter, Seta, Hiromi, Shidatsu, Megumi, Simionescu, Aurora, Smith, Randall, Soong, Yang, Stawarz, Lukasz, Sugawara, Yasuharu, Sugita, Satoshi, Szymkowiak, Andrew, Tajima, Hiroyasu, Takahashi, Hiromitsu, Takahashi, Tadayuki, Takeda, Shin'ichiro, Takei, Yoh, Tamagawa, Toru, Tamura, Keisuke, Tamura, Takayuki, Tanaka, Takaaki, Tanaka, Yasuo, Tanaka, Yasuyuki, Tashiro, Makoto, Tawara, Yuzuru, Terada, Yukikatsu, Terashima, Yuichi, Tombesi, Francesco, Tomida, Hiroshi, Tsuboi, Yohko, Tsujimoto, Masahiro, Tsunemi, Hiroshi, Tsuru, Takeshi, Uchida, Hiroyuki, Uchiyama, Hideki, Uchiyama, Yasunobu, Ueda, Shutaro, Ueda, Yoshihiro, Ueno, Shiro, Uno, Shin'ichiro, Urry, Meg, Ursino, Eugenio, de Vries, Cor, Watanabe, Shin, Werner, Norbert, Wik, Daniel, Wilkins, Dan, Williams, Brian, Yamada, Shinya, Yamaguchi, Hiroya, Yamaok, Kazutaka, Yamasaki, Noriko Y., Yamauchi, Makoto, Yamauchi, Shigeo, Yaqoob, Tahir, Yatsu, Yoichi, Yonetoku, Daisuke, Yoshida, Atsumasa, Yuasa, Takayuki, Zhuravleva, Irina, and Zoghbi, Abderahmen
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
Clusters of galaxies are the most massive gravitationally-bound objects in the Universe and are still forming. They are thus important probes of cosmological parameters and a host of astrophysical processes. Knowledge of the dynamics of the pervasive hot gas, which dominates in mass over stars in a cluster, is a crucial missing ingredient. It can enable new insights into mechanical energy injection by the central supermassive black hole and the use of hydrostatic equilibrium for the determination of cluster masses. X-rays from the core of the Perseus cluster are emitted by the 50 million K diffuse hot plasma filling its gravitational potential well. The Active Galactic Nucleus of the central galaxy NGC1275 is pumping jetted energy into the surrounding intracluster medium, creating buoyant bubbles filled with relativistic plasma. These likely induce motions in the intracluster medium and heat the inner gas preventing runaway radiative cooling; a process known as Active Galactic Nucleus Feedback. Here we report on Hitomi X-ray observations of the Perseus cluster core, which reveal a remarkably quiescent atmosphere where the gas has a line-of-sight velocity dispersion of 164+/-10 km/s in a region 30-60 kpc from the central nucleus. A gradient in the line-of-sight velocity of 150+/-70 km/s is found across the 60 kpc image of the cluster core. Turbulent pressure support in the gas is 4% or less of the thermodynamic pressure, with large scale shear at most doubling that estimate. We infer that total cluster masses determined from hydrostatic equilibrium in the central regions need little correction for turbulent pressure., Comment: 31 pages, 11 Figs, published in Nature July 8
- Published
- 2016
- Full Text
- View/download PDF
21. Relationship between insomnia with alcohol drinking before sleep (Ne-Zake) or in the morning (Mukae-Zake) among Japanese farmers
- Author
-
Sato, Rie, Hisamatsu, Takashi, Tsumura, Hideki, Fukuda, Mari, Taniguchi, Kaori, Takeshita, Haruo, and Kanda, Hideyuki
- Published
- 2021
- Full Text
- View/download PDF
22. The ASTRO-H X-ray Astronomy Satellite
- Author
-
Takahashi, Tadayuki, Mitsuda, Kazuhisa, Kelley, Richard, Aharonian, Felix, Akamatsu, Hiroki, Akimoto, Fumie, Allen, Steve, Anabuki, Naohisa, Angelini, Lorella, Arnaud, Keith, Asai, Makoto, Audard, Marc, Awaki, Hisamitsu, Azzarello, Philipp, Baluta, Chris, Bamba, Aya, Bando, Nobutaka, Bautz, Marshall, Bialas, Thomas, Blandford, Roger, Boyce, Kevin, Brenneman, Laura, Brown, Greg, Cackett, Edward, Canavan, Edgar, Chernyakova, Maria, Chiao, Meng, Coppi, Paolo, Costantini, Elisa, de Plaa, Jelle, Herder, Jan-Willem den, DiPirro, Michael, Done, Chris, Dotani, Tadayasu, Doty, John, Ebisawa, Ken, Eckart, Megan, Enoto, Teruaki, Ezoe, Yuichiro, Fabian, Andrew, Ferrigno, Carlo, Foster, Adam, Fujimoto, Ryuichi, Fukazawa, Yasushi, Funk, Stefan, Furuzawa, Akihiro, Galeazzi, Massimiliano, Gallo, Luigi, Gandhi, Poshak, Gilmore, Kirk, Guainazzi, Matteo, Haas, Daniel, Haba, Yoshito, Hamaguchi, Kenji, Harayama, Atsushi, Hatsukade, Isamu, Hayashi, Takayuki, Hayashi, Katsuhiro, Hayashida, Kiyoshi, Hiraga, Junko, Hirose, Kazuyuki, Hornschemeier, Ann, Hoshino, Akio, Hughes, John, Hwang, Una, Iizuka, Ryo, Inoue, Yoshiyuki, Ishibashi, Kazunori, Ishida, Manabu, Ishikawa, Kumi, Ishimura, Kosei, Ishisaki, Yoshitaka, Ito, Masayuki, Iwata, Naoko, Iyomoto, Naoko, Jewell, Chris, Kaastra, Jelle, Kallman, Timothy, Kamae, Tuneyoshi, Kataoka, Jun, Katsuda, Satoru, Katsuta, Junichiro, Kawaharada, Madoka, Kawai, Nobuyuki, Kawano, Taro, Kawasaki, Shigeo, Khangulyan, Dmitry, Kilbourne, Caroline, Kimball, Mark, Kimura, Masashi, Kitamoto, Shunji, Kitayama, Tetsu, Kohmura, Takayoshi, Kokubun, Motohide, Konami, Saori, Kosaka, Tatsuro, Koujelev, Alex, Koyama, Katsuji, Krimm, Hans, Kubota, Aya, Kunieda, Hideyo, LaMassa, Stephanie, Laurent, Philippe, Lebrun, Franccois, Leutenegger, Maurice, Limousin, Olivier, Loewenstein, Michael, Long, Knox, Lumb, David, Madejski, Grzegorz, Maeda, Yoshitomo, Makishima, Kazuo, Markevitch, Maxim, Masters, Candace, Matsumoto, Hironori, Matsushita, Kyoko, McCammon, Dan, Mcguinness, Daniel, McNamara, Brian, Miko, Joseph, Miller, Jon, Miller, Eric, Mineshige, Shin, Minesugi, Kenji, Mitsuishi, Ikuyuki, Miyazawa, Takuya, Mizuno, Tsunefumi, Mori, Koji, Mori, Hideyuki, Moroso, Franco, Muench, Theodore, Mukai, Koji, Murakami, Hiroshi, Murakami, Toshio, Mushotzky, Richard, Nagano, Housei, Nagino, Ryo, Nakagawa, Takao, Nakajima, Hiroshi, Nakamori, Takeshi, Nakashima, Shinya, Nakazawa, Kazuhiro, Namba, Yoshiharu, Natsukari, Chikara, Nishioka, Yusuke, Nobukawa, Masayoshi, Noda, Hirofumi, Nomachi, Masaharu, Dell, Steve O', Odaka, Hirokazu, Ogawa, Hiroyuki, Ogawa, Mina, Ogi, Keiji, Ohashi, Takaya, Ohno, Masanori, Ohta, Masayuki, Okajima, Takashi, Okamoto, Atsushi, Okazaki, Tsuyoshi, Ota, Naomi, Ozaki, Masanobu, Paerels, Frits, Paltani, St'ephane, Parmar, Arvind, Petre, Robert, Pinto, Ciro, Pohl, Martin, Pontius, James, Porter, F. Scott, Pottschmidt, Katja, Ramsey, Brian, Reis, Rubens, Reynolds, Christopher, Ricci, Claudio, Russell, Helen, Safi-Harb, Samar, Saito, Shinya, Sakai, Shin-ichiro, Sameshima, Hiroaki, Sato, Goro, Sato, Yoichi, Sato, Kosuke, Sato, Rie, Sawada, Makoto, Serlemitsos, Peter, Seta, Hiromi, Shibano, Yasuko, Shida, Maki, Shimada, Takanobu, Shinozaki, Keisuke, Shirron, Peter, Simionescu, Aurora, Simmons, Cynthia, Smith, Randall, Sneiderman, Gary, Soong, Yang, Stawarz, Lukasz, Sugawara, Yasuharu, Sugita, Hiroyuki, Sugita, Satoshi, Szymkowiak, Andrew, Tajima, Hiroyasu, Takahashi, Hiromitsu, Takahashi, Hiroaki, Takeda, Shin-ichiro, Takei, Yoh, Tamagawa, Toru, Tamura, Takayuki, Tamura, Keisuke, Tanaka, Takaaki, Tanaka, Yasuo, Tanaka, Yasuyuki, Tashiro, Makoto, Tawara, Yuzuru, Terada, Yukikatsu, Terashima, Yuichi, Tombesi, Francesco, Tomida, Hiroshi, Tsuboi, Yohko, Tsujimoto, Masahiro, Tsunemi, Hiroshi, Tsuru, Takeshi, Uchida, Hiroyuki, Uchiyama, Yasunobu, Uchiyama, Hideki, Ueda, Yoshihiro, Ueda, Shutaro, Ueno, Shiro, Uno, Shinichiro, Urry, Meg, Ursino, Eugenio, de Vries, Cor, Wada, Atsushi, Watanabe, Shin, Watanabe, Tomomi, Werner, Norbert, White, Nicholas, Wilkins, Dan, Yamada, Takahiro, Yamada, Shinya, Yamaguchi, Hiroya, Yamaoka, Kazutaka, Yamasaki, Noriko, Yamauchi, Makoto, Yamauchi, Shigeo, Yaqoob, Tahir, Yatsu, Yoichi, Yonetoku, Daisuke, Yoshida, Atsumasa, Yuasa, Takayuki, Zhuravleva, Irina, Zoghbi, Abderahmen, and ZuHone, John
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions developed by the Institute of Space and Astronautical Science (ISAS), with a planned launch in 2015. The ASTRO-H mission is equipped with a suite of sensitive instruments with the highest energy resolution ever achieved at E > 3 keV and a wide energy range spanning four decades in energy from soft X-rays to gamma-rays. The simultaneous broad band pass, coupled with the high spectral resolution of Delta E < 7 eV of the micro-calorimeter, will enable a wide variety of important science themes to be pursued. ASTRO-H is expected to provide breakthrough results in scientific areas as diverse as the large-scale structure of the Universe and its evolution, the behavior of matter in the gravitational strong field regime, the physical conditions in sites of cosmic-ray acceleration, and the distribution of dark matter in galaxy clusters at different redshifts., Comment: 24 pages, 18 figures, Proceedings of the SPIE Astronomical Instrumentation "Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray"
- Published
- 2014
- Full Text
- View/download PDF
23. Prompt diagnosis and appropriate treatment of Japanese spotted fever: A report of three cases
- Author
-
Sato, Rie, primary, Yamada, Noriaki, additional, Kodani, Nobuhiro, additional, Makiishi, Tetsuya, additional, and Iwashita, Yoshiaki, additional
- Published
- 2023
- Full Text
- View/download PDF
24. The ASTRO-H X-ray Observatory
- Author
-
Takahashi, Tadayuki, Mitsuda, Kazuhisa, Kelley, Richard, Aharonian, Henri AartsFelix, Akamatsu, Hiroki, Akimoto, Fumie, Allen, Steve, Anabuki, Naohisa, Angelini, Lorella, Arnaud, Keith, Asai, Makoto, Audard, Marc, Awaki, Hisamitsu, Azzarello, Philipp, Baluta, Chris, Bamba, Aya, Bando, Nobutaka, Bautz, Mark, Blandford, Roger, Boyce, Kevin, Brown, Greg, Cackett, Ed, Chernyakova, Maria, Coppi, Paolo, Costantini, Elisa, de Plaa, Jelle, Herder, Jan-Willem den, DiPirro, Michael, Done, Chris, Dotani, Tadayasu, Doty, John, Ebisawa, Ken, Eckart, Megan, Enoto, Teruaki, Ezoe, Yuichiro, Fabian, Andrew, Ferrigno, Carlo, Foster, Adam, Fujimoto, Ryuichi, Fukazawa, Yasushi, Funk, Stefan, Furuzawa, Akihiro, Galeazzi, Massimiliano, Gallo, Luigi, Gandhi, Poshak, Gendreau, Keith, Gilmore, Kirk, Haas, Daniel, Haba, Yoshito, Hamaguchi, Kenji, Hatsukade, Isamu, Hayashi, Takayuki, Hayashida, Kiyoshi, Hiraga, Junko, Hirose, Kazuyuki, Hornschemeier, Ann, Hoshino, Akio, Hughes, John, Hwang, Una, Iizuka, Ryo, Inoue, Yoshiyuki, Ishibashi, Kazunori, Ishida, Manabu, Ishimura, Kosei, Ishisaki, Yoshitaka, Ito, Masayuki, Iwata, Naoko, Iyomoto, Naoko, Kaastra, Jelle, Kallman, Timothy, Kamae, Tuneyoshi, Kataoka, Jun, Katsuda, Satoru, Kawahara, Hajime, Kawaharada, Madoka, Kawai, Nobuyuki, Kawasaki, Shigeo, Khangaluyan, Dmitry, Kilbourne, Caroline, Kimura, Masashi, Kinugasa, Kenzo, Kitamoto, Shunji, Kitayama, Tetsu, Kohmura, Takayoshi, Kokubun, Motohide, Kosaka, Tatsuro, Koujelev, Alex, Koyama, Katsuji, Krimm, Hans, Kubota, Aya, Kunieda, Hideyo, LaMassa, Stephanie, Laurent, Philippe, Lebrun, Francois, Leutenegger, Maurice, Limousin, Olivier, Loewenstein, Michael, Long, Knox, Lumb, David, Madejski, Grzegorz, Maeda, Yoshitomo, Makishima, Kazuo, Marchand, Genevieve, Markevitch, Maxim, Matsumoto, Hironori, Matsushita, Kyoko, McCammon, Dan, McNamara, Brian, Miller, Jon, Miller, Eric, Mineshige, Shin, Minesugi, Kenji, Mitsuishi, Ikuyuki, Miyazawa, Takuya, Mizuno, Tsunefumi, Mori, Hideyuki, Mori, Koji, Mukai, Koji, Murakami, Toshio, Murakami, Hiroshi, Mushotzky, Richard, Nagano, Housei, Nagino, Ryo, Nakagawa, Takao, Nakajima, Hiroshi, Nakamori, Takeshi, Nakazawa, Kazuhiro, Namba, Yoshiharu, Natsukari, Chikara, Nishioka, Yusuke, Nobukawa, Masayoshi, Nomachi, Masaharu, Dell, Steve O', Odaka, Hirokazu, Ogawa, Hiroyuki, Ogawa, Mina, Ogi, Keiji, Ohashi, Takaya, Ohno, Masanori, Ohta, Masayuki, Okajima, Takashi, Okamoto, Atsushi, Okazaki, Tsuyoshi, Ota, Naomi, Ozaki, Masanobu, Paerels, Frits, Paltani, Stephane, Parmar, Arvind, Petre, Robert, Pohl, Martin, Porter, F. Scott, Ramsey, Brian, Reis, Rubens, Reynolds, Christopher, Russell, Helen, Safi-Harb, Samar, Sakai, Shin-ichiro, Sameshima, Hiroaki, Sanders, Jeremy, Sato, Goro, Sato, Rie, Sato, Yoichi, Sato, Kosuke, Sawada, Makoto, Serlemitsos, Peter, Seta, Hiromi, Shibano, Yasuko, Shida, Maki, Shimada, Takanobu, Shinozaki, Keisuke, Shirron, Peter, Simionescu, Aurora, Simmons, Cynthia, Smith, Randall, Sneiderman, Gary, Soong, Yang, Stawarz, Lukasz, Sugawara, Yasuharu, Sugita, Hiroyuki, Sugita, Satoshi, Szymkowiak, Andrew, Tajima, Hiroyasu, Takahashi, Hiromitsu, Takeda, Shin-ichiro, Takei, Yoh, Tamagawa, Toru, Tamura, Takayuki, Tamura, Keisuke, Tanaka, Takaaki, Tanaka, Yasuo, Tashiro, Makoto, Tawara, Yuzuru, Terada, Yukikatsu, Terashima, Yuichi, Tombesi, Francesco, Tomida, Hiroshi, Tsuboi, Yoko, Tsujimoto, Masahiro, Tsunemi, Hiroshi, Tsuru, Takeshi, Uchida, Hiroyuki, Uchiyama, Yasunobu, Uchiyama, Hideki, Ueda, Yoshihiro, Ueno, Shiro, Uno, Shinichiro, Urry, Meg, Ursino, Eugenio, de Vries, Cor, Wada, Atsushi, Watanabe, Shin, Werner, Norbert, White, Nicholas, Yamada, Takahiro, Yamada, Shinya, Yamaguchi, Hiroya, Yamasaki, Noriko, Yamauchi, Shigeo, Yamauchi, Makoto, Yatsu, Yoichi, Yonetoku, Daisuke, Yoshida, Atsumasa, and Yuasa, Takayuki
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the high-energy universe via a suite of four instruments, covering a very wide energy range, from 0.3 keV to 600 keV. These instruments include a high-resolution, high-throughput spectrometer sensitive over 0.3-2 keV with high spectral resolution of Delta E < 7 eV, enabled by a micro-calorimeter array located in the focal plane of thin-foil X-ray optics; hard X-ray imaging spectrometers covering 5-80 keV, located in the focal plane of multilayer-coated, focusing hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4-12 keV, with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and a non-focusing Compton-camera type soft gamma-ray detector, sensitive in the 40-600 keV band. The simultaneous broad bandpass, coupled with high spectral resolution, will enable the pursuit of a wide variety of important science themes., Comment: 22 pages, 17 figures, Proceedings of the SPIE Astronomical Instrumentation "Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray"
- Published
- 2012
- Full Text
- View/download PDF
25. Evaluation of the initial pointing accuracy of XRISM
- Author
-
den Herder, Jan-Willem A., Nikzad, Shouleh, Nakazawa, Kazuhiro, Kanemaru, Yoshiaki, Iizuka, Ryo, Maeda, Yoshitomo, Okajima, Takashi, Hayashi, Takayuki, Kiyokane, Kazuhiro, Nihei, Yuto, Kominato, Takashi, Ishida, Manabu, Natsukari, Chikara, Watanabe, Shin, Sato, Kosuke, Terada, Yukikatsu, Hayashi, Katsuhiro, Baluta, Chris, Yoshida, Tessei, Hoshino, Akio, Ogawa, Shoji, Fukushima, Kotaro, Takahashi, Hiromitsu, Nobukawa, Masayoshi, Mizuno, Tsunefumi, Nakazawa, Kazuhiro, Uno, Shin'ichiro, Ebisawa, Ken, Eguchi, Satoshi, Katsuda, Satoru, Kubota, Aya, Ota, Naomi, Shidatsu, Megumi, Tanimoto, Atsushi, Terashima, Yuichi, Tsuboi, Yohko, Uchida, Yuusuke, Uchiyama, Hideki, Yamauchi, Shigeo, Tomokage, Yoneyama, Yamada, Satoshi, Uchida, Nagomi, Sato, Rie, Holland, Matt, Loewenstein, Michael, Miller, Eric, Yaqoob, Tahir, Hill, Robert, Doyle, Trisha, Perez-Solis, Efrain, Waddy, Morgan, Mekosh, Mark, Fox, Joseph, Tashiro, Makoto, Toda, Kenichi, and Maejima, Hironori
- Published
- 2024
- Full Text
- View/download PDF
26. Detail design of the XRISM timing system and its verification in the nominal operation mode
- Author
-
den Herder, Jan-Willem A., Nikzad, Shouleh, Nakazawa, Kazuhiro, Terada, Yukikatsu, Shidatsu, Megumi, Sawada, Makoto, Kominato, Takashi, Kato, So, Sato, Ryohei, Sakama, Minami, Shioiri, Takumi, Niida, Yuki, Natsukari, Chikara, Tashiro, Makoto S., Toda, Kenichi, Maejima, Hironori, Hayashi, Katsuhiro, Yoshida, Tessei, Ogawa, Shoji, Kanemaru, Yoshiaki, Hoshino, Akio, Fukushima, Kotaro, Takahashi, Hiromitsu, Nobukawa, Masayoshi, Mizuno, Tsunefumi, Nakazawa, Kazuhiro, Uno, Shin'ichiro, Ebisawa, Ken, Eguchi, Satoshi, Katsuda, Satoru, Kubota, Aya, Ota, Naomi, Tanimoto, Atsushi, Terashima, Yuichi, Tsuboi, Yohko, Uchida, Yusuke, Uchiyama, Hideki, Yamauchi, Shigeo, Yoneyama, Tomokage, Yamada, Satoshi, Uchida, Nagomi, Watanabe, Shin, Iizuka, Ryo, Sato, Rie, Baluta, Chris, Holland, Matt, Loewenstein, Michael, Miller, Eric D., Yaqoob, Tahir, Hill, Robert S., Doyle, Trisha F., Perez-Solis, Efrain, Waddy, Morgan D., Mekosh, Mark, Fox, Joseph B., Takagi, Toshihiro, Motogami, Yugo, Pottschmidt, Katja, Enoto, Teruaki, and Tanaka, Takaaki
- Published
- 2024
- Full Text
- View/download PDF
27. The in-orbit XRISM science operations
- Author
-
den Herder, Jan-Willem A., Nikzad, Shouleh, Nakazawa, Kazuhiro, Hayashi, Katsuhiro, Tashiro, Makoto, Terada, Yukikatsu, Yoshida, Tessei, Ogawa, Shoji, Kanemaru, Yoshiaki, Fukushima, Kotaro, Hoshino, Akio, Takahashi, Hiromitsu, Nobukawa, Masayoshi, Mizuno, Tsunefumi, Nakazawa, Kazuhiro, Uno, Shin'ichiro, Ebisawa, Ken, Eguchi, Satoshi, Katsuda, Satoru, Kitaguchi, Takao, Kubota, Aya, Ota, Naomi, Shidatsu, Megumi, Tanimoto, Atsushi, Terashima, Yuichi, Tsuboi, Yohko, Uchida, Yuusuke, Uchiyama, Hideki, Yamauchi, Shigeo, Yoneyama, Tomokage, Yamada, Satoshi, Uchida, Nagomi, Sakurai, Seiko, Watanabe, Shin, Iizuka, Ryo, Sato, Rie, Baluta, Chris, Tamura, Takayuki, Fukazawa, Yasushi, Odaka, Hirokazu, Tamba, Tsubasa, Sato, Ryohei, Kato, Sou, Sakama, Minami, Shioiri, Takumi, Niida, Yuki, Sakamoto, Natsuki, Nemoto, Noboru, Omiya, Yuki, Suzuki, Nari, Takagi, Toshihiro, Motogami, Yugo, Holland, Matt, Loewenstein, Michael, Miller, Eric, Yaqoob, Tahir, Hill, Robert, Doyle, Trisha, Perez-Solis, Efrain, Waddy, Morgan, Mekosh, Mark, Fox, Joseph, Guainazzi, Matteo, Ness, Jan-Uwe, Maejima, Hironori, Toda, Ken'ichi, and Natsukari, Chikara
- Published
- 2024
- Full Text
- View/download PDF
28. Development and operation status of X-Ray Imaging and Spectroscopy Mission (XRISM)
- Author
-
den Herder, Jan-Willem A., Nikzad, Shouleh, Nakazawa, Kazuhiro, Tashiro, Makoto, Watanabe, Shin, Maejima, Hironori, Toda, Kenichi, Matsushita, Kyoko, Yamaguchi, Hiroya, Kelley, Richard, Reichenthal, Lillian, Hartz, Leslie, Petre, Robert, Williams, Brian, Guainazzi, Matteo, Santovincenzo, Andrea, Costantini, Elisa, Takei, Yoh, Ishisaki, Yoshitaka, Fujimoto, Ryuichi, Henegar-Leon, Joy, Sneiderman, Gary, Tomida, Hiroshi, Mori, Koji, Nakajima, Hiroshi, Terada, Yukikatsu, Holland, Matt, Loewenstein, Micheal, Kallman, Timothy, Kaastra, Jelle, Miller, Eric, Sawada, Makoto, Done, Chris, Enoto, Teruaki, Bamba, Aya, Plucinsky, Paul, Ueda, Yoshihiro, Kara, Erin, Zhuravleva, Irina, Fujita, Yutaka, Querro, Jose Antonio, Arai, Yoshitaka, Audard, Marc, Awaki, Hisamitsu, Baluta, Chris, Bando, Nobutaka, Behar, Ehud, Bialas, Thomas, Boissay-Malaquin, Rozenn, Brenneman, Laura, Brown, Gregory V., Chiao, Meng, Corrales, Lia, Cumbee, Renata, de Vries, Cor, den Herder, Jan-Willem, Diaz-Trigo, Maria, DiPirro, Michael, Dotani, Tadayasu, Ebrero Carrero, Jacobo, Ebisawa, Ken, Eckart, Megan, Eckart, Dominique, Eguchi, Satoshi, Ezoe, Yuichiro, Ferrigno, Carlo, Foster, Adam, Fukazawa, Yasushi, Fukushima, Kotaro, Furuzawa, Akihiro, Gallo, Luigi, Gorter, Nathalie, Grim, Martin, Gu, Liyi, Hagino, Koichi, Hamaguchi, Kenji, Hatsukade, Isamu, Hayashi, Katsuhiro, Hayashi, Takayuki, Hell, Natalie, Hodges-Kluck, Edmund, Horiuchi, Takafumi, Hornschemeier, Ann, Hoshino, Akio, Ichinohe, Yuto, Ikuta, Chisato, Iizuka, Ryo, Ishi, Daiki, Ishida, Manabu, Ishihama, Naoki, Ishikawa, Kumi, Ishimura, Kosei, Jaffe, Tess, Katsuda, Satoru, Kanemaru, Yoshiaki, Kenyon, Steven, Kilbourne, Caroline, Kimball, Mark, Kitamoto, Shunji, Kobayashi, Shogo, Kobayashi, Akihide, Kohmura, Takayoshi, Kubota, Aya, Leutenegger, Maurice, Li, Muzi, Maeda, Yoshitomo, Markevitch, Maxim, Matsumoto, Hironori, Matsuzaki, Keiichi, McCammon, Dan, McLaughlin, Brian, McNamara, Brian, Miko, Joseph, Miller, Jon, Minesugi, Kenji, Mitani, Shinji, Mitsuishi, Ikuyuki, Mizumoto, Misaki, Mizuno, Tsunefumi, Mukai, Koji, Murakami, Hiroshi, Mushotzky, Richard, Nakazawa, Kazuhiro, Natsukari, Chikara, Ness, Jan-Uwe, Nigo, Kenichiro, Nishiyama, Mari, Nobukawa, Kumiko, Nobukawa, Masayoshi, Noda, Hirofumi, Odaka, Hirokazu, Ogawa, Mina, Ogawa, Shoji, Okajima, Takashi, Okamoto, Atsushi, Ota, Naomi, Ozaki, Masanobu, Paltani, Stephane, Porter, F. Scott, Pottschmidt, Katja, Sasaki, Takahiro, Sato, Kosuke, Sato, Rie, Sato, Toshiki, Sato, Yoichi, Seta, Hiromi, Shida, Maki, Shidatsu, Megumi, Shigeto, Shuhei, Shipman, Russel, Shinozaki, Keisuke, Shirron, Peter, Simionescu, Aurora, Smith, Randall, Soong, Yang, Suzuki, Hiromasa, Szymkowiak, Andy, Takahashi, Hiromitsu, Takeo, Mai, Tamagawa, Toru, Tamura, Keisuke, Tanaka, Takaaki, Tanimoto, Atsushi, Terashima, Yuichi, Tsuboi, Yohko, Tsujimoto, Masahiro, Tsunemi, Hiroshi, Tsuru, Takeshi, Uchida, Hiroyuki, Uchida, Nagomi, Uchida, Yuusuke, Uchiyama, Hideki, Uno, Shinichiro, Van der Meer, Erik, Vink, Jacco, Wittheof, Michael, Wolfs, Rob, Yamada, Satoshi, Yamada, Shinya, Yamaoka, Kazutaka, Yamasaki, Noriko, Yamauchi, Makoto, Yamauchi, Shigeo, Yanagase, Keiichi, Yaqoob, Tahir, Yasuda, Susumu, Yoneyama, Tomokage, and Yoshida, Tessei
- Published
- 2024
- Full Text
- View/download PDF
29. Unraveling the Nature of Unidentified High Galactic Latitude Fermi/LAT Gamma-ray Sources with Suzaku
- Author
-
Maeda, Koto, Kataoka, Jun, Nakamori, Takeshi, Stawarz, Lukasz, Makiya, Ryu, Totani, Tomonori, Cheung, Chi Chiu, Donato, Davide, Gehrels, Neil, Parkinson, Pablo Saz, Kanai, Yoshikazu, Kawai, Nobuyuki, Tanaka, Yasuyuki, Sato, Rie, Takahashi, Tadayuki, and Takahashi, Yosuke
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We report on the results of deep X-ray follow-up observations of four unidentified Fermi/LAT gamma-ray sources at high Galactic latitudes using Suzaku. The studied objects were detected with high significance during the first 3 months of Fermi/LAT operation, and subsequently better localized in the Fermi/LAT 1 year catalog (1FGL). Possible associations with pulsars and active galaxies have subsequently been discussed, and our observations provide an important contribution to this debate. In particular, an X-ray point source was found within the 95% confidence error circle of 1FGL J1231.1-1410. X-ray spectrum is well-fitted by a blackbody with an additional power-law. This supports the recently claimed identification of this source with a millisecond pulsar (MSP) PSR J1231-1411. Concerning 1FGL J1311.7-3429, two X-ray sources were found within the LAT error circle. Even though the X-ray spectral and variability properties were accessed, their nature and relationship with the gamma-ray source remain uncertain. We found several weak X-ray sources in the field of 1FGL J1333.2+5056, one coinciding with CLASS J1333+5057. We argue the available data are consistent with the association between these two objects. Finally, we have detected an X-ray source in the vicinity of 1FGL J2017.3+0603. This object was recently suggested to be associated with a newly discovered MSP PSR J2017+0603, because of the spatial-coincidence and the gamma-ray pulse detection. We have only detected the X-ray counterpart of the CLASS J2017+0603, while we determined an X-ray flux upper limit at the pulsar position. All in all, our studies indicate while a significant fraction of unidentified high Galactic latitude gamma-ray sources is related to the pulsar and blazar phenomena, associations with other classes of astrophysical objects are still valid options., Comment: Accepted for publication in the ApJ
- Published
- 2011
- Full Text
- View/download PDF
30. Soft Gamma-ray Detector for the ASTRO-H Mission
- Author
-
Tajima, Hiroyasu, Blandford, Roger, Enoto, Teruaki, Fukazawa, Yasushi, Gilmore, Kirk, Kamae, Tuneyoshi, Kataoka, Jun, Kawaharada, Madoka, Kokubun, Motohide, Laurent, Philippe, Lebrun, Francois, Limousin, Olivier, Madejski, Greg, Makishima, Kazuo, Mizuno, Tsunefumi, Nakazawa, Kazuhiro, Ohno, Masanori, Ohta, Masayuki, Sato, Goro, Sato, Rie, Takahashi, Hiromitsu, Takahashi, Tadayuki, Tanaka, Takaaki, Tashiro, Makoto, Terada, Yukikatsu, Uchiyama, Yasunobu, Watanabe, Shin, Yamaoka, Kazutaka, and Yonetoku, Daisuke
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
ASTRO-H is the next generation JAXA X-ray satellite, intended to carry instruments with broad energy coverage and exquisite energy resolution. The Soft Gamma-ray Detector (SGD) is one of ASTRO-H instruments and will feature wide energy band (40-600 keV) at a background level 10 times better than the current instruments on orbit. SGD is complimentary to ASTRO-H's Hard X-ray Imager covering the energy range of 5-80 keV. The SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield where Compton kinematics is utilized to reject backgrounds. The Compton camera in the SGD is realized as a hybrid semiconductor detector system which consists of silicon and CdTe (cadmium telluride) sensors. Good energy resolution is afforded by semiconductor sensors, and it results in good background rejection capability due to better constraints on Compton kinematics. Utilization of Compton kinematics also makes the SGD sensitive to the gamma-ray polarization, opening up a new window to study properties of gamma-ray emission processes. The ASTRO-H mission is approved by ISAS/JAXA to proceed to a detailed design phase with an expected launch in 2014. In this paper, we present science drivers and concept of the SGD instrument followed by detailed description of the instrument and expected performance., Comment: 17 pages, 15 figures, Proceedings of the SPIE Astronomical Instrumentation "Space Telescopes and Instrumentation 2010: Ultraviolet to Gamma Ray"
- Published
- 2010
- Full Text
- View/download PDF
31. Searching for the most distant blazars with the Fermi Gamma-ray Space Telescope
- Author
-
Inoue, Yoshiyuki, Inoue, Susumu, Totani, Tomonori, Kobayashi, Masakazu A. R., Kataoka, Jun, and Sato, Rie
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We investigate the prospects for discovering blazars at very high-redshifts (z>3-6) with the Fermi Gamma-Ray Space Telescope (Fermi), employing a model for the evolving gamma-ray luminosity function (GLF) of the blazar population. Our previous GLF model is used as a basis, which features luminosity-dependent density evolution implied from X-ray data on active galactic nuclei, as well as the blazar sequence paradigm for their spectral energy distribution, and which is consistent with EGRET and current Fermi observations of blazars.Here we augment the high-redshift evolution of this model by utilizing the luminosity function of quasars from the Sloan Digital Sky Survey (SDSS), which is well-constrained up to z~5. We find that Fermi may discover a few blazars up to z~6 in the entire sky during its 5-year survey. We further discuss how such high-redshift blazar candidates may be efficiently selected in future Fermi data., Comment: 6 pages, 2 figures, accepted for publication in MNRAS
- Published
- 2010
- Full Text
- View/download PDF
32. The Cosmological Evolution of Blazars and the Extragalactic Gamma-Ray Background in the Fermi Era
- Author
-
Inoue, Yoshiyuki, Totani, Tomonori, Inoue, Susumu, Kobayashi, Masakazu A. R., Kataoka, Jun, and Sato, Rie
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Cosmology and Extragalactic Astrophysics - Abstract
The latest determination of the extragalactic gamma-ray background (EGRB) radiation by Fermi is compared with the theoretical prediction of the blazar component by Inoue & Totani (2009; hereafter IT09). The Fermi EGRB spectrum is in excellent agreement with IT09, indicating that blazars are the dominant component of the EGRB, and contributions from any other sources (e.g., dark matter annihilations) are minor. It also indicates that the blazar SED (spectral energy distribution) sequence taken into account in IT09 is a valid description of mean blazar SEDs. The possible contribution of MeV blazars to the EGRB in the MeV band is also discussed. In five total years of observations, we predict that Fermi will detect ~1200 blazars all sky down to the corresponding sensitivity limit. We also address the detectability of the highest-redshift blazars. Updating our model with regard to high-redshift evolution based on SDSS quasar data, we show that Fermi may find some blazars up to z~6 during the five-year survey. Such blazars could provide a new probe of early star and galaxy formation through GeV spectral attenuation signatures induced by high-redshift UV background radiation., Comment: 2009 Fermi Symposium, Washington, D.C., Nov. 2-5, eConf Proceedings C091122
- Published
- 2009
33. Measurement of nonlinear frequency shift coefficient in spin-torque oscillators based on MgO tunnel junctions
- Author
-
Kudo, Kiwamu, Nagasawa, Tazumi, Sato, Rie, and Mizushima, Koichi
- Subjects
Condensed Matter - Materials Science ,Condensed Matter - Other Condensed Matter - Abstract
The nonlinear frequency shift coefficient, which represents the strength of the transformation of amplitude fluctuations into phase fluctuations of an oscillator, is measured for MgO-based spin-torque oscillators by analyzing the current dependence of the power spectrum. We have observed that linewidth against inverse normalized power plots show linear behavior below and above the oscillation threshold as predicted by the analytical theories for spin-torque oscillators. The magnitude of the coefficient is determined from the ratio of the linear slopes. Small magnitude of the coefficient has been obtained for the device exhibiting narrow linewidth at high bias current., Comment: 4 pages, 5 figures; accepted for publication in Applied Physics Letters
- Published
- 2009
- Full Text
- View/download PDF
34. Suzaku Wide Band Analysis of the X-ray Variability of TeV Blazar Mrk 421 in 2006
- Author
-
Ushio, Masayoshi, Tanaka, Takaaki, Madejski, Grzegorz, Takahashi, Tadayuki, Hayashida, Masaaki, Kataoka, Jun, Mazin, Daniel, Rügamer, Stefan, Sato, Rie, Teshima, Masahiro, Wagner, Stefan, and Yaji, Yuichi
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present the results of X-ray observations of the well-studied TeV blazar Mrk 421 with the Suzaku satellite in 2006 April 28. During the observation, Mrk 421 was undergoing a large flare and the X-ray flux was variable, decreasing by ~ 50 %, from 7.8x10^{-10} to 3.7x10^{-10} erg/s/cm^2 in about 6 hours, followed by an increase by ~ 35 %. Thanks to the broad bandpass coupled with high-sensitivity of Suzaku, we measured the evolution of the spectrum over the 0.4--60 keV band in data segments as short as ~1 ksec. The data show deviations from a simple power law model, but also a clear spectral variability. The time-resolved spectra are fitted by a synchrotron model, where the observed spectrum is due to a exponentially cutoff power law distribution of electrons radiating in uniform magnetic field; this model is preferred over a broken power law. As another scenario, we separate the spectrum into "steady" and "variable" components by subtracting the spectrum in the lowest-flux period from those of other data segments. In this context, the difference ("variable") spectra are all well described by a broken power law model with photon index Gamma ~ 1.6, breaking at energy epsilon_{brk} ~ 3 keV to another photon index Gamma ~ 2.1 above the break energy, differing from each other only by normalization, while the spectrum of the "steady" component is best described by the synchrotron model. We suggest the rapidly variable component is due to relatively localized shock (Fermi I) acceleration, while the slowly variable ("steady") component is due to the superposition of shocks located at larger distance along the jet, or due to other acceleration process, such as the stochastic acceleration on magnetic turbulence (Fermi II) in the more extended region., Comment: 10 pages, 12 figures, accepted for publication in ApJ. v2: Corrected typos
- Published
- 2009
- Full Text
- View/download PDF
35. Physical and psychological recovery after vaginal childbirth with and without epidural analgesia: A prospective cohort study
- Author
-
Maeda, Ayumi, primary, Suzuki, Rimu, additional, Maurer, Rie, additional, Kurokawa, Sumie, additional, Kaneko, Miki, additional, Sato, Rie, additional, Nakajima, Hiromi, additional, Ogura, Kyoko, additional, Yamanaka, Michiko, additional, Uchida, Tokujiro, additional, and Nagasaka, Yasuko, additional
- Published
- 2023
- Full Text
- View/download PDF
36. Suzaku Observations of Extreme MeV Blazar SWIFT J0746.3+2548
- Author
-
Watanabe, Shin, Sato, Rie, Takahashi, Tadayuki, Kataoka, Jun, Madejski, Greg, Sikora, Marek, Tavecchio, Fabrizio, Sambruna, Rita, Romani, Roger, Edwards, Philip G., and Pursimo, Tapio
- Subjects
Astrophysics - Abstract
We report the Suzaku observations of the high luminosity blazar SWIFT J0746.3+2548 (J0746) conducted in November 2005. This object, with z = 2.979, is the highest redshift source observed in the Suzaku Guaranteed Time Observer (GTO) period, is likely to show high gamma-ray flux peaking in the MeV range. As a result of the good photon statistics and high signal-to-noise ratio spectrum, the $Suzaku$ observation clearly confirms that J0746 has an extremely hard spectrum in the energy range of 0.3-24 keV, which is well represented by a single power-law with a photon index of 1.17 and Galactic absorption. The multiwavelength spectral energy distribution of J0746 shows two continuum components, and is well modeled assuming that the high-energy spectral component results from Comptonization of the broad-line region photons. In this paper we search for the bulk Compton spectral features predicted to be produced in the soft X-ray band by scattering external optical/UV photons by cold electrons in a relativistic jet. We discuss and provide constraints on the pair content resulting from the apparent absence of such features., Comment: 13 pages, 8 figures, accepted for publication in the Astrophysical Journal
- Published
- 2008
- Full Text
- View/download PDF
37. Amplitude-Phase Coupling in a Spin-Torque Nano-Oscillator
- Author
-
Kudo, Kiwamu, Nagasawa, Tazumi, Sato, Rie, and Mizushima, Koichi
- Subjects
Condensed Matter - Materials Science ,Condensed Matter - Other Condensed Matter - Abstract
The spin-torque nano-oscillator in the presence of thermal fluctuation is described by the normal form of the Hopf bifurcation with an additive white noise. By the application of the reduction method, the amplitude-phase coupling factor, which has a significant effect on the power spectrum of the spin-torque nano-oscillator, is calculated from the Landau-Lifshitz-Gilbert-Slonczewski equation with the nonlinear Gilbert damping. The amplitude-phase coupling factor exhibits a large variation depending on in-plane anisotropy under the practical external fields., Comment: 4 pages, 4 figures, submitted to Journal of Applied Physics via MMM 2008
- Published
- 2008
- Full Text
- View/download PDF
38. Multiple Component Analysis of Time Resolved Spectra of GRB041006: A Clue to the Nature of Underlying Soft Component of GRBs
- Author
-
Shirasaki, Yuji, Yoshida, Atsumasa, Kawai, Nobuyuki, Tamagawa, Toru, Sakamoto, Takanori, Suzuki, Motoko, Nakagawam, Yujin, Kobayashi, Akina, Sugita, Satoshi, Takahashi, Ichiro, Arimoto, Makoto, Shimokawabe, Takashi, Pazmino, Nicolas Vasquez, Ishimura, Takuto, Sato, Rie, Matsuoka, Masaru, Fenimore, Edward E., Galassi, Mark, Lamb, Donald Q., Graziani, Carlo, Donaghy, Timothy Q., Atteia, Jean-Luc, Pelangeon, Alexandre, Vanderspek, Roland, Crew, Geoffrey B., Doty, John P., Villasenor, Joel, Prigozhin, Gregory, Butler, Nat, Ricker, George R., Hurley, Kevin, Woosley, Stanford E., and Pizzichini, Graziella
- Subjects
Astrophysics - Abstract
GRB 041006 was detected by HETE-2 at 12:18:08 UT on 06 October 2004. This GRB displays a soft X-ray emission, a precursor before the onset of the main event, and also a soft X-ray tail after the end of the main peak. The light curves in four different energy bands display different features; At higher energy bands several peaks are seen in the light curve, while at lower energy bands a single broader bump dominates. It is expected that these different features are the result of a mixture of several components each of which has different energetics and variability. To reveal the nature of each component, we analysed the time resolved spectra and they are successfully resolved into several components. We also found that these components can be classified into two distinct classes; One is a component which has an exponential decay of $E_{p}$ with a characteristic timescale shorter than $\sim$ 30 sec, and its spectrum is well represented by a broken power law function, which is frequently observed in many prompt GRB emissions, so it should have an internal-shock origin. Another is a component whose $E_{p}$ is almost unchanged with characteristic timescale longer than $\sim$ 60 sec, and shows a very soft emission and slower variability. The spectrum of the soft component is characterized by either a broken power law or a black body spectrum. This component might originate from a relatively wider and lower velocity jet or a photosphere of the fireball. By assuming that the soft component is a thermal emission, the radiation radius is initially $4.4 \times 10^{6}$ km, which is a typical radius of a blue supergiant, and its expansion velocity is $2.4 \times 10^{5}$ km/s in the source frame., Comment: 19 pages, 10 figures, accepted for publication in PASJ, replaced with the accepted version (minor correction)
- Published
- 2008
- Full Text
- View/download PDF
39. HETE-2 Observations of the X-Ray Flash XRF 040916
- Author
-
Arimoto, Makoto, Kawai, Nobuyuki, Yoshida, Atsumasa, Tamagawa, Toru, Shirasaki, Yuji, Suzuki, Motoko, Matsuoka, Masaru, Kotoku, Jun'ichi, Sato, Rie, Shimokawabe, Takashi, Pazmino, Nicolas Vasquez, Ishimura, Takuto, Nakagawa, Yujin, Ishikawa, Nobuyuki, Kobayashi, Akina, Sugita, Satoshi, Takahashi, Ichiro, Kuwahara, Makoto, Yamauchi, Makoto, Takagishi, Kunio, Hatsukade, Isamu, Atteia, Jean-Luc, Pelangeon, Alexandre, Vanderspek, Roland, Graziani, Carlo, Prigozhin, Gregory, Villasenor, Joel, Jernigan, J. Garrett, Crew, Geoffrey B., Hurley, Kevin, Sakamoto, Takanori, Ricker, George R., Woosley, Stanford E., Butler, Nat, Levine, Al, Doty, John P., Donaghy, Timothy Q., Lamb, Donald Q., Fenimore, Edward E., Galassi, Mark, Boer, Michel, Dezalay, Jean-Pascal, Olive, Jean-Francios, Braga, Joao, Manchanda, Ravi, and Pizzichini, Graziella
- Subjects
Astrophysics - Abstract
A long X-ray flash was detected and localized by the instruments aboard the High Energy Transient Explorer II (HETE-2) at 00:03:30 UT on 2004 September 16. The position was reported to the GRB Coordinates Network (GCN) approximately 2 hours after the burst. This burst consists of two peaks separated by 200 s, with durations of 110 s and 60 s. We have analyzed the energy spectra of the 1st and 2nd peaks observed with the Wide Field X-Ray Monitor (WXM) and the French Gamma Telescope (FREGATE). We discuss the origin of the 2nd peak in terms of flux variabilities and timescales. We find that it is most likely part of the prompt emission, and is explained by the long-acting engine model. This feature is similar to some bright X-ray flares detected in the early afterglow phase of bursts observed by the Swift satellite., Comment: 9 pages, 4 figures, Accepted for publication in PASJ
- Published
- 2007
- Full Text
- View/download PDF
40. A Comprehensive Study of Short Bursts from SGR 1806-20 and SGR 1900+14 Detected by HETE-2
- Author
-
Nakagawa, Yujin E., Yoshida, Atsumasa, Hurley, Kevin, Atteia, Jean-Luc, Maetou, Miki, Tamagawa, Toru, Suzuki, Motoko, Yamazaki, Tohru, Tanaka, Kaoru, Kawai, Nobuyuki, Shirasaki, Yuji, Pelangeon, Alexandre, Matsuoka, Masaru, Vanderspek, Roland, Crew, Geoff B., Villasenor, Joel S., Sato, Rie, Sugita, Satoshi, Kotoku, Jun'ichi, Arimoto, Makoto, Pizzichini, Graziella, Doty, John P., and Ricker, George R.
- Subjects
Astrophysics - Abstract
We present the results of temporal and spectral studies of the short burst (less than a few hundred milliseconds) from the soft gamma repeaters (SGRs) 1806-20 and 1900+14 using the HETE-2 samples. In five years from 2001 to 2005, HETE-2 detected 50 bursts which were localized to SGR 1806-20 and 5 bursts which were localized to SGR 1900+14. Especially SGR 1806-20 was active in 2004, and HETE-2 localized 33 bursts in that year. The cumulative number-intensity distribution of SGR 1806-20 in 2004 is well described by a power law model with an index of -1.1+/-0.6. It is consistent with previous studies but burst data taken in other years clearly give a steeper distribution. This may suggest that more energetic bursts could occur more frequently in periods of greater activity. A power law cumulative number-intensity distribution is also known for earthquakes and solar flares. It may imply analogous triggering mechanisms. Although spectral evolution during bursts with a time scale of > 20 ms is not common in the HETE-2 sample, spectral softening due to the very rapid (< a few milliseconds) energy reinjection and cooling may not be excluded. The spectra of all short bursts are well reproduced by a two blackbody function (2BB) with temperatures ~4 and ~11 keV. From the timing analysis of the SGR 1806-20 data, a time lag of 2.2+/-0.4 ms is found between the 30-100 keV and 2-10 keV radiation bands. This may imply (1) a very rapid spectral softening and energy reinjection, (2) diffused (elongated) emission plasma along the magnetic field lines in pseudo equilibrium with multi-temperatures, or (3) a separate (located at < 700 km) emission region of softer component (say, ~4 keV) which could be reprocessed X-rays by higher energy (> 11 keV) photons from an emission region near the stellar surface., Comment: 50 pages, 14 figures, accepted for publication in PASJ
- Published
- 2007
- Full Text
- View/download PDF
41. A Suzaku Observation of the Low-Ionization Fe-Line Emission from RCW 86
- Author
-
Ueno, Masaru, Sato, Rie, Kataoka, Jun, Bamba, Aya, Harrus, Ilana, Hiraga, Junko, Hughes, John P., Kilbourne, Caroline A., Koyama, Katsuji, Kokubun, Motohide, Nakajima, Hiroshi, Ozaki, Masanobu, Petre, Robert, Takahashi, Tadayuki, Tanaka, Takaaki, Tomida, Hiroshi, and Yamaguchi, Hiroya
- Subjects
Astrophysics - Abstract
The newly operational X-ray satellite Suzaku observed the southwestern quadrant of the supernova remnant (SNR) RCW 86 in February 2006 to study the nature of the 6.4 keV emission line first detected with the Advanced Satellite for Cosmology and Astronomy (ASCA). The new data confirm the existence of the line, localizing it for the first time; most of the line emission is adjacent and interior to the forward shock and not at the locus of the continuum hard emission. We also report the first detection of a 7.1 keV line that we interpret as the K-beta emission from low-ionization iron. The Fe-K line features are consistent with a non-equilibrium plasma of Fe-rich ejecta with n_{e}t <~ 10^9 cm^-3 s and kT_{e} ~ 5 keV. This combination of low n_{e}t and high kT_{e} suggests collisionless electron heating in an SNR shock. The Fe K-alpha line shows evidence for intrinsic broadening, with a width of 47 (34--59) eV (99% error region). The difference of the spatial distributions of the hard continuum above 3 keV and the Fe-K line emission support a synchrotron origin for the hard continuum., Comment: 6 pages with 6 figures. Accepted for PASJ Suzaku Special Issue (vo. 58, sp.1)
- Published
- 2006
- Full Text
- View/download PDF
42. An Optically Dark GRB Observed by HETE-2: GRB 051022
- Author
-
Nakagawa, Yujin E., Yoshida, Atsumasa, Sugita, Satoshi, Tanaka, Kaoru, Ishikawa, Nobuyuki, Tamagawa, Toru, Suzuki, Motoko, Shirasaki, Yuji, Kawai, Nobuyuki, Matsuoka, Masaru, Atteia, Jean-Luc, Pelangeon, Alexandre, Vanderspek, Roland, Crew, Geoff B., Villasenor, Joel S., Butler, Nat, Doty, John, Ricker, George R., Pizzichini, Graziella, Donaghy, Timothy Q., Lamb, Donald Q., Graziani, Carlo, Sato, Rie, Maetou, Miki, Arimoto, Makoto, Kotoku, Jun'ichi, Jernigan, J. Garret, Sakamoto, Takanori, Olive, Jean-Francois, Boer, Michel, Fenimore, Edward E., Galassi, Mark, Woosley, Stanford E., Yamauchi, Makoto, Takagishi, Kunio, and Hatsukade, Isamu
- Subjects
Astrophysics - Abstract
GRB 051022 was detected at 13:07:58 on 22 October 2005 by HETE-2. The location of GRB 051022 was determined immediately by the flight localization system. This burst contains multiple pulses and has a rather long duration of about 190 seconds. The detections of candidate X-ray and radio afterglows were reported, whereas no optical afterglow was found. The optical spectroscopic observations of the host galaxy revealed the redshift z = 0.8. Using the data derived by HETE-2 observation of the prompt emission, we found the absorption N_H = 8.8 -2.9/+3.1 x 10^22 cm^-2 and the visual extinction A_V = 49 -16/+17 mag in the host galaxy. If this is the case, no detection of any optical transient would be quite reasonable. The absorption derived by the Swift XRT observations of the afterglow is fully consistent with those obtained from the early HETE-2 observation of the prompt emission. Our analysis implies an interpretation that the absorbing medium could be outside external shock at R ~ 10^16 cm, which may be a dusty molecular cloud., Comment: 6 pages, 2 figures, accepted for publication in PASJ letter
- Published
- 2006
- Full Text
- View/download PDF
43. Synchronized Magnetization Oscillations in F/N/F Nanopillars
- Author
-
Kudo, Kiwamu, Sato, Rie, and Mizushima, Koichi
- Subjects
Condensed Matter - Materials Science - Abstract
Current-induced magnetization dynamics in a trilayer structure composed of two ferromagnetic free layers and a nonmagnetic spacer is examined. Both free layers are treated as a monodomain magnetic body with an uniform agnetization. The dynamics of the two magnetizations is modeled by modified Landau-Lifshitz-Gilbert equations with spin-transfer torque terms. By solving the equations simultaneously, we discuss their various solutions in detail. We show that there exists the synchronous motion of two magnetizations among the various solutions; the magnetizations are resonantly coupled via spin-transfer torques and perform precessional motions with the same period. The condition to excite the synchronous motion depends on the difference between the intrinsic frequencies of the two ferromagnetic free layers as well as the magnitude of current., Comment: 7 pages, 13 figures, submitted to Japanese Journal of Applied Physics
- Published
- 2005
- Full Text
- View/download PDF
44. Chandra Observation of the Anomalous X-ray Pulsar 1E 1841-045
- Author
-
Morii, Mikio, Sato, Rie, Kataoka, Jun, and Kawai, Nobuyuki
- Subjects
Astrophysics - Abstract
We present the results from the {\it Chandra} ACIS CC mode observation of an anomalous X-ray pulsar (AXP) 1E 1841-045. This is the first observation in which the pulsar spectrum in wide energy range is spatially discriminated from the surrounding SNR, Kes 73. Like other AXPs, the phase-integrated spectrum is fitted well with power-law plus blackbody model. The spectral parameters are $\Gamma = 2.0 \pm 0.3$, $kT_{\rm BB} = 0.44 \pm 0.02$ keV, and $N_H = 2.54^{+0.15}_{-0.13} \times 10^{22} {\rm cm}^{-2}$. This photon index is significantly flatter than the other AXPs, and resemble to soft gamma-ray repeaters (SGRs) in the quiescent state. The pulse profile is double-peaked, and we found that the second peak has significantly hard spectrum. The spectra of all phases are consistent with power-law plus blackbody model with constant temperature and photon index. When fitted with two blackbody model, we obtained similarly good fit. These results can be interpreted that there are two emission regions with different energy spectra., Comment: 4 pages, 4 figures, accepted for publication in PASJ Letters
- Published
- 2003
- Full Text
- View/download PDF
45. Utility of Positional Instillation of Contrast Cystography for Diagnosing Occult Vesicoureteral Reflux in Children: A Report of Two Cases
- Author
-
SATO, Rie, primary, SHONO, Takeshi, additional, NAKASHIMA, Yasutaka, additional, SHONO, Kumiko, additional, HASHIMOTO, Yoshiko, additional, MORI, Sayo, additional, YASUNAGA, Yukie, additional, OGATA, Reina, additional, YAMAGUCHI, Kenichiro, additional, WATANABE, Kyoko, additional, and YAMASHITA, Hironori, additional
- Published
- 2023
- Full Text
- View/download PDF
46. Toric intraocular lenses in eyes with with-the-rule, against-the-rule, and oblique astigmatism: One-year results
- Author
-
Ninomiya, Yoshihiko, Minami, Keiichiro, Miyata, Kazunori, Eguchi, Shuichiro, Sato, Rie, Okamoto, Fumiki, and Oshika, Tetsuro
- Published
- 2016
- Full Text
- View/download PDF
47. The Si/CdTe semiconductor camera of the ASTRO-H Hard X-ray Imager (HXI)
- Author
-
Sato, Goro, Hagino, Kouichi, Watanabe, Shin, Genba, Kei, Harayama, Atsushi, Kanematsu, Hironori, Kataoka, Jun, Katsuragawa, Miho, Kawaharada, Madoka, Kobayashi, Shogo, Kokubun, Motohide, Kuroda, Yoshikatsu, Makishima, Kazuo, Masukawa, Kazunori, Mimura, Taketo, Miyake, Katsuma, Murakami, Hiroaki, Nakano, Toshio, Nakazawa, Kazuhiro, Noda, Hirofumi, Odaka, Hirokazu, Onishi, Mitsunobu, Saito, Shinya, Sato, Rie, Sato, Tamotsu, Tajima, Hiroyasu, Takahashi, Hiromitsu, Takahashi, Tadayuki, Takeda, Shin׳ichiro, and Yuasa, Takayuki
- Published
- 2016
- Full Text
- View/download PDF
48. Factorial design study to access the 'green' iodocyclization reaction of 2-allylphenols
- Author
-
Corrêa Michelle Fidelis, Ramos Barbosa Álefe Jhonatas, Sato Rie, Junqueira Luis Otávio, Politi Mário José, Rando Daniela Gonçales, and dos Santos Fernandes João Paulo
- Subjects
dihydrobenzofuran synthesis ,factorial design ,green chemistry ,iodocyclization ,Chemistry ,QD1-999 - Abstract
Iodocyclization of 2-allylphenols is a suitable method to access furans and dihydrofurans with adequate yields. Several methodologies to iodocyclization are reported in the literature; however, since some data about the conditions are conflicting, a more systematic approach is needed to define the best conditions. In this work, we performed a full 22 factorial design to study the influence of solvent (water or EtOH:water (1:9) mixture) and the addition of NaHCO3 in iodine-promoted cyclization of 2-allylphenols. The results have shown water as the best solvent to be employed in the cyclization of liquid 2-allylphenols, and the presence of NaHCO3 leads to lower yields. Several examples of 2-iodomethyl-2,3-dihydrobenzofurans preparations are reported using the optimized conditions; however, high yields are only observed when liquid 2-allylphenols were used.
- Published
- 2016
- Full Text
- View/download PDF
49. Jellyfish mucin (qniumucin) extracted with a modified protocol indicated its existence as a constituent of the extracellular matrix
- Author
-
Ushida, Kiminori, primary, Sato, Rie, additional, Momma, Tomoko, additional, Tanaka, Shinra, additional, Kaneko, Takuma, additional, and Morishita, Hiromasa, additional
- Published
- 2022
- Full Text
- View/download PDF
50. Overgrowth of the Amygdala in Children with Single Ventricle Congenital Heart Disease
- Author
-
Sato, Rie, primary, Muneuchi, Jun, additional, Sugitani, Yuichiro, additional, Doi, Hirohito, additional, Furuta, Takashi, additional, Ezaki, Hiroki, additional, Kobayashi, Masaru, additional, Hatai, Eriko, additional, and Watanabe, Mamie, additional
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.