40 results on '"Sathiya Mariyappan"'
Search Results
2. Chemical Design of IrS2 Polymorphs to Understand the Charge/Discharge Asymmetry in Anionic Redox Systems
- Author
-
Thomas Marchandier, Sathiya Mariyappan, Artem M. Abakumov, Stéphane Jobic, Bernard Humbert, Jean-Yves Mevellec, Gwenaëlle Rousse, Maxim Avdeev, Rémi Dedryvère, Dominique Foix, Antonella Iadecola, Marie-Liesse Doublet, Jean-Marie Tarascon, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Skolkovo Institute of Science and Technology [Moscow] (Skoltech), Institut des Matériaux Jean Rouxel (IMN), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - Ecole Polytechnique de l'Université de Nantes (Nantes Univ - EPUN), Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Réseau sur le stockage électrochimique de l'énergie (RS2E), Aix Marseille Université (AMU)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Nantes Université (Nantes Univ)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Université de Montpellier (UM), The University of Sydney, Australian Nuclear Science and Technology Organisation [Australie] (ANSTO), Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM), Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Collège de France - Chaire Chimie du solide et énergie, Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), U.S. Department of Energy under contract no. DE-AC02-06CH11357European Research Council (ERC) (FP/2014)/ERC grant/project no. 670116-ARPEMA, ANR-10-EQPX-0045,ROCK,Spectromètre EXAFS Rapide pour Cinétiques Chimiques(2010), Chaire Chimie du solide et énergie, Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Fédérale Toulouse Midi-Pyrénées-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Sorbonne Université (SU)
- Subjects
General Chemical Engineering ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Materials Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,02 engineering and technology ,General Chemistry ,[CHIM.OTHE]Chemical Sciences/Other ,010402 general chemistry ,021001 nanoscience & nanotechnology ,0210 nano-technology ,01 natural sciences ,0104 chemical sciences - Abstract
International audience; Li-ion batteries are growing in demand and such growth calls for the quest for high-energy-density electrode materials. Li-rich layered oxides that show both cationic and anionic redox are expected to meet the high energy requirement. However, the oxygen anion activity triggers numerous structural and electronic rearrangements that need to be understood prior to envisioning applications. Here, we chemically design two new LixIrS2 polymorphs to further interrogate the mechanisms of the ligand redox process. By combined structural and spectroscopic characterizations, we show that electrochemical lithiation/delithiation of the polymorphs involve different sulfur redox couples that stand as unusual behavior. These structure-dependent kinetic pathways lead to an similar to 1 V difference between the two polymorphs, hence providing the missing link between the structure and hysteresis in anionic redox systems. These insights into the origin of hysteresis can guide proper parameters to cure it, hence laying the groundwork for the design of new practical electrode materials.
- Published
- 2021
- Full Text
- View/download PDF
3. Practicality of methyl acetate as a co-solvent for fast charging Na-ion battery electrolytes
- Author
-
Parth Desai, John Abou-Rjeily, Jean-Marie Tarascon, and Sathiya Mariyappan
- Subjects
General Chemical Engineering ,Electrochemistry - Abstract
Rapid research and technological improvements on Na-ion batteries (NIBs) are making them the most practicable complementary device for lithium-ion batteries (LIBs). Moreover, the high Na-ion diffusion kinetics offers several fast charging electrode materials that are attractive for high power applications. Lowering interphase and charge transfer resistances via innovative electrolytes design, while not scarifying lifetime, is however essential to secure such applications. Herein, we report the effect of low viscous ester based co-solvents in improving the conductivity of Na-ion based electrolyte. Our new electrolyte formulation shows excellent power capability charging the 18650 cell to 84% state of charge (SOC) within ~10 minutes. Additionally it improved low temperature cyclability, but with a slightly reduced high temperature performance against our co-solvent free electrolyte. We believe that the guideline taken here will pave the way towards finding a better compromise between ultrafast charging and high temperature applications for reaching optimum performance.
- Published
- 2022
- Full Text
- View/download PDF
4. Triggering Anionic Redox Activity in Li 3 NbS 4 Through Cationic Disordering or Substitution
- Author
-
Thomas Marchandier, Sathiya Mariyappan, Maria A. Kirsanova, Artem M. Abakumov, Gwenaëlle Rousse, Dominique Foix, Moulay‐Tahar Sougrati, Marie Liesse Doublet, Jean‐Marie Tarascon, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Skolkovo Institute of Science and Technology [Moscow] (Skoltech), Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM), Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Université de Montpellier (UM), Réseau sur le stockage électrochimique de l'énergie (RS2E), Aix Marseille Université (AMU)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Nantes Université (Nantes Univ)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Collège de France - Chaire Chimie du solide et énergie, Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), European Project: 670116,H2020,ERC-2014-ADG,ARPEMA(2015), and Chaire Chimie du solide et énergie
- Subjects
Renewable Energy, Sustainability and the Environment ,crystal- electronic structure relationship ,cation substitution ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[CHIM]Chemical Sciences ,Li-ion batteries ,General Materials Science ,disordered rock-salt phases ,[CHIM.MATE]Chemical Sciences/Material chemistry ,anionic redox - Abstract
International audience; Extensive utilization of Li-ion batteries for varieties of applications necessitates ceaseless improvements of electrode materials for achieving higher energy density. Towards this goal, Li-rich layered oxides exhibiting high capacity due to cumulated cationic and anionic redox activities are under study for nearly a decade. Still, several unanswered questions remain with respect to these Li-driven anionic redox reactions in terms of the activation process and long-term consequences upon cycling. Here, the Li-rich Li3NbS4 phase is focused, and synthesized as two different polymorphs, namely ordered and disordered phases. From analyses of their chemical and electrochemical properties, a crystal-electronic structure relationship is unraveled that triggers the anionic redox activity in these compounds. Moreover, through complementary theoretical calculations, the capability of cationic disorder to trigger anionic redox activity via the hybridization of cationic and non-bonding anionic energy levels is shown. This finding is further supported by the appearance of anionic redox activity by introducing the disorder through cationic substitution. Altogether, the insights derived can help in designing new anionic redox materials with optimum performances for practical applications.
- Published
- 2022
- Full Text
- View/download PDF
5. Unraveling gas evolution in sodium batteries by online electrochemical mass spectrometry
- Author
-
Sigita Trabesinger, Leiting Zhang, Sathiya Mariyappan, Chrysi Tsolakidou, Jean-Marie Tarascon, Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Chaire Chimie du solide et énergie, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), and Collège de France - Chaire Chimie du solide et énergie
- Subjects
Materials science ,Renewable Energy, Sustainability and the Environment ,Gas evolution reaction ,Energy Engineering and Power Technology ,02 engineering and technology ,Electrolyte ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Electrochemistry ,01 natural sciences ,Decomposition ,Cathode ,0104 chemical sciences ,law.invention ,Anode ,Chemical engineering ,law ,Electrode ,Specific energy ,[CHIM]Chemical Sciences ,General Materials Science ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
Identification of gaseous decomposition products from irreversible side-reactions enables understanding of inner working of rechargeable batteries. Unlike for Li-ion batteries, the knowledge of the gas-evolution processes in Na-ion batteries is limited. Therefore, in this study, we have performed online electrochemical mass spectrometry to understand gassing behavior of model electrodes and electrolytes in Na-ion cells. Our results show that a less stable solid–electrolyte interphase (SEI) layer is developed in Na-ion cells as compared with that in Li-ion cells, which is mainly caused by higher solubility of SEI constituents in Na-electrolytes. Electrolyte reduction on the anode has much larger contribution to the gassing in the Na-ion cells, as gas evolution comes not only from direct electrolyte reduction but also from the soluble species, which migrate to the cathode and are decomposed there. During cell cycling, linear carbonates do not form an SEI layer on the anode, resulting in continuous electrolyte reduction, similar to Li-ion system but with much higher severity, while cyclic carbonates form a more stable SEI, preventing further decomposition of the electrolyte. Besides the standard electrolyte solvents, we have also assessed effects of several common electrolyte additives in their ability to stabilize the interphases. The results of this study provide understanding and guidelines for developing more durable electrode–electrolyte interphase, enabling higher specific energy and improved cycling stability for Na-ion batteries.
- Published
- 2021
- Full Text
- View/download PDF
6. Unlocking anionic redox activity in O3-type sodium 3d layered oxides via Li substitution
- Author
-
Marie-Liesse Doublet, Anatolii V. Morozov, Benjamin Porcheron, Mohamed Chakir, Young-Sang Yu, Leiting Zhang, Artem M. Abakumov, Maxim Avdeev, Wanli Yang, Jordi Cabana, Sathiya Mariyappan, Jean-Marie Tarascon, Michaël Deschamps, Jinpeng Wu, Rémi Dedryvère, Gwenaëlle Rousse, Wang Qing, Collège de France (CdF (institution)), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Conditions Extrêmes et Matériaux : Haute Température et Irradiation (CEMHTI), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université d'Orléans (UO), Université d'Orléans (UO), Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM), Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Chaire Chimie du solide et énergie, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ANR-10-EQPX-0045,ROCK,Spectromètre EXAFS Rapide pour Cinétiques Chimiques(2010), European Project: 670116,H2020,ERC-2014-ADG,ARPEMA(2015), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Université d'Orléans (UO)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), and Collège de France - Chaire Chimie du solide et énergie
- Subjects
Materials science ,Sodium ,chemistry.chemical_element ,02 engineering and technology ,Manganese ,010402 general chemistry ,7. Clean energy ,01 natural sciences ,Redox ,Na-ion batteries ,Affordable and Clean Energy ,[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,Phase (matter) ,General Materials Science ,Nanoscience & Nanotechnology ,water-stable ,Mechanical Engineering ,cation migration ,Cationic polymerization ,General Chemistry ,O3-type layered oxide ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,0104 chemical sciences ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Chemical engineering ,Mechanics of Materials ,Electrode ,Density functional theory ,0210 nano-technology ,anionic redox ,Stoichiometry - Abstract
Sodium ion batteries, because of their sustainability attributes, could be an attractive alternative to Li-ion technology for specific applications. However, it remains challenging to design high energy density and moisture stable Na-based positive electrodes. Here, we report an O3-type NaLi1/3Mn2/3O2 phase showing anionic redox activity, obtained through a ceramic process by carefully adjusting synthesis conditions and stoichiometry. This phase shows a sustained reversible capacity of 190 mAh g−1 that is rooted in cumulative oxygen and manganese redox processes as deduced by combined spectroscopy techniques. Unlike many other anionic redox layered oxides so far reported, O3-NaLi1/3Mn2/3O2 electrodes do not show discernible voltage fade on cycling. This finding, rationalized by density functional theory, sheds light on the role of inter- versus intralayer 3d cationic migration in ruling voltage fade in anionic redox electrodes. Another practical asset of this material stems from its moisture stability, hence facilitating its handling and electrode processing. Overall, this work offers future directions towards designing highly performing sodium electrodes for advanced Na-ion batteries. Sodium ion batteries could be an attractive alternative to Li-ion technology but designing high energy density and moisture stable Na-based cathodes is challenging. Adjusting synthesis conditions and stoichiometry, an O3-type NaLi1/3Mn2/3O2 phase with anionic redox activity is reported.
- Published
- 2021
- Full Text
- View/download PDF
7. Challenges of today for Na-based batteries of the future: From materials to cell metrics
- Author
-
Montse Casas-Cabanas, Ivana Hasa, Damien Saurel, Christian Masquelier, Alexey Y. Koposov, Laurence Croguennec, Sathiya Mariyappan, Philipp Adelhelm, Reseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, France, Réseau sur le stockage éléctrochimique de l'énergie, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU), Collège de France (CdF (institution)), Warwick Manufacturing Group [Coventry] (WMG), University of Warwick [Coventry], Helmholtz Institute Ulm (HIU), Institute of Nanotechnology [Karlsruhe] (INT), Karlsruhe Institute of Technology (KIT), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Advanced Lithium Energy Storage Systems - ALISTORE-ERI (ALISTORE-ERI), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), CIC ENERGIGUNE - Parque Tecnol Alava, Institute of Chemistry berlin, Humboldt University of Berlin, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Department of Battery Technology, Institute for Energy Technology (IFE), Laboratoire réactivité et chimie des solides - UMR CNRS 7314 (LRCS), Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Basque Foundation for Science (Ikerbasque), MCC and DS are grateful to the Basque Government through the Elkartek grants CICe2019 and CICe2020 (KK 2020/00078), to Ministerio de Economía y Competitividad through NIB-MOVE grant (PID2019-107468RB-C22) and to M. Galceran for helpful discussions. IH acknowledges the Bundesministerium für Bildung und Forschung (BMBF) for support through the TRANSITION project (03XP0186A). IH is also grateful for the financial support of the Helmholtz Association. SM, LC and CM thank the RS2E Network for funding as well as the financial support of Région Nouvelle Aquitaine, of the French National Research Agency (STORE-EX Labex Project ANR-10-LABX-76-01) and of the European Union's Horizon 2020 research and innovation program under grant agreement No 875629. The authors are grateful to Argonne National Laboratory for providing the BatPac software., ANR-10-LABX-0076,STORE-EX,Laboratory of excellency for electrochemical energy storage(2010), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Humboldt University Of Berlin, Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and Ikerbasque - Basque Foundation for Science
- Subjects
Battery (electricity) ,Renewable Energy, Sustainability and the Environment ,Computer science ,Energy Engineering and Power Technology ,[CHIM.MATE]Chemical Sciences/Material chemistry ,02 engineering and technology ,Cellular level ,010402 general chemistry ,021001 nanoscience & nanotechnology ,7. Clean energy ,01 natural sciences ,Energy storage ,0104 chemical sciences ,Risk analysis (engineering) ,Key (cryptography) ,Disruptive innovation ,[CHIM]Chemical Sciences ,Performance indicator ,Electrical and Electronic Engineering ,Physical and Theoretical Chemistry ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience; Several emerging battery technologies are currently on endeavour to take a share of the dominant position taken by Li-ion batteries in the field of energy storage. Among them, sodium-based batteries offer a combination of attractive properties i.e., low cost, sustainable precursors and secure raw material supplies. Na-based batteries include related battery concepts, such as Na-ion, all solid-state Na batteries, Na/O2 and Na/S, that differ in key components and in redox chemistry, and therefore result in separate challenges and metrics. Na-ion batteries represent an attractive solution which is almost ready to challenge Li-ion technology in certain applications; the other cell concepts represent a more disruptive innovation, with a higher performance gain, provided that major hurdles are overcome. The present review aims at highlighting the most promising materials in the field of Na-based batteries and challenges needed to be addressed to make this technology industrially appealing, by providing an in-depth analysis of performance metrics from recent literature. To this end, half-cell reported metrics have been extrapolated to full cell level for the more mature Na-ion technology to provide a fair comparison with existing technologies.
- Published
- 2021
- Full Text
- View/download PDF
8. Non‐Aqueous Electrolytes for Sodium‐Ion Batteries: Challenges and Prospects Towards Commercialization
- Author
-
Hussein Hijazi, Sathiya Mariyappan, Parth Desai, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)
- Subjects
Battery (electricity) ,business.industry ,Computer science ,Energy Engineering and Power Technology ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,7. Clean energy ,01 natural sciences ,Commercialization ,Bottleneck ,Energy storage ,Non aqueous electrolytes ,0104 chemical sciences ,Electrochemistry ,Electrical and Electronic Engineering ,0210 nano-technology ,Process engineering ,business ,[CHIM.OTHE]Chemical Sciences/Other - Abstract
International audience; Integration of Na-ion batteries (NIBs) as a complementary energy storage device to the presently dominating Li-ion battery (LIB) technology is a must, considering the cost and sustainability issues of lithium. However, despite the important laboratory-scale achievements concerning Na-ion electrodes and electrolytes, the improvements needed for realizing battery devices to meet users demands are being relatively slow. More specifically, the development of suitable electrolytes remains as the bottleneck that restrains this technology from meeting the commercial requirements, hence defining a future challenge. This review explains the design strategies in use for NIB electrolytes with a special emphasis on intrinsic differences between Li- and Na-ion chemistries, which are at the origin of difficulties associated with the discovery of optimum electrolytes for NIBs. We highlight the key requirements that an electrolyte must satisfy and related experimental techniques that could be used for quick screening of NIB electrolytes in laboratory-scale for exploiting in commercial NIB devices.
- Published
- 2021
- Full Text
- View/download PDF
9. Deciphering Interfacial Reactions via Optical Sensing to Tune the Interphase Chemistry for Optimized Na‐Ion Electrolyte Formulation
- Author
-
Jiaqiang Huang, Jean-Marie Tarascon, Leiting Zhang, Parth Desai, Hussein Hijazi, Sathiya Mariyappan, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Collège de France - Chaire Chimie du solide et énergie, Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), and Chaire Chimie du solide et énergie
- Subjects
Materials science ,Renewable Energy, Sustainability and the Environment ,Na-ion electrolytes ,020209 energy ,interfacial reactions ,02 engineering and technology ,Electrolyte ,021001 nanoscience & nanotechnology ,Chemical engineering ,Optical sensing ,0202 electrical engineering, electronic engineering, information engineering ,operando sensing ,[CHIM]Chemical Sciences ,General Materials Science ,Interphase ,electrolyte additives ,0210 nano-technology ,interphases ,ComputingMilieux_MISCELLANEOUS - Abstract
Interphases, solid-electrolyte interphase (SEI) and cathode-electrolyte interphase (CEI) are the key influencers in determining battery life and performance. Especially, for technologies such as sodium ion batteries that are in development stage, it is crucial to tune the interphase chemistry without which it suffers at present from poor performance metrics for reaching real-life applications. In this study, we utilize optical sensors as a tool to follow operando, the thermal events of interfacial reactions and established the role of different electrolyte additives during the SEI/CEI formation. Using the acquired knowledge from sensing, together with complementary studies in Na-ion full-cells, we propose a new electrolyte formulation that showed stable cycling performance at 0-55 °C with very low self-discharge and improved safety due to mitigated 2 gassing during cycling. Finally, we nurture our studies by transferring the know-hows to prototype cylindrical 18650 cells. We hope such findings will accelerate the practical development of Na-ion batteries.
- Published
- 2021
- Full Text
- View/download PDF
10. Elucidation of Gas Evolution in Model Sodium Battery Cells By Online Electrochemical Mass Spectrometry
- Author
-
Leiting Zhang, Sathiya Mariyappan, Sigita Trabesinger, Chrysi Tsolakidou, and Jean-Marie Tarascon
- Subjects
Battery (electricity) ,chemistry ,Sodium ,Gas evolution reaction ,Inorganic chemistry ,chemistry.chemical_element ,Mass spectrometry ,Electrochemistry - Published
- 2021
- Full Text
- View/download PDF
11. The Role of Divalent (Zn 2+ /Mg 2+ /Cu 2+ ) Substituents in Achieving Full Capacity of Sodium Layered Oxides for Na-Ion Battery Applications
- Author
-
François Rabuel, Jean-Marie Tarascon, Antonella Iadecola, Anatoly V. Morozov, Gwenaëlle Rousse, Sathiya Mariyappan, Artem M. Abakumov, Thomas Marchandier, Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Chaire Chimie du solide et énergie, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Collège de France - Chaire Chimie du solide et énergie, Laboratoire réactivité et chimie des solides - UMR CNRS 7314 (LRCS), and Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Battery (electricity) ,Chemical substance ,Materials science ,General Chemical Engineering ,Sodium ,Inorganic chemistry ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,law.invention ,Divalent ,Transition metal ,Magazine ,law ,Materials Chemistry ,[CHIM]Chemical Sciences ,ComputingMilieux_MISCELLANEOUS ,chemistry.chemical_classification ,Electrode material ,General Chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,chemistry ,0210 nano-technology ,Science, technology and society - Abstract
O3-type layered sodium transition metal oxides, for example, NaNi0.5Mn0.5–zTizO2, having one sodium per transition metal ion could be attractive positive electrode materials for achieving high ener...
- Published
- 2020
- Full Text
- View/download PDF
12. Higher energy and safer sodium ion batteries via an electrochemically made disordered Na3V2(PO4)2F3 material
- Author
-
Boris Mirvaux, Rénald David, Quentin Jacquet, Michaël Deschamps, Jean-Marie Tarascon, Sathiya Mariyappan, Guochun Yan, John W. Freeland, Gwenaëlle Rousse, Reseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, France, Réseau sur le stockage éléctrochimique de l'énergie, Chaire Chimie du solide et énergie, Chimie du solide et de l'énergie (CSE), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution)), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Conditions Extrêmes et Matériaux : Haute Température et Irradiation (CEMHTI), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université d'Orléans (UO), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Laboratoire réactivité et chimie des solides - UMR CNRS 7314 (LRCS), Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Argonne National Laboratory [Lemont] (ANL), Université de Picardie Jules Verne (UPJV)-Aix Marseille Université (AMU)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Collège de France - Chaire Chimie du solide et énergie, Université d'Orléans (UO)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Collège de France (CdF (institution))-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université de Nantes (UN)-Université de Pau et des Pays de l'Adour (UPPA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Aix Marseille Université (AMU)-Université de Picardie Jules Verne (UPJV)
- Subjects
0301 basic medicine ,Battery (electricity) ,Materials science ,Science ,Sodium ,Analytical chemistry ,General Physics and Astronomy ,Vanadium ,chemistry.chemical_element ,02 engineering and technology ,7. Clean energy ,General Biochemistry, Genetics and Molecular Biology ,Ion ,03 medical and health sciences ,Oxidation state ,Formula unit ,Phase (matter) ,[CHIM]Chemical Sciences ,lcsh:Science ,ComputingMilieux_MISCELLANEOUS ,Multidisciplinary ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,General Chemistry ,021001 nanoscience & nanotechnology ,030104 developmental biology ,chemistry ,Electrode ,lcsh:Q ,0210 nano-technology ,[CHIM.OTHE]Chemical Sciences/Other ,Materials for energy and catalysis - Abstract
The growing need to store an increasing amount of renewable energy in a sustainable way has rekindled interest for sodium-ion battery technology, owing to the natural abundance of sodium. Presently, sodium-ion batteries based on Na3V2(PO4)2F3/C are the subject of intense research focused on improving the energy density by harnessing the third sodium, which has so far been reported to be electrochemically inaccessible. Here, we are able to trigger the activity of the third sodium electrochemically via the formation of a disordered NaxV2(PO4)2F3 phase of tetragonal symmetry (I4/mmm space group). This phase can reversibly uptake 3 sodium ions per formula unit over the 1 to 4.8 V voltage range, with the last one being re-inserted at 1.6 V vs Na+/Na0. We track the sodium-driven structural/charge compensation mechanism associated to the new phase and find that it remains disordered on cycling while its average vanadium oxidation state varies from 3 to 4.5. Full sodium-ion cells based on this phase as positive electrode and carbon as negative electrode show a 10–20% increase in the overall energy density.
- Published
- 2019
- Full Text
- View/download PDF
13. A New Electrolyte Formulation for Securing High Temperature Cycling and Storage Performances of Na‐Ion Batteries
- Author
-
Guochun Yan, Mathieu Salanne, Jean-Marie Tarascon, Zhujie Li, Claudio Cometto, Kyle G. Reeves, Dominique Foix, Sathiya Mariyappan, Chimie du solide et de l'énergie, Collège de France (CdF)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS), Maison de la Simulation (MDLS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Paris-Sud - Paris 11 (UP11)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Laboratoire d'Electrochimie Moléculaire (LEM (UMR_7591)), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Collège de France (CDF), Collège de France (CdF), National Natural Science Foundation of China. Grant Number: 51804344, European Project: 670116,H2020,ERC-2014-ADG,ARPEMA(2015), Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Collège de France - Chaire Chimie du solide et énergie, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Chaire Chimie du solide et énergie, Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution)), and Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
- Subjects
Battery (electricity) ,Materials science ,02 engineering and technology ,Electrolyte ,Temperature cycling ,010402 general chemistry ,Elastomer ,01 natural sciences ,Oxalate ,chemistry.chemical_compound ,high temperature performance ,X-ray photoelectron spectroscopy ,[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,solid electrolyte interface ,[CHIM]Chemical Sciences ,sodium ion batteries ,General Materials Science ,electrolyte additives ,Renewable Energy, Sustainability and the Environment ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Succinonitrile ,[CHIM.POLY]Chemical Sciences/Polymers ,Chemical engineering ,chemistry ,Electrode ,0210 nano-technology - Abstract
International audience; The Na-ion battery is recognized as a possible alternative to Li-ion battery for applications where power and cost override energy density performances. However, the increasing instability of their electrolyte with temperature is still problematic. Thus, a central question remains how to design Na-based electrolytes. Here, we report discovery of a Na-based electrolyte formulation which enlists four additives (vinylene carbonate (VC), succinonitrile (SN), 1, 3-propane sultone (PS) and sodium difluoro(oxalate)borate (NaODFB) in proper quantities that synergistically combined their positive attributes to lead a stable solid electrolyte interphase (SEI) at both negative and positive electrodes surface at 55 °C. Moreover, we rationalized the role of each additive that consists in producing specific NaF coatings, thin elastomers, sulfate-based deposits and so on via combined impedance (EIS) and X-ray photoelectron spectroscopy (XPS). We demonstrated that empirical electrolyte design rules previously established for Li-ion technology together with theoretical guidance is a vital strategy in the quest for better Na-based electrolytes that can be extended to other chemistries. Overall, this finding, which we implement to practical 18650 cells, widens the route to the rapid development of the Na-ion technology based on the Na 3 V 2 (PO 4) 2 F 3 /C chemistry.
- Published
- 2019
- Full Text
- View/download PDF
14. Means of Using Cyclic Voltammetry to Rapidly Design a Stable DMC-Based Electrolyte for Na-Ion Batteries
- Author
-
Sathiya Mariyappan, Jean-Marie Tarascon, Claudio Cometto, Guochun Yan, Collège de France - Chaire Chimie du solide et énergie, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Chaire Chimie du solide et énergie, Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)
- Subjects
Materials science ,Cyclic voltammetry ,Renewable Energy, Sustainability and the Environment ,Inorganic chemistry ,02 engineering and technology ,Electrolyte ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Batteries ,Materials Chemistry ,Electrochemistry ,[CHIM]Chemical Sciences ,0210 nano-technology ,Sodium batteries - Abstract
International audience; Na-ion batteries are standing as a serious contender to the Li-ion technology for mass storage applications provided we fully master their chemistry, among which the electrolyte is of paramount importance. It controls the degree of parasitic reaction that results in the growth of the solid electrolyte interface (SEI) which governs the battery performances in terms of capacity retention, lifetime, etc… Herein, we show how cyclic voltammetry (CV) can be used to rapidly spot hints of electrolyte decomposition and determine whether the resulting species are either solubilized or adsorbed leading to the SEI formation. Using this approach, we identified a new electrolyte, which consists of a solution of 1M NaPF 6 in EC-DMC (1:1 v/v ratio) to which we added three additives namely vinylene carbonate (VC), sodium (oxalate) difluoro borate (NaODFB) and tris (trimethylsilyl) phosphite TMSPi. This novel electrolyte when implemented in today's practical full Na 3 V 2 (PO 4) 2 F 3 /C Na-ion cells gives the best high temperature performances in terms of cyclability and self-discharge. Using CV we could rationalize this finding and unambiguously prove that NaODFB is ruling the SEI formation while TMSPi is essential to control its growth and for capturing both O 2 and acid impurities responsible for deleterious reactions occurring at relatively high potentials.
- Published
- 2019
- Full Text
- View/download PDF
15. Will Sodium Layered Oxides Ever Be Competitive for Sodium Ion Battery Applications?
- Author
-
Jean-Marie Tarascon, Sathiya Mariyappan, Wang Qing, Collège de France - Chaire Chimie du solide et énergie, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Sorbonne Université (SU), Chaire Chimie du solide et énergie, Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)
- Subjects
Materials science ,Renewable Energy, Sustainability and the Environment ,Sodium ,Inorganic chemistry ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,Sodium-ion battery ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,7. Clean energy ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Batteries ,chemistry ,Lithium Energy Storage ,Materials Chemistry ,Electrochemistry ,[CHIM]Chemical Sciences ,0210 nano-technology - Abstract
International audience; The Na-ion battery technology is rapidly developing as a possible alternative to Li-ion for massive electrochemical energy storage applications because of sustainability and cost reasons. Two types of technologies based either on sodium layered oxides Na x MO 2 (x ≤ 1, M = transition metal ion(s)) or on polyanionic compounds such as Na 3 V 2 (PO 4) 2 F 3 as positive electrode and carbon as negative electrode are presently being pursued. Herein, we benchmark the performance of full Na-ion cells based on several sodium layered oxide materials against Na 3 V 2 (PO 4) 2 F 3 /hard carbon cells. Although several studies report more attractive capacities for sodium layered oxides vs. Na metal (∼200 mAh g −1) than for polyanionic phases (∼120 mAh g −1), we find that such advantages are not maintained when assembling practical full Na-ion cells; the opposite of what is found for Li-ion technology. The reasons for such a loss of supremacy of the layered oxides against polyanionic compounds are discussed in terms of materials structural stability and composition so as to identify fundamental challenges that impede their practical applications. Finally, a few perspectives are given to design better sodium layered oxide electrode materials that could outweigh the performance of today's stellar Na 3 V 2 (PO 4) 2 F 3 .
- Published
- 2018
- Full Text
- View/download PDF
16. Anionic Redox Activity in a Newly Zn-Doped Sodium Layered Oxide P2-Na2/3 Mn1− y Zn y O2 (0 < y < 0.23)
- Author
-
Bai, Xue, Sathiya, Mariyappan, Mendoza-Sanchez, Beatriz, Iadecola, Antonella, Vergnet, Jean, Dedryvère, Rémi, Saubanère, Matthieu, Abakumov, Artem, Rozier, Patrick, Tarascon, Jean‐Marie, Centre National de la Recherche Scientifique - CNRS (FRANCE), Collège de France (FRANCE), Ecole Nationale Supérieure de Chimie de Paris - ENSCP (FRANCE), Ecole Nationale Supérieure de Chimie de Montpellier - ENSCM (FRANCE), Institut National Polytechnique de Toulouse - INPT (FRANCE), Institut polytechnique de Grenoble (FRANCE), Sorbonne Université (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Université de Nantes (FRANCE), Université de Picardie Jules Verne (FRANCE), Université de Pau et des Pays de l'Adour - UPPA (FRANCE), Université de Haute Alsace - UHA (FRANCE), Université de Montpellier (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM), Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Chaire Chimie du solide et énergie, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), European Project: 670116,H2020,ERC-2014-ADG,ARPEMA(2015), European Project: 646433,H2020,H2020-LCE-2014-3,NAIADES(2015), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), and Collège de France - Chaire Chimie du solide et énergie
- Subjects
Energie électrique ,Oxygen activity ,[CHIM.POLY]Chemical Sciences/Polymers ,Layered oxides ,Matériaux ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Anionic redox ,Na-ion batteries ,Na‐ion batteries ,[SPI.MAT]Engineering Sciences [physics]/Materials - Abstract
International audience; The revival of the Na‐ion battery concept has prompted intense research activities toward new sustainable Na‐based insertion compounds and their implementation in full Na‐ion cells. Efforts are parted between Na‐based polyanionic and layered compounds. For the latter, there has been a specific focus on Na‐deficient layered phases that show cationic and anionic redox activity similar to a Na0.67Mn0.72Mg0.28O2 phase. Herein, a new alkali‐deficient P2‐Na2/3Mn7/9Zn2/9O2 phase using a more electronegative element (Zn) than Mg is reported. Like its Mg counterpart, this phase shows anionic redox activity and no O2 release despite evidence of cationic migration. Density functional theory (DFT) calculations show that it is the presence of an oxygen nonbonding state that triggers the anionic redox activity in this material. The phase delivers a reversible capacity of 200 mAh g−1 in Na‐half cells with such a value be reduced to 140 mAh g−1 in full Na‐ion cells which additionally shows capacity decay upon cycling. These findings establish Na‐deficient layered oxides as a promising platform to further explore the underlying science behind O2 release in insertion compounds based on anionic redox activity.
- Published
- 2018
- Full Text
- View/download PDF
17. Rotating Ring Disk Electrode for Monitoring the Oxygen Release at High Potentials in Li-Rich Layered Oxides
- Author
-
Alexis Grimaud, Jean-Marie Tarascon, Wei Yin, Sathiya Mariyappan, Chaire Chimie du solide et énergie, Chimie du solide et de l'énergie (CSE), and Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Rotating ring-disk electrode ,Renewable Energy, Sustainability and the Environment ,020209 energy ,Analytical chemistry ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,Condensed Matter Physics ,01 natural sciences ,Oxygen ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,chemistry ,0202 electrical engineering, electronic engineering, information engineering ,Materials Chemistry ,Electrochemistry ,[CHIM]Chemical Sciences - Abstract
International audience; Li-rich layered oxides show a staggering capacity that relies on cumulative cationic and anionic redox processes. However, their practical applications are plagued by roadblocks dealing with large hysteresis, capacity fade and irreversible oxygen loss during the first charge that causes undesirable structural changes. Hence, the first step to screen the Li-rich layered oxides is the identification of this gas release phenomenon and its better understanding. Differential electrochemical mass spectrometry (DEMS) is presently used for the elucidation of gas evolution, but its usage is lengthy and far to be routine. Herein we propose the utilization of the simple rotating ring disc electrode (RRDE) technique for the identification of O 2 release phenomenon and hence the quick screening of Li-rich layered
- Published
- 2018
- Full Text
- View/download PDF
18. Higher energy and safer sodium ion batteries via an electrochemically made disordered Na
- Author
-
Guochun, Yan, Sathiya, Mariyappan, Gwenaelle, Rousse, Quentin, Jacquet, Michael, Deschamps, Renald, David, Boris, Mirvaux, John William, Freeland, and Jean-Marie, Tarascon
- Subjects
Article - Abstract
The growing need to store an increasing amount of renewable energy in a sustainable way has rekindled interest for sodium-ion battery technology, owing to the natural abundance of sodium. Presently, sodium-ion batteries based on Na3V2(PO4)2F3/C are the subject of intense research focused on improving the energy density by harnessing the third sodium, which has so far been reported to be electrochemically inaccessible. Here, we are able to trigger the activity of the third sodium electrochemically via the formation of a disordered NaxV2(PO4)2F3 phase of tetragonal symmetry (I4/mmm space group). This phase can reversibly uptake 3 sodium ions per formula unit over the 1 to 4.8 V voltage range, with the last one being re-inserted at 1.6 V vs Na+/Na0. We track the sodium-driven structural/charge compensation mechanism associated to the new phase and find that it remains disordered on cycling while its average vanadium oxidation state varies from 3 to 4.5. Full sodium-ion cells based on this phase as positive electrode and carbon as negative electrode show a 10–20% increase in the overall energy density., Na3V2(PO4)2F3 is a promising cathode material for Na-ion batteries, although its third sodium is usually not accessible electrochemically. Here the authors realize a disordered tetragonal NVPF phase, which can reversibly uptake 3 Na-ions and enables improved energy density for the NVPF/C full cell.
- Published
- 2018
19. Reaching the Energy Density Limit of Layered O3‐NaNi 0.5 Mn 0.5 O 2 Electrodes via Dual Cu and Ti Substitution
- Author
-
Wang Qing, François Rabuel, Artem M. Abakumov, Gwenaëlle Rousse, Jean-Marie Tarascon, Sathiya Mariyappan, Jean Vergnet, Mohamed Chakir, Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Chaire Chimie du solide et énergie, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), and Collège de France - Chaire Chimie du solide et énergie
- Subjects
High energy ,Materials science ,Renewable Energy, Sustainability and the Environment ,Substitution (logic) ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Molecular physics ,0104 chemical sciences ,Dual (category theory) ,Electrode ,Energy density ,[CHIM]Chemical Sciences ,General Materials Science ,Limit (mathematics) ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2019
- Full Text
- View/download PDF
20. Anionic Redox Activity in a Newly Zn‐Doped Sodium Layered Oxide P2‐Na2/3Mn1−yZnyO2 (0 < y < 0.23)
- Author
-
Bai, Xue, primary, Sathiya, Mariyappan, additional, Mendoza‐Sánchez, Beatriz, additional, Iadecola, Antonella, additional, Vergnet, Jean, additional, Dedryvère, Rémi, additional, Saubanère, Matthieu, additional, Abakumov, Artem M., additional, Rozier, Patrick, additional, and Tarascon, Jean‐Marie, additional
- Published
- 2018
- Full Text
- View/download PDF
21. Anionic redox chemistry in Na-rich Na2Ru1 − ySnyO3 positive electrode material for Na-ion batteries
- Author
-
Rozier, Patrick, Sathiya, Mariyappan, Paulraj, Alagar-Raj, Foix, Dominique, Desaunay, Thomas, Taberna, Pierre-Louis, Simon, Patrice, and Tarascon, Jean-Marie
- Published
- 2015
- Full Text
- View/download PDF
22. A Chemical Approach to Raise Cell Voltage and Suppress Phase Transition in O3 Sodium Layered Oxide Electrodes
- Author
-
Sathiya, Mariyappan, primary, Jacquet, Quentin, additional, Doublet, Marie-Liesse, additional, Karakulina, Olesia M., additional, Hadermann, Joke, additional, and Tarascon, Jean-Marie, additional
- Published
- 2018
- Full Text
- View/download PDF
23. Synthesis of Li-Rich NMC: A Comprehensive Study
- Author
-
Pimenta, Vanessa, primary, Sathiya, Mariyappan, additional, Batuk, Dmitry, additional, Abakumov, Artem M., additional, Giaume, Domitille, additional, Cassaignon, Sophie, additional, Larcher, Dominique, additional, and Tarascon, Jean-Marie, additional
- Published
- 2017
- Full Text
- View/download PDF
24. Dual Stabilization and Sacrificial Effect of Na2CO3 for Increasing Capacities of Na-Ion Cells Based on P2-NaxMO2 Electrodes
- Author
-
Sathiya, Mariyappan, primary, Thomas, Joy, additional, Batuk, Dmitry, additional, Pimenta, Vanessa, additional, Gopalan, Raghavan, additional, and Tarascon, Jean-Marie, additional
- Published
- 2017
- Full Text
- View/download PDF
25. Reversible Li-Intercalation through Oxygen Reactivity in Li-Rich Li-Fe-Te Oxide Materials
- Author
-
Jean-Marie Tarascon, Florent Lepoivre, Danielle Gonbeau, Gustaaf Van Tendeloo, Benedikt Klobes, Eric McCalla, Marie-Liesse Doublet, Moulay Tahar Sougrati, Petr Novák, Raphaël P. Hermann, Annigere S. Prakash, Gwenaëlle Rousse, Sathiya Mariyappan, Erik J. Berg, Artem M. Abakumov, Dominique Foix, Matthieu Saubanère, Chaire Chimie du solide et énergie, Chimie du solide et de l'énergie (CSE), Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU), Department of Internal Medicine, Albert Schweitzer Hospital, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), EMAT, University of Antwerp, University of Antwerp (UA), Advanced Lithium Energy Storage Systems - ALISTORE-ERI (ALISTORE-ERI), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS), Jülich Centre for Neutron Science (JCNS - PGI, JARA-FIT), Peter Grünberg Institut, Université Pierre et Marie Curie - Paris 6 (UPMC), Laboratoire réactivité et chimie des solides - UMR CNRS 7314 (LRCS), Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Inst Plant Mol Biol, Ctr Biol, CZ-37005, Czech Academy of Sciences [Prague] (CAS), Department of Biology (University of Antwerp), Faculté des Sciences, Université de Liège, Collège de France - Chaire Chimie du solide et énergie, Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Institut pluridisciplinaire de recherche sur l'environnement et les matériaux (IPREM), Peter Grünberg Institut (PGI), and Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Renewable Energy, Sustainability and the Environment ,Physics ,Inorganic chemistry ,Intercalation (chemistry) ,Oxide ,chemistry.chemical_element ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Condensed Matter Physics ,Oxygen ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Chemistry ,chemistry.chemical_compound ,chemistry ,Materials Chemistry ,Electrochemistry ,Reactivity (chemistry) ,ComputingMilieux_MISCELLANEOUS - Abstract
Lithium-rich oxides are a promising class of positive electrode materials for next generation lithium-ion batteries, and oxygen plays a prominent role during electrochemical cycling either by forming peroxo-like species and/or by irreversibly forming oxygen gas during first charge. Here, we present Li-Fe-Te-O materials which show a tremendous amount of oxygen gas release. This oxygen release accounts for nearly all the capacity during the first charge and results in vacancies as seen by transmission electron microscopy. There is no oxidation of either metal during charge but significant changes in their environments. These changes are particularly extreme for tellurium. XRD and neutron powder diffraction both show limited Changes during cycling and no appreciable change in lattice parameters. A density functional theory study of this material is performed and demonstrates that the holes created on some of the oxygen atoms upon oxidation are partially stabilized through the formation of shorter O-O bonds, i.e. (O-2)(n-) species which on further delithiation show a spontaneous O-2 de-coordination from the cationic network and migration to the now empty lithium layer. The rate limiting step during charge is undoubtedly the diffusion of oxygen either out along the lithium layer or via columns of oxygen atoms. (C) 2015 The Electrochemical Society. All rights reserved.
- Published
- 2015
- Full Text
- View/download PDF
26. ChemInform Abstract: Preparation and Characterization of a Stable FeSO4F-Based Framework for Alkali Ion Insertion Electrodes
- Author
-
Gwenaëlle Rousse, Jean-Claude Jumas, Jean-Noël Chotard, Christine Frayret, Nadir Recham, Jean-Marie Tarascon, Brent C. Melot, Moulay Tahar Sougrati, and Sathiya Mariyappan
- Subjects
Chemistry ,Electrode ,Inorganic chemistry ,General Medicine ,Alkali metal ,Ball mill ,Ion ,Characterization (materials science) - Abstract
KMSO4F (M: Fe, Co, Ni) is prepared by ball milling of equimolar mixtures of KF and MSO4 for one hour followed by heating (Parr reactor, 270—290 °C, 40—45 h).
- Published
- 2013
- Full Text
- View/download PDF
27. Preparation and Characterization of a Stable FeSO4F‑Based Framework for Alkali Ion Insertion Electrodes
- Author
-
Brent C. Melot, Jean-Claude Jumas, Moulay Tahar Sougrati, Nadir Recham, Sathiya Mariyappan, Christine Frayret, Gwenaëlle Rousse, Jean-Noël Chotard, Jean-Marie Tarascon, Laboratoire réactivité et chimie des solides - UMR CNRS 7314 (LRCS), Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Advanced Lithium Energy Storage Systems - ALISTORE-ERI (ALISTORE-ERI), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de minéralogie et de physique des milieux condensés (IMPMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Department of Chemistry, University of Southern California, University of Southern California (USC), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS), and Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
cathode ,crystal structure ,batteries ,Crystal chemistry ,General Chemical Engineering ,Inorganic chemistry ,02 engineering and technology ,Crystal structure ,fluorosulfates ,010402 general chemistry ,01 natural sciences ,Redox ,Ion ,law.invention ,law ,Phase (matter) ,Materials Chemistry ,Chemistry ,General Chemistry ,021001 nanoscience & nanotechnology ,Alkali metal ,Combinatorial chemistry ,Cathode ,0104 chemical sciences ,[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other] ,Electrode ,0210 nano-technology - Abstract
International audience; Polyanionic electrode materials offer an attractive combination of safety benefits and tunable redox potentials. Thus far, phosphate-based phases have drawn the most interest with a subsequent surge of activity focused on the newly discovered family of fluorosulfate phases. Here, we report the preparation of a new potassium-based fluorosulfate, KFeSO4F, which, with removal of K, leads to a new polymorph of FeSO4F crystallizing in the high-temperature structure of KTiOPO4. This new phase which contains large, empty channels, is capable of reversibly inserting 0.9 Li+ per unit formula and can accommodate a wide variety of alkali ions including Li+, Na+, or K+. This finding not only expands the rich crystal chemistry of the fluorosulfate family but further suggests that a similar strategy can apply to other K-based polyanionic compounds in view of stabilizing new attractive host structures for insertion reactions.
- Published
- 2012
- Full Text
- View/download PDF
28. X-ray Photoemission Spectroscopy Study of Cationic and Anionic Redox Processes in High-Capacity Li-Ion Battery Layered-Oxide Electrodes
- Author
-
Foix, Dominique, primary, Sathiya, Mariyappan, additional, McCalla, Eric, additional, Tarascon, Jean-Marie, additional, and Gonbeau, Danielle, additional
- Published
- 2016
- Full Text
- View/download PDF
29. Understanding the Roles of Anionic Redox and Oxygen Release during Electrochemical Cycling of Lithium-Rich Layered Li4FeSbO6
- Author
-
McCalla, Eric, primary, Sougrati, Moulay Tahar, additional, Rousse, Gwenaelle, additional, Berg, Erik Jamstorp, additional, Abakumov, Artem, additional, Recham, Nadir, additional, Ramesha, Kannadka, additional, Sathiya, Mariyappan, additional, Dominko, Robert, additional, Van Tendeloo, Gustaaf, additional, Novák, Petr, additional, and Tarascon, Jean-Marie, additional
- Published
- 2015
- Full Text
- View/download PDF
30. Anionic redox chemistry in Na-rich Na 2 Ru 1−y Sn y O 3 positive electrode material for Na-ion batteries
- Author
-
Rozier, Patrick, primary, Sathiya, Mariyappan, additional, Paulraj, Alagar-Raj, additional, Foix, Dominique, additional, Desaunay, Thomas, additional, Taberna, Pierre-Louis, additional, Simon, Patrice, additional, and Tarascon, Jean-Marie, additional
- Published
- 2015
- Full Text
- View/download PDF
31. Dual Stabilization and Sacrificial Effect of Na2CO3 for Increasing Capacities of Na-Ion Cells Based on P2-NaxMO2 Electrodes.
- Author
-
Sathiya, Mariyappan, Thomas, Joy, Batuk, Dmitry, Pimenta, Vanessa, Gopalan, Raghavan, and Tarascon, Jean-Marie
- Subjects
- *
ELECTRODES , *SODIUM ions , *LITHIUM-ion batteries , *METALLIC oxides , *SODIUM carbonate - Abstract
Sodium ion battery technology is gradually advancing and can be viewed as a viable alternative to lithium ion batteries in niche applications. One of the promising positive electrode candidates is P2 type layered sodium transition metal oxide, which offers attractive sodium ion conductivity. However, the reversible capacity of P2 phases is limited by the inability to directly synthesize stoichiometric compounds with a sodium to transition metal ratio equal to 1. To alleviate this issue, we report herein the in situ synthesis of P2-NaxMO2 (x ≤ 0.7, M = transition metal ions)-Na2CO3 composites. We find that sodium carbonate acts as a sacrificial salt, providing Na+ ion to increase the reversible capacity of the P2 phase in sodium ion full cells, and also as a useful additive that stabilizes the formation of P2 over competing P3 phases. We offer a new phase diagram for tuning the synthesis of the P2 phase under various experimental conditions and demonstrate, by in situ XRD analysis, the role of Na2CO3 as a sodium reservoir in full sodium ion cells. These results provide insights into the practical use of P2 layered materials and can be extended to a variety of other layered phases. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
32. Invited Presentation: Present Understanding of the High Capacity Layered Oxide Electrodes
- Author
-
Tarascon, Jean-Marie, primary, Sathiya, Mariyappan, additional, Ramesha, Kannadka, additional, Abakumov, Artem M, additional, Rousse, Gwenaelle, additional, Gonbeau, Danielle, additional, Doublet, Marie-Liesse, additional, Prakash, Annigere S, additional, and Van Tendeloo, Gustaaf, additional
- Published
- 2014
- Full Text
- View/download PDF
33. Understanding and Promoting the Rapid Preparation of the Triplite-Phase of LiFeSO4F for Use as a Large-Potential Fe Cathode
- Author
-
Ati, Mohamed, primary, Sathiya, Mariyappan, additional, Boulineau, Sylvain, additional, Reynaud, Marine, additional, Abakumov, Artem, additional, Rousse, Gwenaelle, additional, Melot, Brent, additional, Van Tendeloo, Gustaaf, additional, and Tarascon, Jean-Marie, additional
- Published
- 2012
- Full Text
- View/download PDF
34. Nitrate-Melt Synthesized HT-LiCoO2 as a Superior Cathode-Material for Lithium-Ion Batteries
- Author
-
Sathiya, Mariyappan, primary, Prakash, Annigere, additional, Ramesha, Kannadka, additional, and Shukla, Ashok, additional
- Published
- 2009
- Full Text
- View/download PDF
35. Understanding the Roles of Anionic Redox and Oxygen Release during Electrochemical Cycling of Lithium-Rich Layered Li4FeSbO6.
- Author
-
McCalla, Eric, Tahar Sougrati, Moulay, Rousse, Gwenaelle, Berg, Erik Jamstorp, Abakumov, Artem, Recham, Nadir, Ramesha, Kannadka, Sathiya, Mariyappan, Dominko, Robert, Van Tendeloo, Gustaaf, Novák, Petr, and Tarascon, Jean-Marie
- Published
- 2015
- Full Text
- View/download PDF
36. Understanding and Promoting the Rapid Preparation of the Triplite-Phase of LiFeSO4F for Use as a Large-Potential Fe Cathode.
- Author
-
Ati, Mohamed, Sathiya, Mariyappan, Boulineau, Sylvain, Reynaud, Marine, Abakumov, Artem, Rousse, Gwenaelle, Melot, Brent, Van Tendeloo, Gustaaf, and Tarascon, Jean-Marie
- Subjects
- *
TRANSMISSION electron microscopy , *CATHODES , *SINTERING , *ANNEALING of metals - Abstract
The development of new electrode materials, which are composed of Earth-abundant elements and that can be made via eco-efficient processes, is becoming absolutely necessary for reasons of sustainable production. The 3.9 V triplite-phase of LiFeSO4F, compared to the 3.6 V tavorite-phase, could satisfy this requirement provided the currently complex synthetic pathway can be simplified. Here, we present our work aiming at better understanding the reaction mechanism that govern its formation as a way to optimize its preparation. We first demonstrate, using complementary X-ray diffraction and transmission electron microscopy studies, that triplite-LiFeSO4F can nucleate from tavorite-LiFeSO4F via a reconstructive process whose kinetics are significantly influenced by moisture and particle morphology. Perhaps the most spectacular finding is that it is possible to prepare electrochemically active triplite-LiFeSO4F from anhydrous precursors using either reactive spark plasma sintering (SPS) synthesis in a mere 20 min at 320 °C or room-temperature ball milling for 3 h. These new pathways appear to be strongly driven by the easy formation of a disordered phase with higher entropy, as both techniques trigger disorder via rapid annealing steps or defect creation. Although a huge number of phases adopts the tavorite structure-type, this new finding offers both a potential way to prepare new compositions in the triplite structure and a wealth of opportunities for the synthesis of new materials which could benefit many domains beyond energy storage. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
37. Challenges of today for Na-based batteries of the future: From materials to cell metrics
- Author
-
Ivana Hasa, Sathiya Mariyappan, Damien Saurel, Philipp Adelhelm, Alexey Y. Koposov, Christian Masquelier, Laurence Croguennec, and Montse Casas-Cabanas
- Subjects
7. Clean energy ,GeneralLiterature_MISCELLANEOUS - Abstract
Several emerging battery technologies are currently on endeavour to take a share of the dominant position takenby Li-ion batteries in the field of energy storage. Among them, sodium-based batteries offer a combination ofattractive properties i.e., low cost, sustainable precursors and secure raw material supplies. Na-based batteriesinclude related battery concepts, such as Na-ion, all solid-state Na batteries, Na/O2 and Na/S, that differ in keycomponents and in redox chemistry, and therefore result in separate challenges and metrics. Na-ion batteriesrepresent an attractive solution which is almost ready to challenge Li-ion technology in certain applications; theother cell concepts represent a more disruptive innovation, with a higher performance gain, provided that majorhurdles are overcome. The present review aims at highlighting the most promising materials in the field of Nabasedbatteries and challenges needed to be addressed to make this technology industrially appealing, byproviding an in-depth analysis ofperformance metrics from recent literature. To this end, half-cell reportedmetrics have been extrapolated to full cell level for the more mature Na-ion technology to provide a fair comparisonwith existing technologies.
38. Challenges of today for Na-based batteries of the future: From materials to cell metrics
- Author
-
Hasa, Ivana, Sathiya Mariyappan, Saurel, Damien, Adelhelm, Philipp, Koposov, Alexey Y., Masquelier, Christian, Croguennec, Laurence, and Casas-Cabanas, Montse
- Subjects
7. Clean energy - Abstract
Several emerging battery technologies are currently on endeavour to take a share of the dominant position taken by Li-ion batteries in the field of energy storage. Among them, sodium-based batteries offer a combination of attractive properties i.e., low cost, sustainable precursors and secure raw material supplies. Na-based batteries include related battery concepts, such as Na-ion, all solid-state Na batteries, Na/O2 and Na/S, that differ in key components and in redox chemistry, and therefore result in separate challenges and metrics. Na-ion batteries represent an attractive solution which is almost ready to challenge Li-ion technology in certain applications; the other cell concepts represent a more disruptive innovation, with a higher performance gain, provided that major hurdles are overcome. The present review aims at highlighting the most promising materials in the field of Nabased batteries and challenges needed to be addressed to make this technology industrially appealing, by providing an in-depth analysis of performance metrics from recent literature. To this end, half-cell reported metrics have been extrapolated to full cell level for the more mature Na-ion technology to provide a fair comparison with existing technologies.
39. Anionic Redox Activity in a Newly Zn‐Doped Sodium Layered Oxide P2‐Na2/3Mn1−yZnyO2 (0 < y < 0.23).
- Author
-
Bai, Xue, Sathiya, Mariyappan, Mendoza‐Sánchez, Beatriz, Iadecola, Antonella, Vergnet, Jean, Dedryvère, Rémi, Saubanère, Matthieu, Abakumov, Artem M., Rozier, Patrick, and Tarascon, Jean‐Marie
- Subjects
- *
ANIONIC surfactants , *ENERGY bands , *DENSITY functional theory , *MOLECULAR theory , *SODIUM - Abstract
The revival of the Na‐ion battery concept has prompted intense research activities toward new sustainable Na‐based insertion compounds and their implementation in full Na‐ion cells. Efforts are parted between Na‐based polyanionic and layered compounds. For the latter, there has been a specific focus on Na‐deficient layered phases that show cationic and anionic redox activity similar to a Na0.67Mn0.72Mg0.28O2 phase. Herein, a new alkali‐deficient P2‐Na2/3Mn7/9Zn2/9O2 phase using a more electronegative element (Zn) than Mg is reported. Like its Mg counterpart, this phase shows anionic redox activity and no O2 release despite evidence of cationic migration. Density functional theory (DFT) calculations show that it is the presence of an oxygen nonbonding state that triggers the anionic redox activity in this material. The phase delivers a reversible capacity of 200 mAh g−1 in Na‐half cells with such a value be reduced to 140 mAh g−1 in full Na‐ion cells which additionally shows capacity decay upon cycling. These findings establish Na‐deficient layered oxides as a promising platform to further explore the underlying science behind O2 release in insertion compounds based on anionic redox activity. The doping of layered sodium based oxide with Zn electronegative d10 ions allows adaptation of energy bands to create nonbonding O(2p) states that can be activated. Characterization carried out ex situ and in operando shows that P2‐Na2/3[Mn7/9Zn2/9]O2 demonstrates reversible cumulative cationic and anionic redox activity while, despite no O2 release, a migration of cations occurs progressively. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
40. Understanding the Roles of Anionic Redox and Oxygen Release during Electrochemical Cycling of Lithium-Rich Layered Li4FeSbO6.
- Author
-
McCalla, Eric, Tahar Sougrati, Moulay, Rousse, Gwenaelle, Berg, Erik Jamstorp, Abakumov, Artem, Recham, Nadir, Ramesha, Kannadka, Sathiya, Mariyappan, Dominko, Robert, Van Tendeloo, Gustaaf, Novák, Petr, and Tarascon, Jean-Marie
- Subjects
- *
ADDITION polymerization , *OXYGEN , *ELECTRODES , *ELECTROCHEMICAL analysis , *LITHIUM - Abstract
Li-rich oxides continue to be of immense interest as potential next generation Li-ion battery positive electrodes, and yet the role of oxygen during cycling is still poorly understood. Here, the complex electrochemical behavior of Li4FeSbO6 materials is studied thoroughly with a variety of methods. Herein, we show that oxygen release occurs at a distinct voltage plateau from the peroxo/superoxo formation making this material ideal for revealing new aspects of oxygen redox processes in Li-rich oxides. Moreover, we directly demonstrate the limited reversibility of the oxygenated species (O2n-; n = 1, 2, 3) for the first time. We also find that during charge to 4.2 V iron is oxidized from +3 to an unusual +4 state with the concomitant formation of oxygenated species. Upon further charge to 5.0 V, an oxygen release process associated with the reduction of iron +4 to +3 is present, indicative of the reductive coupling mechanism between oxygen and metals previously reported. Thus, in full state of charge, lithium removal is fully compensated by oxygen only, as the iron and antimony are both very close to their pristine states. Besides, this charging step results in complex phase transformations that are ultimately destructive to the crystallinity of the material. Such findings again demonstrate the vital importance of fully understanding the behavior of oxygen in such systems. The consequences of these new aspects of the electrochemical behavior of lithium-rich oxides are discussed in detail. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.