Universitat Politècnica de Catalunya. Departament de Física, Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. L'AIRE - Laboratori Aeronàutic i Industrial de Recerca i Estudis, Universitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria, Comellas Sanfeliu, Ester, Farkas, Johanna E., Kleinberg, Giona, Lloyd, Katlyn, Mueller, Thomas, Duerr, Timothy, Muñoz Romero, José, Monaghan, James R., Shefelbine, Sandra J., Universitat Politècnica de Catalunya. Departament de Física, Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. L'AIRE - Laboratori Aeronàutic i Industrial de Recerca i Estudis, Universitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria, Comellas Sanfeliu, Ester, Farkas, Johanna E., Kleinberg, Giona, Lloyd, Katlyn, Mueller, Thomas, Duerr, Timothy, Muñoz Romero, José, Monaghan, James R., and Shefelbine, Sandra J.
Movement-induced forces are critical to correct joint formation, but it is unclear how cells sense and respond to these mechanical cues. To study the role of mechanical stimuli in the shaping of the joint, we combined experiments on regenerating axolotl (Ambystoma mexicanum) forelimbs with a poroelastic model of bone rudiment growth. Animals either regrew forelimbs normally (control) or were injected with a transient receptor potential vanilloid 4 (TRPV4) agonist during joint morphogenesis. We quantified growth and shape in regrown humeri from whole-mount light sheet fluorescence images of the regenerated limbs. Results revealed significant differences in morphology and cell proliferation between groups, indicating that TRPV4 desensitization has an effect on joint shape. To link TRPV4 desensitization with impaired mechanosensitivity, we developed a finite element model of a regenerating humerus. Local tissue growth was the sum of a biological contribution proportional to chondrocyte density, which was constant, and a mechanical contribution proportional to fluid pressure. Computational predictions of growth agreed with experimental outcomes of joint shape, suggesting that interstitial pressure driven from cyclic mechanical stimuli promotes local tissue growth. Predictive computational models informed by experimental findings allow us to explore potential physical mechanisms involved in tissue growth to advance our understanding of the mechanobiology of joint morphogenesis., This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 841047 and the National Science Foundation under grant no. 1727518. J.J.M. has been also funded by the Spanish Ministry of Science and Innovation under grant no. DPI2016-74929-R, and by the local government Generalitat de Catalunya under grant no. 2017 SGR 1278. K.L. was supported by a Northeastern University Undergraduate Research and Fellowships PEAK Experiences Award., Peer Reviewed, Postprint (published version)