15 results on '"Sandrine Menard"'
Search Results
2. Perinatal foodborne titanium dioxide exposure-mediated dysbiosis predisposes mice to develop colitis through life
- Author
-
Caroline Carlé, Delphine Boucher, Luisa Morelli, Camille Larue, Ekaterina Ovtchinnikova, Louise Battut, Kawthar Boumessid, Melvin Airaud, Muriel Quaranta-Nicaise, Jean-Luc Ravanat, Gilles Dietrich, Sandrine Menard, Gérard Eberl, Nicolas Barnich, Emmanuel Mas, Marie Carriere, Ziad Al Nabhani, and Frédérick Barreau
- Subjects
Perinatal period ,Foodborne TiO2 ,Intestinal barrier function ,Intestinal stem cells ,Microbiota ,Colitis ,Toxicology. Poisons ,RA1190-1270 ,Industrial hygiene. Industrial welfare ,HD7260-7780.8 - Abstract
Abstract Background Perinatal exposure to titanium dioxide (TiO2), as a foodborne particle, may influence the intestinal barrier function and the susceptibility to develop inflammatory bowel diseases (IBD) later in life. Here, we investigate the impact of perinatal foodborne TiO2 exposure on the intestinal mucosal function and the susceptibility to develop IBD-associated colitis. Pregnant and lactating mother mice were exposed to TiO2 until pups weaning and the gut microbiota and intestinal barrier function of their offspring was assessed at day 30 post-birth (weaning) and at adult age (50 days). Epigenetic marks was studied by DNA methylation profile measuring the level of 5-methyl-2′-deoxycytosine (5-Me-dC) in DNA from colic epithelial cells. The susceptibility to develop IBD has been monitored using dextran-sulfate sodium (DSS)-induced colitis model. Germ-free mice were used to define whether microbial transfer influence the mucosal homeostasis and subsequent exacerbation of DSS-induced colitis. Results In pregnant and lactating mice, foodborne TiO2 was able to translocate across the host barriers including gut, placenta and mammary gland to reach embryos and pups, respectively. This passage modified the chemical element composition of foetus, and spleen and liver of mothers and their offspring. We showed that perinatal exposure to TiO2 early in life alters the gut microbiota composition, increases the intestinal epithelial permeability and enhances the colonic cytokines and myosin light chain kinase expression. Moreover, perinatal exposure to TiO2 also modifies the abilities of intestinal stem cells to survive, grow and generate a functional epithelium. Maternal TiO2 exposure increases the susceptibility of offspring mice to develop severe DSS-induced colitis later in life. Finally, transfer of TiO2-induced microbiota dysbiosis to pregnant germ-free mice affects the homeostasis of the intestinal mucosal barrier early in life and confers an increased susceptibility to develop colitis in adult offspring. Conclusions Our findings indicate that foodborne TiO2 consumption during the perinatal period has negative long-lasting consequences on the development of the intestinal mucosal barrier toward higher colitis susceptibility. This demonstrates to which extent environmental factors influence the microbial-host interplay and impact the long-term mucosal homeostasis.
- Published
- 2023
- Full Text
- View/download PDF
3. Psychological Stress, Intestinal Barrier Dysfunctions, and Autoimmune Disorders: An Overview
- Author
-
Hanna Ilchmann-Diounou and Sandrine Menard
- Subjects
intestinal permeability ,psychological stress ,type 1 diabetes ,multiple sclerosis ,systemic lupus erythematosus ,microbiota ,Immunologic diseases. Allergy ,RC581-607 - Abstract
Autoimmune disorders (ADs) are multifactorial diseases involving, genetic, epigenetic, and environmental factors characterized by an inappropriate immune response toward self-antigens. In the past decades, there has been a continuous rise in the incidence of ADs, which cannot be explained by genetic factors alone. Influence of psychological stress on the development or the course of autoimmune disorders has been discussed for a long time. Indeed, based on epidemiological studies, stress has been suggested to precede AD occurrence and to exacerbate symptoms. Furthermore, compiling data showed that most of ADs are associated with gastrointestinal symptoms, that is, microbiota dysbiosis, intestinal hyperpermeability, and intestinal inflammation. Interestingly, social stress (acute or chronic, in adult or in neonate) is a well-described intestinal disrupting factor. Taken together, those observations question a potential role of stress-induced defect of the intestinal barrier in the onset and/or the course of ADs. In this review, we aim to present evidences supporting the hypothesis for a role of stress-induced intestinal barrier disruption in the onset and/or the course of ADs. We will mainly focus on autoimmune type 1 diabetes, multiple sclerosis and systemic lupus erythematosus, ADs for which we could find sufficient circumstantial data to support this hypothesis. We excluded gastrointestinal (GI) ADs like coeliac disease to privilege ADs not focused on intestinal disorders to avoid confounding factors. Indeed, GIADs are characterized by antibodies directed against intestinal barrier actors.
- Published
- 2020
- Full Text
- View/download PDF
4. Cryptosporidium parvum Subverts Antimicrobial Activity of CRAMP by Reducing Its Expression in Neonatal Mice
- Author
-
William Guesdon, Tiffany Pezier, Sandrine Menard, Alessandra Nicolosi, Yves Le Vern, Anne Silvestre, Julien Diana, Fabrice Laurent, and Sonia Lacroix-Lamandé
- Subjects
Cryptosporidium parvum ,CRAMP ,antimicrobial activity ,neonatal mice ,Biology (General) ,QH301-705.5 - Abstract
Cryptosporidium parvum causes diarrhea in infants under 5 years, in immunosuppressed individuals or in young ruminants. This parasite infects the apical side of ileal epithelial cells where it develops itself and induces inflammation. Antimicrobial peptides (AMPs) are part of the innate immune response, playing a major role in the control of the acute phase of C. parvum infection in neonates. Intestinal AMP production in neonates is characterized by high expressions of Cathelicidin Related Antimicrobial Peptide (CRAMP), the unique cathelicidin in mice known to fight bacterial infections. In this study, we investigated the role of CRAMP during cryptosporidiosis in neonates. We demonstrated that sporozoites are sensitive to CRAMP antimicrobial activity. However, during C. parvum infection the intestinal expression of CRAMP was significantly and selectively reduced, while other AMPs were upregulated. Moreover, despite high CRAMP expression in the intestine of neonates at homeostasis, the depletion of CRAMP did not worsen C. parvum infection. This result might be explained by the rapid downregulation of CRAMP induced by infection. However, the exogenous administration of CRAMP dampened the parasite burden in neonates. Taken together these results suggest that C. parvum impairs the production of CRAMP to subvert the host response, and highlight exogenous cathelicidin supplements as a potential treatment strategy.
- Published
- 2020
- Full Text
- View/download PDF
5. Prenatal intestinal obstruction affects the myenteric plexus and causes functional bowel impairment in fetal rat experimental model of intestinal atresia.
- Author
-
Naziha Khen-Dunlop, Sabine Sarnacki, Anais Victor, Celine Grosos, Sandrine Menard, Rodolphe Soret, Nicolas Goudin, Maud Pousset, Frederique Sauvat, Yann Revillon, Nadine Cerf-Bensussan, and Michel Neunlist
- Subjects
Medicine ,Science - Abstract
BACKGROUND: Intestinal atresia is a rare congenital disorder with an incidence of 3/10,000 birth. About one-third of patients have severe intestinal dysfunction after surgical repair. We examined whether prenatal gastrointestinal obstruction might effect on the myenteric plexus and account for subsequent functional disorders. METHODOLOGY/PRINCIPAL FINDINGS: We studied a rat model of surgically induced antenatal atresia, comparing intestinal samples from both sides of the obstruction and with healthy rat pups controls. Whole-mount preparations of the myenteric plexus were stained for choline acetyltransferase (ChAT) and nitric oxide synthase (nNOS). Quantitative reverse transcription PCR was used to analyze mRNAs for inflammatory markers. Functional motility and permeability analyses were performed in vitro. Phenotypic studies were also performed in 8 newborns with intestinal atresia. In the experimental model, the proportion of nNOS-immunoreactive neurons was similar in proximal and distal segments (6.7±4.6% vs 5.6±4.2%, p = 0.25), but proximal segments contained a higher proportion of ChAT-immunoreactive neurons (13.2±6.2% vs 7.5±4.3%, p = 0.005). Phenotypic changes were associated with a 100-fold lower concentration-dependent contractile response to carbachol and a 1.6-fold higher EFS-induced contractile response in proximal compared to distal segments. Transcellular (p = 0.002) but not paracellular permeability was increased. Comparison with controls showed that modifications involved not only proximal but also distal segments. Phenotypic studies in human atresia confirmed the changes in ChAT expression. CONCLUSION: Experimental atresia in fetal rat induces differential myenteric plexus phenotypical as well as functional changes (motility and permeability) between the two sides of the obstruction. Delineating these changes might help to identify markers predictive of motility dysfunction and to define guidelines for post-surgical care.
- Published
- 2013
- Full Text
- View/download PDF
6. The epigenome as a biological candidate to incorporate the social environment over the life course and generations
- Author
-
Raphaele Castagne, Sandrine Menard, and Cyrille Delpierre
- Subjects
Cancer Research ,Genetics - Published
- 2023
7. Overview and Comparison of Intestinal Organotypic Models, Intestinal Cells, and Intestinal Explants Used for Toxicity Studies
- Author
-
Marc, Maresca, Philippe, Pinton, El Hassan, Ajandouz, Sandrine, Menard, Laurent, Ferrier, and Isabelle P, Oswald
- Subjects
Intestines ,Animals ,Humans - Abstract
The intestine is a complex organ formed of different types of cell distributed in different layers of tissue. To minimize animal experiments, for decades, researchers have been trying to develop in vitro/ex vivo systems able to mimic the cellular diversity naturally found in the gut. Such models not only help our understanding of the gut physiology but also of intestinal toxicity. This review describes the different systems used to evaluate the effects of drugs/contaminants on intestinal functions and compares their advantages and limitations. The comparison showed that the organotypic model is the best available model to perform intestinal toxicity studies, including on human tissues.
- Published
- 2018
8. Titanium dioxide particles from the diet: involvement in the genesis of inflammatory bowel diseases and colorectal cancer
- Author
-
Frédérick Barreau, Céline Tisseyre, Sandrine Ménard, Audrey Ferrand, and Marie Carriere
- Subjects
TiO2 ,Food additive ,Toxicity ,Gastrointestinal tract ,Ingestion ,Intestine ,Toxicology. Poisons ,RA1190-1270 ,Industrial hygiene. Industrial welfare ,HD7260-7780.8 - Abstract
Abstract The gastrointestinal tract is a complex interface between the external environment and the immune system. Its ability to control uptake across the mucosa and to protect the body from damage of harmful substances from the lumen is defined as the intestinal barrier function (IBF). The IBF involves four elements: the intestinal microbiota, the mucus layer, the epithelium and the immune system. Its dysfunction is linked with human diseases including inflammatory, metabolic, infectious, autoimmune and neurologic disorders. Most of these diseases are complex and involve genetic, psychological and environmental factors. Over the past 10 years, many genetic polymorphisms predisposing to inflammatory bowel disease (IBD) have been identified. Yet, it is now clear that they are insufficient to explain the onset of these chronic diseases. Although it has been evidenced that some environmental factors such as cigarette smoking or carbohydrate intake are associated with IBD, other environmental factors also present potential health risks such as ingestion of food additives introduced in the human diet, including those composed of mineral particles, by altering the four elements of the intestinal barrier function. The aim of this review is to provide a critical opinion on the potential of TiO2 particles, especially when used as a food additive, to alter the four elements of the intestinal barrier function, and consequently to evaluate if this additive would likely play a role in the development and/or exacerbation of IBD.
- Published
- 2021
- Full Text
- View/download PDF
9. Cross-Talk Between the Intestinal Epithelium and Salmonella Typhimurium
- Author
-
Sandrine Ménard, Sonia Lacroix-Lamandé, Katrin Ehrhardt, Jin Yan, Guntram A. Grassl, and Agnès Wiedemann
- Subjects
gastrointestinal tract ,bacteria ,invasion ,survival ,host defense ,Microbiology ,QR1-502 - Abstract
Salmonella enterica serovars are invasive gram-negative bacteria, causing a wide range of diseases from gastroenteritis to typhoid fever, representing a public health threat around the world. Salmonella gains access to the intestinal lumen after oral ingestion of contaminated food or water. The crucial initial step to establish infection is the interaction with the intestinal epithelium. Human-adapted serovars such as S. Typhi or S. Paratyphi disseminate to systemic organs and induce life-threatening disease known as typhoid fever, whereas broad-host serovars such as S. Typhimurium usually are limited to the intestine and responsible for gastroenteritis in humans. To overcome intestinal epithelial barrier, Salmonella developed mechanisms to induce cellular invasion, intracellular replication and to face host defence mechanisms. Depending on the serovar and the respective host organism, disease symptoms differ and are linked to the ability of the bacteria to manipulate the epithelial barrier for its own profit and cross the intestinal epithelium.This review will focus on S. Typhimurium (STm). To better understand STm pathogenesis, it is crucial to characterize the crosstalk between STm and the intestinal epithelium and decipher the mechanisms and epithelial cell types involved. Thus, the purpose of this review is to summarize our current knowledge on the molecular dialogue between STm and the various cell types constituting the intestinal epithelium with a focus on the mechanisms developed by STm to cross the intestinal epithelium and access to subepithelial or systemic sites and survive host defense mechanisms.
- Published
- 2022
- Full Text
- View/download PDF
10. Bisphenol A, S or F mother’s dermal impregnation impairs offspring immune responses in a dose and sex-specific manner in mice
- Author
-
Yann Malaisé, Corinne Lencina, Christel Cartier, Maïwenn Olier, Sandrine Ménard, and Laurence Guzylack-Piriou
- Subjects
Medicine ,Science - Abstract
Abstract Bisphenol (BP)A is an endocrine disruptor (ED) widely used in thermal papers. Regulatory restrictions have been established to prevent risks for human health, leading to BPA substitution by structural analogues, like BPS and BPF. We previously demonstrated that oral perinatal exposure to BPA had long-term consequences on immune responses later in life. It appears now essential to enhance our understanding on immune impact of different routes of BP exposure. In this study, we aimed at comparing the impact of mother dermal exposure to BPs on offspring immune system at adulthood. Gravid mice were dermally exposed to BPA, BPS or BPF at 5 or 50 μg/kg of body weight (BW)/day (d) from gestation day 15 to weaning of pups at post-natal day (PND)21. In offspring, BPs dermal impregnation of mothers led to adverse effects on immune response at intestinal and systemic levels that was dependent on the BP, the dose and offspring sex. These findings provide, for the first time, results on long-term consequences of dermal perinatal BPs exposure on immune responses in offspring. This work warns that it is mandatory to consider immune markers, dose exposure as well as sex in risk assessment associated with new BPA’s alternatives.
- Published
- 2021
- Full Text
- View/download PDF
11. Perinatal oral exposure to low doses of bisphenol A, S or F impairs immune functions at intestinal and systemic levels in female offspring mice
- Author
-
Yann Malaisé, Corinne Lencina, Christel Cartier, Maïwenn Olier, Sandrine Ménard, and Laurence Guzylack-Piriou
- Subjects
Bisphenol A ,Bisphenol S ,Bisphenol F ,Immune responses ,Perinatal exposure ,Intestine ,Industrial medicine. Industrial hygiene ,RC963-969 ,Public aspects of medicine ,RA1-1270 - Abstract
Abstract Background Bisphenol A (BPA), one of the highest-volume chemicals produced worldwide, has been identified as an endocrine disruptor. Many peer-reviewing studies have reported adverse effects of low dose BPA exposure, particularly during perinatal period (gestation and/or lactation). We previously demonstrated that perinatal oral exposure to BPA (via gavage of mothers during gestation and lactation) has long-term consequences on immune response and intestinal barrier functions. Due to its adverse effects on several developmental and physiological processes, BPA was removed from consumer products and replaced by chemical substitutes such as BPS or BPF, that are structurally similar and not well studied compare to BPA. Here, we aimed to compare perinatal oral exposure to these bisphenols (BPs) at two doses (5 and 50 μg/kg of body weight (BW)/day (d)) on immune response at intestinal and systemic levels in female offspring mice at adulthood (Post Natal Day PND70). Methods Pregnant female mice were orally exposed to BPA, BPS or BPF at 5 or 50 μg/kg BW/d from 15th day of gravidity to weaning of pups at Post-Natal Day (PND) 21. Humoral and cellular immune responses of adult offspring (PND70) were analysed at intestinal and systemic levels. Results In female offspring, perinatal oral BP exposure led to adverse effects on intestinal and systemic immune response that were dependant of the BP nature (A, S or F) and dose of exposure. Stronger impacts were observed with BPS at the dose of 5 μg/kg BW/d on inflammatory markers in feces associated with an increase of anti-E. coli IgG in plasma. BPA and BPF exposure induced prominent changes at low dose in offspring mice, in term of intestinal and systemic immune responses, provoking an intestinal and systemic Th1/Th17 inflammation. Conclusion These findings provide, for the first time, results of long-time consequences of BPA, S and F perinatal exposure by oral route on immune response in offspring mice. This work warns that it is mandatory to consider immune markers and dose exposure in risk assessment associated to new BPA’s alternatives.
- Published
- 2020
- Full Text
- View/download PDF
12. Early Life Exposure to Food Contaminants and Social Stress as Risk Factor for Metabolic Disorders Occurrence?—An Overview
- Author
-
Laurence Guzylack-Piriou and Sandrine Ménard
- Subjects
food contaminants ,social stress ,metabolic diseases ,Microbiology ,QR1-502 - Abstract
The global prevalence of obesity has been increasing in recent years and is now the major public health challenge worldwide. While the risks of developing metabolic disorders (MD) including obesity and type 2 diabetes (T2D) have been historically thought to be essentially driven by increased caloric intake and lack of exercise, this is insufficient to account for the observed changes in disease trends. Based on human epidemiological and pre-clinical experimental studies, this overview questioned the role of non-nutritional components as contributors to the epidemic of MD with a special emphasis on food contaminants and social stress. This overview examines the impact of early life adverse events (ELAE) focusing on exposures to food contaminants or social stress on weight gain and T2D occurrence in the offspring and explores potential mechanisms leading to MD in adulthood. Indeed, summing up data on both ELAE models in parallel allowed us to identify common patterns that appear worthwhile to study in MD etiology. This overview provides some evidence of a link between ELAE-induced intestinal barrier disruption, inflammation, epigenetic modifications, and the occurrence of MD. This overview sums up evidence that MD could have developmental origins and that ELAE are risk factors for MD at adulthood independently of nutritional status.
- Published
- 2021
- Full Text
- View/download PDF
13. Perinatal exposure to a low dose of bisphenol A impaired systemic cellular immune response and predisposes young rats to intestinal parasitic infection.
- Author
-
Sandrine Ménard, Laurence Guzylack-Piriou, Corinne Lencina, Mathilde Leveque, Manon Naturel, Soraya Sekkal, Cherryl Harkat, Eric Gaultier, Maïwenn Olier, Raphael Garcia-Villar, Vassilia Theodorou, and Eric Houdeau
- Subjects
Medicine ,Science - Abstract
Perinatal exposure to the food contaminant bisphenol A (BPA) in rats induces long lasting adverse effects on intestinal immune homeostasis. This study was aimed at examining the immune response to dietary antigens and the clearance of parasites in young rats at the end of perinatal exposure to a low dose of BPA. Female rats were fed with BPA [5 µg/kg of body weight/day] or vehicle from gestational day 15 to pup weaning. Juvenile female offspring (day (D)25) were used to analyze immune cell populations, humoral and cellular responses after oral tolerance or immunization protocol to ovalbumin (OVA), and susceptibility to infection by the intestinal nematode Nippostrongylus brasiliensis (N. brasiliensis). Anti-OVA IgG titers following either oral tolerance or immunization were not affected after BPA perinatal exposure, while a sharp decrease in OVA-induced IFNγ secretion occurred in spleen and mesenteric lymph nodes (MLN) of OVA-immunized rats. These results are consistent with a decreased number of helper T cells, regulatory T cells and dendritic cells in spleen and MLN of BPA-exposed rats. The lack of cellular response to antigens questioned the ability of BPA-exposed rats to clear intestinal infections. A 1.5-fold increase in N. brasiliensis living larvae was observed in the intestine of BPA-exposed rats compared to controls due to an inappropriate Th1/Th2 cytokine production in infected jejunal tissues. These results show that perinatal BPA exposure impairs cellular response to food antigens, and increases susceptibility to intestinal parasitic infection in the juveniles. This emphasized the maturing immune system during perinatal period highly sensitive to low dose exposure to BPA, altering innate and adaptative immune response capacities in early life.
- Published
- 2014
- Full Text
- View/download PDF
14. Specific IgG response against Mycobacterium avium paratuberculosis in children and adults with Crohn's disease.
- Author
-
Julien Verdier, Louis Deroche, Matthieu Allez, Caroline Loy, Franck Biet, Christelle C Bodier, Sylvie Bay, Christelle Ganneau, Tamara Matysiak-Budnik, Jean Marc Reyrat, Martine Heyman, Nadine Cerf-Bensussan, Frank M Ruemmele, and Sandrine Ménard
- Subjects
Medicine ,Science - Abstract
Background and aimsPresence of serum antibodies against Mycobacterium avium paratuberculosis (MAP) in Crohn's Disease (CD) as a disease characteristic remains controversial. In the present work, we assessed antibody reactivity of serum and intestinal fluid against four distinct MAP-antigens, including the recently identified MAP-specific lipopentapeptide (L5P).MethodsImmunoglobulin concentrations and specificity against 3 non MAP-specific antigens: glycosyl-transferase-d (GSD), purified protein derivative from MAP (Johnin-PPD), heparin binding haemagglutinin (MAP-HBHA) and one MAP-specific antigen: synthetic L5P were determined by ELISA in gut lavage fluids from adult controls or patients with CD, and in sera of children or adult controls or patients with CD, ulcerative colitis or celiac disease.ResultsTotal IgA and IgG concentrations were increased in sera of children with CD but were decreased in sera of adults with CD, thereof specificity against MAP antigens was assessed by normalizing immunoglobulin concentrations between samples. In CD patients, IgG reactivity was increased against the four MAP antigens, including L5P in gut lavage fluids but it was only increased against L5P in sera. By contrast, anti-L5P IgG were not increased in patients with ulcerative colitis or celiac disease.ConclusionsA significant increase in anti-L5P IgG is observed in sera of children and adults with CD but not in patients with other intestinal inflammatory diseases. Anti-L5P antibodies may serve as serological marker for CD.
- Published
- 2013
- Full Text
- View/download PDF
15. A low dose of fermented soy germ alleviates gut barrier injury, hyperalgesia and faecal protease activity in a rat model of inflammatory bowel disease.
- Author
-
Lara Moussa, Valérie Bézirard, Christel Salvador-Cartier, Valérie Bacquié, Corinne Lencina, Mathilde Lévêque, Viorica Braniste, Sandrine Ménard, Vassilia Théodorou, and Eric Houdeau
- Subjects
Medicine ,Science - Abstract
Pro-inflammatory cytokines like macrophage migration inhibitory factor (MIF), IL-1β and TNF-α predominate in inflammatory bowel diseases (IBD) and TNBS colitis. Increased levels of serine proteases activating protease-activated receptor 2 (PAR-2) are found in the lumen and colonic tissue of IBD patients. PAR-2 activity and pro-inflammatory cytokines impair epithelial barrier, facilitating the uptake of luminal aggressors that perpetuate inflammation and visceral pain. Soy extracts contain phytoestrogens (isoflavones) and serine protease inhibitors namely Bowman-Birk Inhibitors (BBI). Since estrogens exhibit anti-inflammatory and epithelial barrier enhancing properties, and that a BBI concentrate improves ulcerative colitis, we aimed to evaluate if a fermented soy germ extract (FSG) with standardized isoflavone profile and stable BBI content exert cumulative or synergistic protection based on protease inhibition and estrogen receptor (ER)-ligand activity in colitic rats. Female rats received orally for 15 d either vehicle or FSG with or without an ER antagonist ICI 182.780 before TNBS intracolonic instillation. Macroscopic and microscopic damages, myeloperoxidase activity, cytokine levels, intestinal paracellular permeability, visceral sensitivity, faecal proteolytic activity and PAR-2 expression were assessed 24 h, 3 d and 5 d post-TNBS. FSG treatment improved the severity of colitis, by decreasing the TNBS-induced rise in gut permeability, visceral sensitivity, faecal proteolytic activity and PAR-2 expression at all post-TNBS points. All FSG effects were reversed by the ICI 182.780 except the decrease in faecal proteolytic activity and PAR-2 expression. In conclusion, the anti-inflammatory properties of FSG treatment result from two distinct but synergic pathways i.e an ER-ligand and a PAR-2 mediated pathway, providing rationale for potential use as adjuvant therapy in IBD.
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.