108 results on '"Sandrine Ithurria"'
Search Results
2. Lithium-Ion Glass Gating of HgTe Nanocrystal Film with Designed Light-Matter Coupling
- Author
-
Stefano Pierini, Claire Abadie, Tung Huu Dang, Adrien Khalili, Huichen Zhang, Mariarosa Cavallo, Yoann Prado, Bruno Gallas, Sandrine Ithurria, Sébastien Sauvage, Jean Francois Dayen, Grégory Vincent, and Emmanuel Lhuillier
- Subjects
field effect transistor ,solid electrolyte ,HgTe ,nanocrystals ,nanophotonics ,light resonator ,Technology ,Electrical engineering. Electronics. Nuclear engineering ,TK1-9971 ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Microscopy ,QH201-278.5 ,Descriptive and experimental mechanics ,QC120-168.85 - Abstract
Nanocrystals’ (NCs) band gap can be easily tuned over the infrared range, making them appealing for the design of cost-effective sensors. Though their growth has reached a high level of maturity, their doping remains a poorly controlled parameter, raising the need for post-synthesis tuning strategies. As a result, phototransistor device geometry offers an interesting alternative to photoconductors, allowing carrier density control. Phototransistors based on NCs that target integrated infrared sensing have to (i) be compatible with low-temperature operation, (ii) avoid liquid handling, and (iii) enable large carrier density tuning. These constraints drive the search for innovative gate technologies beyond traditional dielectric or conventional liquid and ion gel electrolytes. Here, we explore lithium-ion glass gating and apply it to channels made of HgTe narrow band gap NCs. We demonstrate that this all-solid gate strategy is compatible with large capacitance up to 2 µF·cm−2 and can be operated over a broad range of temperatures (130–300 K). Finally, we tackle an issue often faced by NC-based phototransistors:their low absorption; from a metallic grating structure, we combined two resonances and achieved high responsivity (10 A·W−1 or an external quantum efficiency of 500%) over a broadband spectral range.
- Published
- 2023
- Full Text
- View/download PDF
3. A colloidal quantum dot infrared photodetector and its use for intraband detection
- Author
-
Clément Livache, Bertille Martinez, Nicolas Goubet, Charlie Gréboval, Junling Qu, Audrey Chu, Sébastien Royer, Sandrine Ithurria, Mathieu G. Silly, Benoit Dubertret, and Emmanuel Lhuillier
- Subjects
Science - Abstract
The field of wavefunction engineering using intraband transition to design infrared devices has been limited to epitaxially grown semiconductors. Here the authors demonstrate that a device with similar energy landscape can be obtained from a mixture of colloidal quantum dots made of HgTe and HgSe.
- Published
- 2019
- Full Text
- View/download PDF
4. 2D II–VI Semiconductor Nanoplatelets: From Material Synthesis to Optoelectronic Integration
- Author
-
Benjamin T. Diroll, Burak Guzelturk, Hong Po, Corentin Dabard, Ningyuan Fu, Lina Makke, Emmanuel Lhuillier, and Sandrine Ithurria
- Subjects
General Chemistry - Published
- 2023
5. Mapping the Energy Landscape from a Nanocrystal-Based Field Effect Transistor under Operation Using Nanobeam Photoemission Spectroscopy
- Author
-
Mariarosa Cavallo, Erwan Bossavit, Huichen Zhang, Corentin Dabard, Tung Huu Dang, Adrien Khalili, Claire Abadie, Rodolphe Alchaar, Dario Mastrippolito, Yoann Prado, Loïc Becerra, Michael Rosticher, Mathieu G. Silly, James K. Utterback, Sandrine Ithurria, José Avila, Debora Pierucci, Emmanuel Lhuillier, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), QUAD : Physique Quantique et Dispositifs, Laboratoire de physique de l'ENS - ENS Paris (LPENS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Dipartimento di Fisica [L'Aquila], Università degli Studi dell'Aquila = University of L'Aquila (UNIVAQ), Nanostructures et optique (INSP-E4), Acoustique pour les nanosciences (INSP-E3), ANR-19-CE24-0022,COPIN,Détecteur plasmonique à nanoCristaux colloïdaux: une nouvelle filière pour l'OPtoélectronique INfrarouge(2019), ANR-19-CE09-0017,FRONTAL,Nanocristaux Colloïdaux Dopés Infrarouges(2019), ANR-19-CE09-0026,GRaSkop,Tuning Giant Rashba Spin-Orbit Coupling in Polar Single Layer Transition Metal Dichalcogenides(2019), ANR-21-CE24-0012,BRIGHT,Diode électroluminescente infrarouge brillante par exaltation du couplage lumière-matière(2021), ANR-21-CE09-0029,MixDFerro,Heterostructures à dimensions mixtes sous contrôle ferroélectrique 2D(2021), ANR-22-CE09-0018,QuickTera,Nanocristaux de HgTe une nouvelle plateforme pour l'optoélectronique THz(2022), ANR-18-CE30-0023,IPER-Nano2,Nanocristaux de perovskite inorganique pour la nanophotonique(2018), and European Project: 756225,blackQD
- Subjects
nanocrystals ,energy landscape ,Mechanical Engineering ,field-effect transistor ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,General Materials Science ,Bioengineering ,General Chemistry ,X-ray photoemission ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Condensed Matter Physics - Abstract
International audience; As the field of nanocrystal-based optoelectronics matures, more advanced techniques must be developed in order to reveal the electronic structure of nanocrystals, particularly with devicerelevant conditions. So far, most of the efforts have been focused on optical spectroscopy, and electrochemistry where an absolute energy reference is required. Device optimization requires probing not only the pristine material but also the material in its actual environment (i.e., surrounded by a transport layer and an electrode, in the presence of an applied electric field). Here, we explored the use of photoemission microscopy as a strategy for operando investigation of NC-based devices. We demonstrate that the method can be applied to a variety of materials and device geometries. Finally, we show that it provides a direct access to the metal-semiconductor interface band bending as well as the distance over which the gate effect propagates in field-effect transistors.
- Published
- 2023
6. Material Perspective on HgTe Nanocrystal-Based Short-Wave Infrared Focal Plane Arrays
- Author
-
Huichen Zhang, Rodolphe Alchaar, Yoann Prado, Adrien Khalili, Charlie Gréboval, Mariarosa Cavallo, Erwan Bossavit, Corentin Dabard, Tung Huu Dang, Claire Abadie, Christophe Methivier, David Darson, Victor Parahyba, Pierre Potet, Julien Ramade, Mathieu G. Silly, James K. Utterback, Debora Pierucci, Sandrine Ithurria, Emmanuel Lhuillier, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Nanostructures et optique (INSP-E4), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Laboratoire de Réactivité de Surface (LRS), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique de l'ENS - ENS Paris (LPENS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), New Imaging Technologies (NIT), Institut Pprime (PPRIME), Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS), Centre de Nanosciences et de Nanotechnologies (C2N), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ANR-19-CE24-0022,COPIN,Détecteur plasmonique à nanoCristaux colloïdaux: une nouvelle filière pour l'OPtoélectronique INfrarouge(2019), ANR-20-ASTR-0008,NITquantum,Design et fabrication d'un plan focal dans le proche infrarouge à base de nanocrisrtaux(2020), ANR-19-CE09-0017,FRONTAL,Nanocristaux Colloïdaux Dopés Infrarouges(2019), ANR-21-CE09-0029,MixDFerro,Heterostructures à dimensions mixtes sous contrôle ferroélectrique 2D(2021), ANR-19-CE09-0026,GRaSkop,Tuning Giant Rashba Spin-Orbit Coupling in Polar Single Layer Transition Metal Dichalcogenides(2019), ANR-21-CE24-0012,BRIGHT,Diode électroluminescente infrarouge brillante par exaltation du couplage lumière-matière(2021), and European Project: 756225,blackQD
- Subjects
nanocrystal ,imager ,General Chemical Engineering ,infrared ,aging ,Materials Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,General Chemistry ,HgTe - Abstract
International audience; After the use of nanocrystals as light down-converters, infrared sensing appears to be one of the first market applications where they can be used while being both electrically and optically active. Over recent years, tremendous progress has been achieved, leading to an apparent rise in the technological readiness level (TRL). So far, the efforts have been focused on PbS nanocrystals for operation in the near-infrared. Here, we focus on HgTe since its narrower band gap offers more flexibility to explore the extended shortwave and mid-wave infrared. We report a photoconductive strategy fort the design of short wave infrared focal plane array with enhanced image quality. An important aspect often swept under the rug at an early stage is the material stability. It appears that HgTe remains mostly unaffected by oxidation under air operation. The evaporation of Hg, a potentially dramatic aging process, only occurs at temperatures far beyond the focal plane array's standard working temperature. The main bottleneck appears to be the particle sintering resulting from joule heating of focal plane array. This suggests that a cooling system is required, with a first role of preventing the material from sintering even before targeting dark current reduction.
- Published
- 2022
7. Nanocrystal-Based Active Photonics Device through Spatial Design of Light-Matter Coupling
- Author
-
Tung Huu Dang, Adrien Khalili, Claire Abadie, Charlie Gréboval, Mariarosa Cavallo, Huichen Zhang, Erwan Bossavit, James K. Utterback, Erwan Dandeu, Yoann Prado, Gregory Vincent, Sandrine Ithurria, Yanko Todorov, Carlo Sirtori, Angela Vasanelli, Emmanuel Lhuillier, QUAD : Physique Quantique et Dispositifs, Laboratoire de physique de l'ENS - ENS Paris (LPENS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Acoustique pour les nanosciences (INSP-E3), Nanostructures et optique (INSP-E4), DOTA, ONERA, Université Paris Saclay [Palaiseau], ONERA-Université Paris-Saclay, Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ANR-19-CE24-0022,COPIN,Détecteur plasmonique à nanoCristaux colloïdaux: une nouvelle filière pour l'OPtoélectronique INfrarouge(2019), ANR-19-CE09-0017,FRONTAL,Nanocristaux Colloïdaux Dopés Infrarouges(2019), ANR-21-CE09-0029,MixDFerro,Heterostructures à dimensions mixtes sous contrôle ferroélectrique 2D(2021), ANR-20-ASTR-0008,NITquantum,Design et fabrication d'un plan focal dans le proche infrarouge à base de nanocrisrtaux(2020), ANR-21-CE24-0012,BRIGHT,Diode électroluminescente infrarouge brillante par exaltation du couplage lumière-matière(2021), and European Project: 756225,blackQD
- Subjects
MOBILITE ,INFRAROUGE ,Atomic and Molecular Physics, and Optics ,CHAMP ELECTROMAGNETIQUE ,PHOTONIQUE ,Electronic, Optical and Magnetic Materials ,active photonics ,nanocrystals ,infrared ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,RADIATION ,light matter coupling ,SEMICONDUCTEUR ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Electrical and Electronic Engineering ,carrier mobility ,Biotechnology - Abstract
International audience; Integration of photonic structures in nanocrystal-based photodetectors has been demonstrated to improve device performances. Furthermore, bias-dependent photoresponse can be observed in such devices as a result of the interplay between hopping transport and inhomogeneous electromagnetic field. Here, we investigate the main physical concepts leading to a voltage-dependent photoresponse. We first bring evidence of bias-dependent carrier mobilities in a nanocrystal array over a wide range of temperatures. Then, we realize an infrared sensing device using HgTe nanocrystals, where the electrodes also play the role of a grating, inducing a spatially inhomogeneous absorption. The obtained device exhibits a significant bias-dependent photoresponse while possessing a competitive detection performance in the extended shortwave and mid-wave infrared, with detectivity reaching 7x10 10 Jones at 80 K and a fast response time of around 70 ns. This work provides the foundation for further advancements in nanocrystal-basedactive photonics devices.
- Published
- 2022
8. Visible and Infrared Nanocrystal-based Light Modulator with CMOS Compatible Bias Operation
- Author
-
Huichen Zhang, Victor Guilloux, Erwan Bossavit, Ningyuan Fu, Corentin Dabard, Mariarosa Cavallo, Tung Huu Dang, Adrien Khalili, Claire Abadie, Rodolphe Alchaar, Charlie Gréboval, Xiang Zhen Xu, James K. Utterback, Debora Pierucci, Sandrine Ithurria, Juan I. Climente, Thierry Barisien, Emmanuel Lhuillier, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Photonique et cohérence de spin (INSP-E12), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), QUAD : Physique Quantique et Dispositifs, Laboratoire de physique de l'ENS - ENS Paris (LPENS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Centre de Nanosciences et de Nanotechnologies (C2N), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Universitat Jaume I, Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ANR-21-CE24-0012,BRIGHT,Diode électroluminescente infrarouge brillante par exaltation du couplage lumière-matière(2021), ANR-19-CE24-0022,COPIN,Détecteur plasmonique à nanoCristaux colloïdaux: une nouvelle filière pour l'OPtoélectronique INfrarouge(2019), ANR-19-CE09-0026,GRaSkop,Tuning Giant Rashba Spin-Orbit Coupling in Polar Single Layer Transition Metal Dichalcogenides(2019), ANR-19-CE09-0017,FRONTAL,Nanocristaux Colloïdaux Dopés Infrarouges(2019), ANR-20-ASTR-0008,NITquantum,Design et fabrication d'un plan focal dans le proche infrarouge à base de nanocrisrtaux(2020), European Project: 756225,blackQD, and European Project: 101086358,AQDtive
- Subjects
nanocrystal ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,nanoplatelets ,light modulator ,Electrical and Electronic Engineering ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,device ,Atomic and Molecular Physics, and Optics ,Biotechnology ,Electronic, Optical and Magnetic Materials - Abstract
International audience; Nanocrystals are now established light sources, and as synthesis and device integration have gained maturity, new functionalities can now be considered. So far, the emitted light from a nanocrystal population remains mostly driven by the structural properties (composition, size, shape) of the particle, and only limited post-synthesis tunability has been demonstrated. Here, we explore the design of light amplitude modulators using a nanocrystal-based light-emitting diode operated under reverse bias. We demonstrate strong photoluminescence modulations for devices operating in the visible and near telecom wavelengths using low bias operations (
- Published
- 2023
9. Inside a nanocrystal-based photodiode using photoemission microscopy
- Author
-
Mariarosa Cavallo, Rodolphe Alchaar, Erwan Bossavit, Huichen Zhang, Tung Huu Dang, Adrien Khalili, Yoann Prado, Mathieu G. Silly, James K. Utterback, Sandrine Ithurria, Pavel Dudin, José Avila, Debora Pierucci, Emmanuel Lhuillier, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Nanostructures et optique (INSP-E4), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), CNRS - MITI-Within, ANR-19-CE24-0022,COPIN,Détecteur plasmonique à nanoCristaux colloïdaux: une nouvelle filière pour l'OPtoélectronique INfrarouge(2019), ANR-19-CE09-0017,FRONTAL,Nanocristaux Colloïdaux Dopés Infrarouges(2019), ANR-21-CE24-0012,BRIGHT,Diode électroluminescente infrarouge brillante par exaltation du couplage lumière-matière(2021), ANR-22-CE09-0018,QuickTera,Nanocristaux de HgTe une nouvelle plateforme pour l'optoélectronique THz(2022), ANR-19-CE09-0026,GRaSkop,Tuning Giant Rashba Spin-Orbit Coupling in Polar Single Layer Transition Metal Dichalcogenides(2019), ANR-20-ASTR-0008,NITquantum,Design et fabrication d'un plan focal dans le proche infrarouge à base de nanocrisrtaux(2020), European Project: 756225,blackQD, and European Project: 101086358,AQDtive
- Subjects
nanocrystals ,pn junction ,General Materials Science ,photodiode ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,electronic structure ,HgTe ,photoemission - Abstract
International audience; As nanocrystal-based devices gain maturity, a comprehensive understanding of their electronic structure is necessary for further optimization. Most spectroscopic techniques typically examine pristine materials and disregard the coupling of the active material to its actual environment, the influence of an applied electric field, and possible illumination effects. Therefore, it is critical to develop tools that can probe device in situ and operando. Here, we explore photoemission microscopy as a tool to unveil the energy landscape of a HgTe NC-based photodiode. We propose a planar diode stack to facilitate surface-sensitive photoemission measurements. We demonstrate that the method gives direct quantification of the diode's built-in voltage. Furthermore, we discuss how it is affected by particle size and illumination. We show that combining SnO2 and Ag2Te as electron and hole transport layers is better suited for extended-short-wave infrared materials than materials with larger bandgaps. We also identify the effect of photodoping over the SnO2 layer and propose a strategy to overcome it. Given its simplicity, the method appears to be of utmost interest for screening diode design strategies.
- Published
- 2023
10. Electroluminescence from nanocrystals above 2 µm
- Author
-
Junling Qu, Mateusz Weis, Eva Izquierdo, Simon Gwénaël Mizrahi, Audrey Chu, Corentin Dabard, Charlie Gréboval, Erwan Bossavit, Yoann Prado, Emmanuel Péronne, Sandrine Ithurria, Gilles Patriarche, Mathieu G. Silly, Grégory Vincent, Davide Boschetto, Emmanuel Lhuillier, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'optique appliquée (LOA), École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Nanostructures et optique (INSP-E4), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre de Nanosciences et de Nanotechnologies (C2N), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), DOTA, ONERA, Université Paris Saclay [Palaiseau], ONERA-Université Paris-Saclay, École Nationale Supérieure de Techniques Avancées (ENSTA Paris), ANR-21-CE24-0012,BRIGHT,Diode électroluminescente infrarouge brillante par exaltation du couplage lumière-matière(2021), ANR-19-CE24-0022,COPIN,Détecteur plasmonique à nanoCristaux colloïdaux: une nouvelle filière pour l'OPtoélectronique INfrarouge(2019), ANR-19-CE09-0017,FRONTAL,Nanocristaux Colloïdaux Dopés Infrarouges(2019), ANR-18-CE30-0023,IPER-Nano2,Nanocristaux de perovskite inorganique pour la nanophotonique(2018), ANR-19-CE09-0026,GRaSkop,Tuning Giant Rashba Spin-Orbit Coupling in Polar Single Layer Transition Metal Dichalcogenides(2019), ANR-20-ASTR-0008,NITquantum,Design et fabrication d'un plan focal dans le proche infrarouge à base de nanocrisrtaux(2020), European Project: 756225,blackQD, and European Project: 853049,ne2dem
- Subjects
narrow band-gap nanocrystals ,[CHIM.MATE]Chemical Sciences/Material chemistry ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,HgTe ,7. Clean energy ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,electroluminescence ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS ,short wave infrared - Abstract
International audience; Visible nanocrystal-based light-emitting diodes (LEDs) are about to become commercially available. However, their infrared counterparts suffer from two key limitations. First, III–V semiconductor technologies are strong competitors. Second, their potential for operation beyond 1.7 µm remains unexplored. The range from 1.5 to 4 µm corresponds to a technological gap in which the efficiency of interband quantum-well-based devices vanishes and quantum cascade lasers are not efficient enough. Powerful infrared LEDs in this range are needed for applications such as active imaging, organic molecule sensing and airfield lighting. Here we report the design of a HgTe nanocrystal-based LED with luminescence between 2 and 2.3 µm. With an external quantum efficiency of 0.3% and radiance up to 3 W Sr−1 m−2, these HgTe LEDs already present a competitive performance for emission above 2 µm.
- Published
- 2021
11. II-VI semiconductor NPLs: Control the composition and the shape
- Author
-
Sandrine Ithurria
- Published
- 2022
12. Helmholtz Resonator Applied to Nanocrystal-Based Infrared Sensing
- Author
-
Claire Abadie, Laura Paggi, Alice Fabas, Adrien Khalili, Tung Huu Dang, Corentin Dabard, Mariarosa Cavallo, Rodolphe Alchaar, Huichen Zhang, Yoann Prado, Nathalie Bardou, Christophe Dupuis, Xiang Zhen Xu, Sandrine Ithurria, Debora Pierucci, James K. Utterback, Baptiste Fix, Grégory Vincent, Patrick Bouchon, Emmanuel Lhuillier, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), DOTA, ONERA, Université Paris Saclay [Palaiseau], ONERA-Université Paris-Saclay, Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Nanostructures et optique (INSP-E4), Centre de Nanosciences et de Nanotechnologies (C2N), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), ANR-19-CE24-0022,COPIN,Détecteur plasmonique à nanoCristaux colloïdaux: une nouvelle filière pour l'OPtoélectronique INfrarouge(2019), ANR-19-CE09-0017,FRONTAL,Nanocristaux Colloïdaux Dopés Infrarouges(2019), ANR-21-CE24-0012,BRIGHT,Diode électroluminescente infrarouge brillante par exaltation du couplage lumière-matière(2021), ANR-21-CE09-0029,MixDFerro,Heterostructures à dimensions mixtes sous contrôle ferroélectrique 2D(2021), ANR-18-CE30-0023,IPER-Nano2,Nanocristaux de perovskite inorganique pour la nanophotonique(2018), ANR-19-CE09-0026,GRaSkop,Tuning Giant Rashba Spin-Orbit Coupling in Polar Single Layer Transition Metal Dichalcogenides(2019), and European Project: 756225,blackQD
- Subjects
nanocrystal ,Mechanical Engineering ,Helmholtz resonator ,infrared ,General Materials Science ,Bioengineering ,photoconduction ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Condensed Matter Physics ,photonic cavity - Abstract
International audience; While the integration of nanocrystals as an active medium for optoelectronic devices progresses, light management strategies become required. Over recent years, several photonic structures (plasmons, cavities, mirrors, etc.) have been coupled to nanocrystal films to shape the absorption spectrum, tune the directionality, and so on. Here, we explore a photonic equivalent of the acoustic Helmholtz resonator and propose a design that can easily be fabricated. This geometry combines a strong electromagnetic field magnification and a narrow channel width compatible with efficient charge conduction in spite of hopping conduction. At 80 K, the device reaches a responsivity above 1 A•W-1 and detectivity above 10 11 Jones (3 µm cutoff) while offering a significantly faster time-response than vertical geometry diodes.
- Published
- 2022
13. The Vanishing Confinement Regime in THz HgTe Nanocrystals Studied Under Extreme Conditions of Temperature and Pressure
- Author
-
Stefano Pierini, Francesco Capitani, Michael Scimeca, Sergei Kozlov, Debora Pierucci, Rodolphe Alchaar, Claire Abadie, Adrien Khalili, Mariarosa Cavallo, Tung Huu Dang, Huichen Zhang, Erwan Bossavit, Charlie Gréboval, José Avila, Benoit Baptiste, Stefan Klotz, Ayaskanta Sahu, Cheryl Feuillet-Palma, Xiang Zhen Xu, Abdelkarim Ouerghi, Sandrine Ithurria, James K. Utterback, Sebastien Sauvage, Emmanuel Lhuillier, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), New York University [New York] (NYU), NYU System (NYU), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre de Nanosciences et de Nanotechnologies (C2N), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Physique des systèmes simples en conditions extrêmes [IMPMC] (IMPMC_PHYSIX), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ANR-19-CE24-0022,COPIN,Détecteur plasmonique à nanoCristaux colloïdaux: une nouvelle filière pour l'OPtoélectronique INfrarouge(2019), ANR-19-CE09-0026,GRaSkop,Tuning Giant Rashba Spin-Orbit Coupling in Polar Single Layer Transition Metal Dichalcogenides(2019), ANR-21-CE24-0012,BRIGHT,Diode électroluminescente infrarouge brillante par exaltation du couplage lumière-matière(2021), ANR-21-CE09-0029,MixDFerro,Heterostructures à dimensions mixtes sous contrôle ferroélectrique 2D(2021), ANR-20-ASTR-0008,NITquantum,Design et fabrication d'un plan focal dans le proche infrarouge à base de nanocrisrtaux(2020), ANR-19-CE09-0017,FRONTAL,Nanocristaux Colloïdaux Dopés Infrarouges(2019), and European Project: 756225,blackQD
- Subjects
terahertz ,pressure ,nanocrystals ,phase transition ,General Materials Science ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Physical and Theoretical Chemistry ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,electronic structure ,HgTe - Abstract
While HgTe nanocrystals (NCs) in the mid-infrared region have reached a high level of maturity, their far-infrared counterparts remain far less studied, raising the need for an in-depth investigation of the material before efficient device integration can be considered. Here, we explore the effect of temperature and pressure on the structural, spectroscopic, and transport properties of HgTe NCs displaying an intraband absorption at 10 THz. The temperature leads to a very weak modulation of the spectrum as opposed to what was observed for strongly confined HgTe NCs. HgTe NC films present ambipolar conduction with a clear prevalence of electron conduction as confirmed by transistor and thermoelectric measurements. Under the application of pressure, the material undergoes phase transitions from the zinc blende to cinnabar phase and later to the rock salt phase which we reveal using joint X-ray diffraction and infrared spectroscopy measurements. We discuss how the pressure existence domain of each phase is affected by the particle size.
- Published
- 2022
14. Mercury Chalcogenide Quantum Dots: Material Perspective for Device Integration
- Author
-
Clément Livache, Nicolas Goubet, Emmanuel Lhuillier, Sandrine Ithurria, Charlie Gréboval, Audrey Chu, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), De la Molécule aux Nanos-objets : Réactivité, Interactions et Spectroscopies (MONARIS), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ANR-19-CE24-0022,COPIN,Détecteur plasmonique à nanoCristaux colloïdaux: une nouvelle filière pour l'OPtoélectronique INfrarouge(2019), ANR-19-CE09-0017,FRONTAL,Nanocristaux Colloïdaux Dopés Infrarouges(2019), ANR-19-CE09-0026,GRaSkop,Tuning Giant Rashba Spin-Orbit Coupling in Polar Single Layer Transition Metal Dichalcogenides(2019), ANR-20-ASTR-0008,NITquantum,Design et fabrication d'un plan focal dans le proche infrarouge à base de nanocrisrtaux(2020), ANR-18-CE30-0023,IPER-Nano2,Nanocristaux de perovskite inorganique pour la nanophotonique(2018), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), European Project: 756225,blackQD, and European Project: 853049,ne2dem
- Subjects
light detection ,optoelectronics ,010405 organic chemistry ,Chemistry ,Band gap ,Infrared ,Chalcogenide ,Nanotechnology ,[CHIM.MATE]Chemical Sciences/Material chemistry ,General Chemistry ,Photodetection ,Electronic structure ,010402 general chemistry ,7. Clean energy ,01 natural sciences ,0104 chemical sciences ,chemistry.chemical_compound ,nanocrystals ,Quantum dot ,Infrared window ,infrared ,Light emission ,mercury chalcogenides ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] - Abstract
International audience; Nanocrystals (NCs) are one of the few nanotechnologies to have attained mass market applications with their use as light sources for displays. This success relies on Cd-and In-based wide bandgap materials. NCs are likely to be employed in more applications as they provide a versatile platform for optoelectronics, specifically, infrared optoelectronics. The existing material technologies in this range of wavelengths are generally not cost effective, which limits the spread of technologies beyond a few niche domains, such as defense and astronomy. Among the potential candidates to address the infrared window, mercury chalcogenide (HgX) NCs exhibit the highest potential in terms of performance. In this review, we discuss how material developments have facilitated device enhancements. Because such NCs are primarily used because of their infrared optical features, we first review the strategies for the associated colloidal growth and electronic structure. The review is organized considering three main device-related applications: light emission, electronic transport and infrared photodetection.
- Published
- 2021
15. Electroluminescence from HgTe Nanocrystals and Its Use for Active Imaging
- Author
-
Xavier Marie, Sandrine Ithurria, Audrey Chu, Prachi Rastogi, Corentin Dabard, Adrien Khalili, Mathieu G. Silly, Emmanuel Lhuillier, Delphine Lagarde, Junling Qu, Simon Ferré, Charlie Gréboval, Xiang Zhen Xu, Hervé Cruguel, Cedric Robert, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique et chimie des nano-objets (LPCNO), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie de Toulouse (ICT-FR 2599), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), ANR-19-CE09-0026,GRaSkop,Tuning Giant Rashba Spin-Orbit Coupling in Polar Single Layer Transition Metal Dichalcogenides(2019), ANR-19-CE09-0017,FRONTAL,Nanocristaux Colloïdaux Dopés Infrarouges(2019), ANR-19-CE24-0022,COPIN,Détecteur plasmonique à nanoCristaux colloïdaux: une nouvelle filière pour l'OPtoélectronique INfrarouge(2019), ANR-18-CE30-0023,IPER-Nano2,Nanocristaux de perovskite inorganique pour la nanophotonique(2018), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), European Project: 756225,blackQD, European Project: 853049,ne2dem, Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Infrared Rays ,Infrared ,Terahertz radiation ,Bioengineering ,02 engineering and technology ,Electroluminescence ,HgTe ,7. Clean energy ,electroluminescence ,active imaging ,law.invention ,chemistry.chemical_compound ,law ,General Materials Science ,Lead sulfide ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Absorption (electromagnetic radiation) ,Lighting ,short wave infrared ,narrow band gap nanocrystals ,business.industry ,Mechanical Engineering ,Mercury telluride ,[CHIM.MATE]Chemical Sciences/Material chemistry ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Indium tin oxide ,chemistry ,Nanoparticles ,Optoelectronics ,Gold ,Zinc Oxide ,0210 nano-technology ,business ,Light-emitting diode - Abstract
International audience; Mercury telluride (HgTe) nanocrystals are among of the most versatile infrared (IR) materials with the absorption of first optical absorption which can be tuned from visible to the THz range. Therefore, they have been extensively considered as near IR emitters and as absorbers for low-cost IR detectors. However, the electroluminescence of HgTe remains poorly investigated in spite of its ability to go toward longer wavelengths compared to traditional lead sulfide (PbS). Here, we demonstrate a light emitting diode (LED) based on an indium tin oxide (ITO)/zinc oxide (ZnO)/ZnO-HgTe/PbS/gold stacked structure, where the emitting layer consists of a ZnO/HgTe bulk heterojunction which drives the charge balance in the system. This LED has low turn-on voltage, long lifetime, and high brightness. Finally, we conduct short wavelength infrared (SWIR) active imaging, where illumination is obtained from a HgTe NC-based LED, and demonstrate moisture detection.
- Published
- 2020
16. Mercury Chalcogenide Nanoplatelet–Quantum Dot Heterostructures as a New Class of Continuously Tunable Bright Shortwave Infrared Emitters
- Author
-
Justin R. Caram, Arundhati Deshmukh, Timothy L. Atallah, Ashley J. Shin, Victoria Vilchez, Sandrine Ithurria, Mikayla L. Sonnleitner, Chengye Huang, Stephanie M. Tenney, and Hannah C. Friedman
- Subjects
Materials science ,business.industry ,Chalcogenide ,chemistry.chemical_element ,Heterojunction ,Shortwave infrared ,Mercury (element) ,chemistry.chemical_compound ,chemistry ,Quantum dot ,Optoelectronics ,Energy transformation ,General Materials Science ,Physical and Theoretical Chemistry ,business ,Nanoscopic scale - Abstract
Despite broad applications in imaging, energy conversion, and telecommunications, few nanoscale moieties emit light efficiently in the shortwave infrared (SWIR, 1000-2000 nm or 1.24-0.62 eV). We report quantum-confined mercury chalcogenide (HgX, where X = Se or Te) nanoplatelets (NPLs) can be induced to emit bright (QY30%) and tunable (900-1500+ nm) infrared emission from attached quantum dot (QD) "defect" states. We demonstrate near unity energy transfer from NPL to these QDs, which completely quench NPL emission and emit with a high QY through the SWIR. This QD defect emission is kinetically tunable, enabling controlled midgap emission from NPLs. Spectrally resolved photoluminescence demonstrates energy-dependent lifetimes, with radiative rates 10-20 times faster than those of their PbX analogues in the same spectral window. Coupled with their high quantum yield, midgap emission HgX dots on HgX NPLs provide a potential platform for novel optoelectronics in the SWIR.
- Published
- 2020
17. Complex Optical Index of PbS Nanocrystal Thin Film and their Use for Short Wave Infrared Sensor Design
- Author
-
Bilal Chehaibou, Eva Izquierdo, Audrey Chu, Claire Abadie, Mariarosa Cavallo, Adrien Khalili, Tung Huu Dang, Charlie Gréboval, Xiang Zhen Xu, Sandrine Ithurria, Grégory Vincent, Bruno Gallas, Gabriel Mugny, Arthur Arnaud, Emmanuel Lhuillier, Christophe Delerue, Physique - IEMN (PHYSIQUE - IEMN), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), DOTA, ONERA, Université Paris Saclay [Palaiseau], ONERA-Université Paris-Saclay, Physico-chimie et dynamique des surfaces (INSP-E6), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), STMicroelectronics [Grenoble] (ST-GRENOBLE), STMicroelectronics [Crolles] (ST-CROLLES), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), ANR-19-CE24-0022,COPIN,Détecteur plasmonique à nanoCristaux colloïdaux: une nouvelle filière pour l'OPtoélectronique INfrarouge(2019), ANR-19-CE09-0017,FRONTAL,Nanocristaux Colloïdaux Dopés Infrarouges(2019), ANR-19-CE09-0026,GRaSkop,Tuning Giant Rashba Spin-Orbit Coupling in Polar Single Layer Transition Metal Dichalcogenides(2019), ANR-20-ASTR-0008,NITquantum,Design et fabrication d'un plan focal dans le proche infrarouge à base de nanocrisrtaux(2020), ANR-21-CE09-0029,MixDFerro,Heterostructures à dimensions mixtes sous contrôle ferroélectrique 2D(2021), and European Project: 756225,blackQD
- Subjects
General Materials Science ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] - Abstract
International audience; As nanocrystals (NCs) gain maturity, they become central building blocks for optoelectronics in devices such as solar cells and, more recently, infrared focal plane arrays. Now that proof of concept of these devices has been established, their optimization requires a deeper understanding of their electronic and optical features to engineering their optoelectronic properties accurately. Though PbS NCs have been extensively investigated, the complex optical index of PbS NC thin films remains mostly unknown. Some previous works have unveiled the optical index for this type of material optimized for solar cells (excitonic peak at 940 nm), but longer wavelengths remain scarce and surface chemistry effects, which are known to be of central importance for the layer doping, are simply unexplored. Here, we conduct a systematic investigation of the complex optical index of PbS NC thin films using broadband spectrally resolved ellipsometry. The obtained results are then compared with simulations combining Tight-Binding (TB) modeling at the NC level and Bruggeman model to expand the results to the film scale. While TB calculation gives the NC optical indices, we extract keys NC film parameters as the NC volume fraction and ligand indices by fitting Bruggeman formula to ellipsometry measurement. We also bring evidence that this joint modeling method can be conducted without the need for ellipsometry data while preserving the main feature of the experimental result. Finally, the unveiled optical indices are used to model the absorption of short-wave infrared diode stack based on PbS NCs and are relevant for state-of-the-art devices. Our electromagnetic modeling shows that the absorption within the contact is now a major limitation of the current device operated at telecom wavelength
- Published
- 2022
18. Formation of Chiral Helices by Self-Assembling Molecules on Semiconductor Nanosubstrates
- Author
-
Jiunn Hong Po and Sandrine Ithurria
- Published
- 2022
19. Optimized Cation Exchange for Mercury Chalcogenide 2D Nanoplatelets and its Application for Alloys
- Author
-
Corentin Dabard, Sandrine Ithurria, and Emmanuel Lhuillier
- Published
- 2022
20. Controlling the surface chemistry of nanoparticle to reach thicker semiconductor nanoplatelets of various shapes
- Author
-
Sandrine Ithurria
- Published
- 2022
21. HgTe Nanocrystal-Based Photodiode for Extended Short-Wave Infrared Sensing with Optimized Electron Extraction and Injection
- Author
-
Charlie Gréboval, Eva Izquierdo, Claire Abadie, Adrien Khalili, Mariarosa Cavallo, Audrey Chu, Tung Huu Dang, Huichen Zhang, Xavier Lafosse, Michael Rosticher, Xiang Zhen Xu, Armel Descamps-Mandine, Abdelkarim Ouerghi, Mathieu G. Silly, Sandrine Ithurria, Emmanuel Lhuillier, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre de Nanosciences et de Nanotechnologies (C2N), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique de l'ENS - ENS Paris (LPENS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre de microcaractérisation Raimond Castaing (Centre Castaing), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), ANR-19-CE24-0022,COPIN,Détecteur plasmonique à nanoCristaux colloïdaux: une nouvelle filière pour l'OPtoélectronique INfrarouge(2019), ANR-21-CE09-0029,MixDFerro,Heterostructures à dimensions mixtes sous contrôle ferroélectrique 2D(2021), ANR-20-ASTR-0008,NITquantum,Design et fabrication d'un plan focal dans le proche infrarouge à base de nanocrisrtaux(2020), ANR-19-CE09-0026,GRaSkop,Tuning Giant Rashba Spin-Orbit Coupling in Polar Single Layer Transition Metal Dichalcogenides(2019), ANR-19-CE09-0017,FRONTAL,Nanocristaux Colloïdaux Dopés Infrarouges(2019), and European Project: 756225,blackQD
- Subjects
nanocrystals ,detection ,General Materials Science ,photodiode ,[CHIM.MATE]Chemical Sciences/Material chemistry ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,HgTe ,short wave infrared - Abstract
International audience; Thanks to their narrow band gap nature and fairly high carrier mobility, HgTe nanocrystals are of utmost interest for optoelectronics beyond the telecom window (λ>1.55 µm). In particular, they offer an interesting cost-effective alternative to the well-developed InGaAs technology. However, in contrast to PbS, far less work has been dedicated to the integrating this material in photodiodes. In the shortwave infrared, HgTe NCs have a more p-type character than in the mid wave infrared, thus promoting the development of new electron transport layers with an optimized band alignment. As for perovskites, HgTe NCs present a fairly deep band gap with respect to vacuum. Thus, we were motivated by the strategy developed for perovskite solar cells, for which SnO2 has led to the best performing devices. Here, we explore the following stack made of SnO2/HgTe/Ag2Te in which the SnO2 and Ag2Te layers behave as electron and hole extractors respectively. Using X-ray photoemission, we show that SnO2 presents a nearly optimal band alignment with HgTe to efficiently filter the hole dark current while letting the photoelectrons flow. The obtained I-V curve exhibits an increased rectifying behavior, and the diode stack presents a high internal efficiency for the diode (above 60%) and an external quantum efficiency that is mostly limited by the absorption magnitude. Furthermore, we tackle a crucial challenge for the transfer of such diode onto readout circuits which prevents backside illumination. We also demonstrate that the diode stack is reversible with a partly transparent conducting electrode on top while preserving the device's responsivity. Finally, we show that such SnO2 layer is also beneficial for electron injection and leads to enhanced electroluminescent signal as the diode is operated under forward bias. This work is an essential step toward the design of a focal plane array with an HgTe NCs-based photodiode.
- Published
- 2022
22. Optimized Infrared LED and its use in an all-HgTe Nanocrystal-based active imaging setup
- Author
-
Erwan Bossavit, Junling Qu, Claire Abadie, Corentin Dabard, Tung Dang, Eva Izquierdo, Adrien Khalili, Charlie Gréboval, Audrey Chu, Stefano Pierini, Mariarosa Cavallo, Yoann Prado, Victor Parahyba, Xiang Zhen Xu, Armel Decamps‐Mandine, Mathieu Silly, Sandrine Ithurria, Emmanuel Lhuillier, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), DOTA, ONERA, Université Paris Saclay [Palaiseau], ONERA-Université Paris-Saclay, Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Nanostructures et optique (INSP-E4), New Imaging Technologies (NIT), Centre de microcaractérisation Raimond Castaing (CMCR), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), ANR-19-CE24-0022,COPIN,Détecteur plasmonique à nanoCristaux colloïdaux: une nouvelle filière pour l'OPtoélectronique INfrarouge(2019), ANR-21-CE24-0012,BRIGHT,Diode électroluminescente infrarouge brillante par exaltation du couplage lumière-matière(2021), ANR-21-CE09-0029,MixDFerro,Heterostructures à dimensions mixtes sous contrôle ferroélectrique 2D(2021), ANR-20-ASTR-0008,NITquantum,Design et fabrication d'un plan focal dans le proche infrarouge à base de nanocrisrtaux(2020), ANR-19-CE09-0026,GRaSkop,Tuning Giant Rashba Spin-Orbit Coupling in Polar Single Layer Transition Metal Dichalcogenides(2019), ANR-18-CE30-0023,IPER-Nano2,Nanocristaux de perovskite inorganique pour la nanophotonique(2018), ANR-19-CE09-0017,FRONTAL,Nanocristaux Colloïdaux Dopés Infrarouges(2019), European Project: 756225,blackQD, European Project: 853049,ne2dem, Centre de microcaractérisation Raimond Castaing (Centre Castaing), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), and Université de Toulouse (UT)
- Subjects
focal plane array ,LED ,02 engineering and technology ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,HgTe ,Atomic and Molecular Physics, and Optics ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,active imaging ,nanocrystal ,electronic temperature ,infrared ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,0210 nano-technology - Abstract
International audience; Nanocrystals have reached a high level of maturity, enabling their integration into optoelectronic devices. The next challenge is the combination of several types of devices into one complex system to achieve better on-chip integration. Here, we focus on an all-HgTe-nanocrystal active imaging setup operating in the shortwave infrared. We first focus on the design of an optimized infrared light emitting diode (LED). We show that a halide technology processing enables an increase of the electroluminescence signal by a factor of 3, while preserving a low turn-on voltage and a high brightness (3 W.sr-1 .m-2). We then unveil the degradation mechanism of this LED under continuous operation and show a shift from band edge to trap emission. This degradation process can be strongly reduced thanks to the encapsulation and the thermal control of the LED. Lastly, we image the infrared emission of the LED using a focal plane array whose active layer is also made of HgTe nanocrystals, paving the way for all-nanocrystal-based active imaging setups.
- Published
- 2021
23. Optimized Cation Exchange for Mercury Chalcogenide 2D Nanoplatelets and Its Application for Alloys
- Author
-
Corentin Dabard, Mariarosa Cavallo, Adrien Khalili, Emmanuel Lhuillier, Sandrine Ithurria, Xiang Zhen Xu, Hong Po, Nicolas Moghaddam, Mathieu G. Silly, Eva Izquierdo, Erwan Bossavit, Stefano Pierini, Charlie Gréboval, Audrey Chu, Josep Planelles, Philippe Hollander, Lina Makke, Tung Huu Dang, Juan I. Climente, Claire Abadie, Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Universitat Jaume I, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), ANR-19-CE24-0022,COPIN,Détecteur plasmonique à nanoCristaux colloïdaux: une nouvelle filière pour l'OPtoélectronique INfrarouge(2019), ANR-19-CE09-0017,FRONTAL,Nanocristaux Colloïdaux Dopés Infrarouges(2019), ANR-19-CE09-0026,GRaSkop,Tuning Giant Rashba Spin-Orbit Coupling in Polar Single Layer Transition Metal Dichalcogenides(2019), ANR-18-CE30-0023,IPER-Nano2,Nanocristaux de perovskite inorganique pour la nanophotonique(2018), ANR-21-CE24-0012,BRIGHT,Diode électroluminescente infrarouge brillante par exaltation du couplage lumière-matière(2021), ANR-21-CE09-0029,MixDFerro,Heterostructures à dimensions mixtes sous contrôle ferroélectrique 2D(2021), ANR-20-ASTR-0008,NITquantum,Design et fabrication d'un plan focal dans le proche infrarouge à base de nanocrisrtaux(2020), European Project: 853049,ne2dem, and European Project: 756225,blackQD
- Subjects
colloidal quantum-wells ,spectroscopy ,Materials science ,Chalcogenide ,General Chemical Engineering ,Inorganic chemistry ,chemistry.chemical_element ,02 engineering and technology ,semiconductors ,010402 general chemistry ,01 natural sciences ,chemistry.chemical_compound ,Materials Chemistry ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,PBS nanoplatelets ,core ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,band-structure ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Mercury (element) ,chemistry ,Nanocrystal ,barrier ,0210 nano-technology ,narrow ,CDSE nanoplatelets - Abstract
II–VI two-dimensional (2D) nanoplatelets (NPLs) exhibit the narrowest optical features among nanocrystals (NCs). This property remains true for Hg-based NPLs, despite a cation exchange procedure to obtain them from Cd-based NPLs, which leads to structural defects (poorly defined edges and voids) inducing inhomogeneous broadening. Here, we propose an optimized procedure for which a solvent, surface chemistry, and reaction conditions are rationally considered. The procedure is applied to the growth of alloyed HgSe1–xTex NPLs with various compositions. We report a bright photoluminescence for all compositions. Structural properties being now well defined, it is possible to study the electronic properties of these objects. To do so, we combine k·p modeling of quantum-confined structures with X-ray photoemission. In particular, we clarify the origin of the similarity between CdTe and HgTe NPLs absorption spectra despite their vastly differing bulk band structures. Finally, static- and time-resolved photoemission unveil a crossover from n- to p-type behavior in HgSe1–xTex NPLs while increasing the Te content. The project was supported by ERC starting grants Ne2DeM (grant no 853049) and blackQD (grant no 756225). The authors acknowledge the use of clean-room facilities at the “Centrale de Proximité Paris-Centre”. This work was supported by Region Ile-de-France in the framework of DIM Nano-K (grant dopQD). This work was also supported by French state funds managed by the ANR within the Investissements d’Avenir programme under reference ANR-11-IDEX-0004-02 and, more specifically, within the framework of the Cluster of Excellence MATISSE and by grants IPER-Nano2 (ANR-18CE30-0023-01), Copin (ANR-19-CE24-0022), Frontal (ANR-19-CE09-0017), Graskop (ANR-19-CE09-0026), NITQuantum (ANR-20-ASTR-0008-01), Bright (ANR-21-CE24-0012-02), and MixDferro (ANR-21-CE09-0029). A.C. thanks Agence Innovation Defense for Ph.D. funding. J.P. and J.I.C. acknowledge support from Prometeo Grant Q-Devices (Prometeo/2018/098).
- Published
- 2021
24. Seeded growth of HgTe nanocrystals for shape control and their use in narrow infrared electroluminescence
- Author
-
Audrey Chu, Christophe Delerue, Emmanuel Lhuillier, Xiang Zhen Xu, Junling Qu, Charlie Gréboval, Corentin Dabard, Sandrine Ithurria, Prachi Rastogi, Adrien Khalili, Yoann Prado, Nanostructures et optique (INSP-E4), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Physico-chimie et dynamique des surfaces (INSP-E6), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Physique - IEMN (PHYSIQUE - IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), ANR-19-CE24-0022,COPIN,Détecteur plasmonique à nanoCristaux colloïdaux: une nouvelle filière pour l'OPtoélectronique INfrarouge(2019), ANR-19-CE09-0017,FRONTAL,Nanocristaux Colloïdaux Dopés Infrarouges(2019), ANR-18-CE30-0023,IPER-Nano2,Nanocristaux de perovskite inorganique pour la nanophotonique(2018), ANR-19-CE09-0026,GRaSkop,Tuning Giant Rashba Spin-Orbit Coupling in Polar Single Layer Transition Metal Dichalcogenides(2019), ANR-20-ASTR-0008,NITquantum,Design et fabrication d'un plan focal dans le proche infrarouge à base de nanocrisrtaux(2020), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), European Project: 756225,blackQD, European Project: 853049,ne2dem, Université catholique de Lille (UCL)-Université catholique de Lille (UCL), and Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA)
- Subjects
Materials science ,Photoluminescence ,Infrared ,business.industry ,General Chemical Engineering ,Near-infrared spectroscopy ,Quantum yield ,02 engineering and technology ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Electroluminescence ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,law.invention ,Nanocrystal ,law ,Lattice (order) ,Materials Chemistry ,Optoelectronics ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,0210 nano-technology ,business ,Light-emitting diode - Abstract
International audience; HgTe colloidal nanocrystals (NCs) have become a promising building block for infrared optoelectronics. Despite their cubic zinc blende lattice, HgTe NCs tend to grow in a multipodic fashion, leading to poor shape and size control. Strategies to obtain HgTe NCs with well-controlled sizes and shapes remain limited and sometimes challenging to handle, increasing the need for a new growth process. Here, we explore a synthetic route via seeded growth. In this approach, the small HgTe seeds are nucleated in the first step, and they show narrow and bright photoluminescence with 75% quantum yield in the near infrared region. Once integrated into Light emitting diodes (LEDs), these seeds lead to devices with high radiance up to 20 WSr-1 m-2 and a long lifetime. Heating HgTe seeds formed at the early stage leads to the formation of sphere-shaped HgTe with tunable band edges from 2 to 4 µm. Last, the electronic transport tests conducted on sphere-shaped HgTe NC arrays reveals enhanced mobility and stronger temperature dependence than the multipodic shaped particles.
- Published
- 2021
25. Surface Modification of CdE (E: S, Se, and Te) Nanoplatelets to Reach Thicker Nanoplatelets and Homostructures with Confinement-Induced Intraparticle Type I Energy Level Alignment
- Author
-
Corentin Dabard, Xiangzhen Xu, Emmanuel Lhuillier, Marion Dufour, Thomas Pons, Nicolas Moghaddam, Hong Po, Sandrine Ithurria, Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), European Project: 756225,blackQD, and European Project: 853049,ne2dem
- Subjects
Recrystallization (geology) ,Nanostructure ,business.industry ,Chalcogenide ,Exciton ,Heterojunction ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,010402 general chemistry ,01 natural sciences ,Biochemistry ,Catalysis ,Cadmium telluride photovoltaics ,0104 chemical sciences ,chemistry.chemical_compound ,Colloid and Surface Chemistry ,Semiconductor ,chemistry ,Optoelectronics ,Surface modification ,business - Abstract
International audience; Two-dimensional II–VI semiconductor nanoplatelets (NPLs) present exceptionally narrow optical features due to their thickness defined at the atomic scale. Because thickness drives the band-edge energy, its control is of paramount importance. Here, we demonstrate that native carboxylate ligands can be replaced by halides that partially dissolve cadmium chalcogenide NPLs at the edges. The released monomers then recrystallize on the wide top and bottom facets, leading to an increase in NPL thickness. This dissolution/recrystallization method is used to increase NPL thickness to 9 ML while using 3 ML NPLs as the starting material. We also demonstrate that this method is not limited to CdSe and can be extended to CdS and CdTe to grow thick NPLs. When the metal halide precursor is introduced with a chalcogenide precursor on the NPLs, CdSe/CdSe, CdTe/CdTe, and CdSe/CdTe core/shell homo- and heterostructures are achieved. Finally, when an incomplete layer is grown, NPLs with steps are synthesized. These stress-free homostructures are comparable to type I heterostructures, leading to recombination of the exciton in the thicker area of the NPLs. Following the growth of core/crown and core/shell NPLs, it affords a new degree of freedom for the growth of structured NPLs with designed band engineering, which has so far been only achievable for heteromaterial nanostructures.
- Published
- 2021
26. Broadband Enhancement of Mid‐Wave Infrared Absorption in a Multi‐Resonant Nanocrystal‐Based Device (Advanced Optical Materials 9/2022)
- Author
-
Tung Huu Dang, Claire Abadie, Adrien Khalili, Charlie Gréboval, Huichen Zhang, Yoann Prado, Xiang Zhen Xu, Djamal Gacemi, Armel Descamps‐Mandine, Sandrine Ithurria, Yanko Todorov, Carlo Sirtori, Angela Vasanelli, and Emmanuel Lhuillier
- Subjects
Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials - Published
- 2022
27. Light emission by thermalized ensemble of emitters coupled to resonators
- Author
-
Julien Moreau, Eva De Leo, Benjamin Vest, Jean-Paul Hugonin, Jean-Jacques Greffet, Sandrine Ithurria, Ilan Shlesinger, Ferry Prins, Elise Bailly, Hector Monin, and Marion Dufour
- Subjects
Physics ,Quantum dot ,Exciton ,Light emission ,Spontaneous emission ,Purcell effect ,Reflectometry ,Molecular physics ,Quantum ,Plasmon - Abstract
Optical antennas have become ubiquitous tools to enhance the spontaneous emission of atoms, molecules and quantum dots. In this presentation, we report a series of experimental results investigating the emission of light by ensembles of interacting emitters coupled to resonators. First, we report the observation of a strong plasmon−exciton coupling regime in a system consisting of a layer of nanoplatelets on top of a gold planar surface. Reflectometry measurements and mode analysis lead to the non-ambiguous derivation of a Rabi splitting between two polaritonic branches. Secondly, we investigate the polarized and directional emission of light by a patterned layer of nanoplatelets optically pumped. Models based on the paradigm of the Purcell effect mediated radiation fail to fully explain spectral and spatial features observed in such experiments, such as the emergence of spatial coherence or the suppression of quenching. We discuss and highlight the differences between emission by a single emitter and by a thermalized assembly of quantum emitters to show that a statistical framework is required to understand their interactions with optical antennas. Based on these considerations, we introduce a model of light emission by thermalized ensembles of emitters, and find good agreement between our model and experimental data.
- Published
- 2020
28. A nanoplatelet-based light emitting diode and its use for all-nanocrystal LiFi-like communication
- Author
-
Audrey Chu, Emmanuel Lhuillier, Marion Dufour, Charlie Gréboval, Junling Qu, Julien Ramade, Sandrine Ithurria, Prachi Rastogi, Sang-Soo Chee, Xiang Zhen Xu, Clément Livache, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ANR-19-CE24-0022,COPIN,Détecteur plasmonique à nanoCristaux colloïdaux: une nouvelle filière pour l'OPtoélectronique INfrarouge(2019), ANR-19-CE09-0017,FRONTAL,Nanocristaux Colloïdaux Dopés Infrarouges(2019), ANR-19-CE09-0026,GRaSkop,Tuning Giant Rashba Spin-Orbit Coupling in Polar Single Layer Transition Metal Dichalcogenides(2019), ANR-18-CE30-0023,IPER-Nano2,Nanocristaux de perovskite inorganique pour la nanophotonique(2018), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), European Project: 756225,blackQD, and European Project: 853049,ne2dem
- Subjects
Materials science ,Photodetector ,02 engineering and technology ,nanocrystal- based communication ,010402 general chemistry ,01 natural sciences ,7. Clean energy ,law.invention ,efficiency droop ,law ,electronic transport ,Solar cell ,General Materials Science ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Diode ,Liquid-crystal display ,business.industry ,nanoplatelets ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,light emitting diode ,Quantum dot ,Optoelectronics ,Quantum efficiency ,0210 nano-technology ,business ,Luminescence ,Light-emitting diode - Abstract
International audience; Since colloidal nanocrystals (NCs) were integrated as green and red sources for LCD displays, the next challenge for quantum dots has been their use in electrically driven light emitting diodes (LEDs). Among various colloidal nanocrystals, nanoplatelets (NPLs) appeared as promising candidates for light emitting devices because their two-dimensional shape allows a narrow luminescence spectrum, directional emission and high light extraction. To reach high quantum efficiency it is critical to grow core/shell structures. High temperature growth of the shells seems to be a better strategy than previously reported low temperature approaches to obtain bright NPLs. Here, we synthesize CdSe/CdZnS core/shell NPLs whose shell alloy content is tuned to optimize the hole injection in the LED structure. The obtained LED has exceptionally low turn-on voltage, long-term stability (>3100 h at 100 Cd.m-2), external quantum efficiency above 5% and luminance up to 35000 cd.m-2. We study the low-temperature performance of the LED and find that there is a delay of droop in terms of current density as temperature decreases. In the last part of the paper, we design a large LED (56 mm2 emitting area) and test its potential for LiFi-like communication. In such approach, the LED is not only a lightning source but also used to transmit a communication signal to a PbS quantum dot solar cell used as a broad band photodetector. Operating conditions compatible with both lighting and information transfer have been identified. This work paves the way toward an all nanocrystal-based communication setup.
- Published
- 2020
29. Near to Long-Wave Infrared Mercury Chalcogenide Nanocrystals from Liquid Mercury
- Author
-
Sandrine Ithurria, Nicolas Goubet, Junling Qu, Sang-Soo Chee, Yimin Zhang, Charlie Gréboval, Prachi Rastogi, Xiang Zhen Xu, Emmanuel Lhuillier, Audrey Chu, Gregory Cabailh, Mayank Goyal, Maxime Thomas, De la Molécule aux Nanos-objets : Réactivité, Interactions et Spectroscopies (MONARIS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (LPEM), ESPCI ParisTech-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Oxydes en basses dimensions (INSP-E9), ANR: copin, ANR: Iper-nano2,Iper-nano2, ANR: frontal, ANR-11-IDEX-0004-02/10-LABX-0067,MATISSE,MATerials, InterfaceS, Surfaces, Environment(2011), ANR: graskop,graskop, European Project: 756225,blackQD, Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ANR-19-CE24-0022,COPIN,Détecteur plasmonique à nanoCristaux colloïdaux: une nouvelle filière pour l'OPtoélectronique INfrarouge(2019), ANR-18-CE30-0023,IPER-Nano2,Nanocristaux de perovskite inorganique pour la nanophotonique(2018), ANR-19-CE09-0017,FRONTAL,Nanocristaux Colloïdaux Dopés Infrarouges(2019), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), and ANR-19-CE09-0026,GRaSkop,Tuning Giant Rashba Spin-Orbit Coupling in Polar Single Layer Transition Metal Dichalcogenides(2019)
- Subjects
Materials science ,Long wave infrared ,Infrared ,Chalcogenide ,Infrared spectroscopy ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,HgTe ,nanocrystal ,chemistry.chemical_compound ,Colloid ,Physical and Theoretical Chemistry ,infarred ,liquid mercury ,business.industry ,Photoconductivity ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Mercury (element) ,General Energy ,chemistry ,Nanocrystal ,Optoelectronics ,0210 nano-technology ,business - Abstract
International audience; HgTe nanocrystals are currently the most promising colloidal material for infrared detection, combining broadly tunable infrared absorption and photoconductive properties. Current synthesis leads to a limited amount of material and relies on a highly toxic water-soluble form of Hg. Here, we explore the possibility of using Hg thiolate as Hg source and demonstrate that the latter can be formed in situ from liquid Hg. The developed protocol allows large masses (7 g) and highly concentrated (100 g/L) synthesis, which is a step forward for the transfer of this material towards industry. The transport properties of the material have also been investigated and we observe a transition from p to n-type with size. We observe that the threshold of the p to n switch depends on the growth method which enables for a given size of nanocrystal the formation of p-n junction. This work has great potential to design infrared sensor with optimized charge dissociation.
- Published
- 2020
30. Pushing absorption of perovskite nanocrystals into the infrared
- Author
-
Gilles Patriarche, Adrien Khalili, Lenart Dudy, Audrey Chu, Grégory Vincent, Sang-Soo Chee, Xiang Zhen Xu, Charlie Gréboval, Prachi Rastogi, Ulrich Nguétchuissi Noumbé, Mathieu G. Silly, Hervé Cruguel, Junling Qu, Aloyse Degiron, Mayank Goyal, Sandrine Ithurria, Bruno Gallas, Jean-Francois Dayen, Emmanuel Lhuillier, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Nanostructures et optique (INSP-E4), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Centre de Nanosciences et de Nanotechnologies (C2N), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire Matériaux et Phénomènes Quantiques (MPQ (UMR_7162)), Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), DOTA, ONERA, Université Paris Saclay [Palaiseau], ONERA-Université Paris-Saclay, ANR-18-CE30-0023,IPER-Nano2,Nanocristaux de perovskite inorganique pour la nanophotonique(2018), ANR-19-CE09-0017,FRONTAL,Nanocristaux Colloïdaux Dopés Infrarouges(2019), ANR-19-CE24-0022,COPIN,Détecteur plasmonique à nanoCristaux colloïdaux: une nouvelle filière pour l'OPtoélectronique INfrarouge(2019), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), ANR-19-CE09-0026,GRaSkop,Tuning Giant Rashba Spin-Orbit Coupling in Polar Single Layer Transition Metal Dichalcogenides(2019), European Project: 756225,blackQD, lhuillier, emmanuel, APPEL À PROJETS GÉNÉRIQUE 2018 - Nanocristaux de perovskite inorganique pour la nanophotonique - - IPER-Nano22018 - ANR-18-CE30-0023 - AAPG2018 - VALID, Nanocristaux Colloïdaux Dopés Infrarouges - - FRONTAL2019 - ANR-19-CE09-0017 - AAPG2019 - VALID, Détecteur plasmonique à nanoCristaux colloïdaux: une nouvelle filière pour l'OPtoélectronique INfrarouge - - COPIN2019 - ANR-19-CE24-0022 - AAPG2019 - VALID, Sorbonne Universités à Paris pour l'Enseignement et la Recherche - - SUPER2011 - ANR-11-IDEX-0004 - IDEX - VALID, Tuning Giant Rashba Spin-Orbit Coupling in Polar Single Layer Transition Metal Dichalcogenides - - GRaSkop2019 - ANR-19-CE09-0026 - AAPG2019 - VALID, ERC blackQD - blackQD - 756225 - INCOMING, Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et nanosciences d'Alsace (FMNGE), and Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique
- Subjects
Electron mobility ,Materials science ,Bioengineering ,02 engineering and technology ,7. Clean energy ,nanocrystal ,field effect transistor ,plasmonic resonator ,General Materials Science ,Perovskites ,Absorption (electromagnetic radiation) ,perovskite ,Perovskite (structure) ,light matter-coupling ,[CHIM.MATE] Chemical Sciences/Material chemistry ,business.industry ,Mechanical Engineering ,Doping ,short-wave infrared ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Formamidinium ,Nanocrystal ,infrared ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Optoelectronics ,resonator ,0210 nano-technology ,business ,Hybrid material ,Formamidinium lead iodine ,Dark current - Abstract
International audience; To date defect-tolerance electronic structure of Lead halide perovskite nanocrystals is limited to optical feature in the visible range. Here, we demonstrate that IR sensitization of formamidinium lead iodine (FAPI) nanocrystals array can be obtained by its doping with PbS nanocrystals. In this hybrid array, absorption comes from the PbS nanocrystals while transport is driven by the perovskite which reduces the dark current compared to pristine PbS. In addition, we fabricate a field-effect transistor using a high capacitance ionic glass made of hybrid FAPI/PbS nanocrystal arrays. We show that the hybrid material has an n-type nature with an electron mobility of 2 x 10-3 cm2 V-1s-1. However, the dark current reduction is mostly balanced by a loss of absorption. To overcome this limitation, we couple the FAPI/PbS hybrid to a guided mode resonator, that can enhance the infrared light absorption.
- Published
- 2020
31. Emission State Structure and Linewidth Broadening Mechanisms in Type-II CdSe/CdTe Core–Crown Nanoplatelets: A Combined Theoretical–Single Nanocrystal Optical Study
- Author
-
Maria Chamarro, Sandrine Ithurria, Ashish Sharma, Raj Pandya, Yuttapoom Puttisong, Christophe Testelin, Violette Steinmetz, Girish Lakhwani, F. Bernardot, Laurent Legrand, Alex W. Chin, Juan I. Climente, Josep Planelles, Marion Dufour, Thierry Barisien, Florent Margaillan, Akshay Rao, Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Universitat Jaume I, Cavendish Laboratory, University of Cambridge [UK] (CAM), Linköping University (LIU), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), The University of Sydney, Photonique et cohérence de spin (INSP-E12), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and EPSRC and Winton Program for the Physics of Sustainability
- Subjects
Materials science ,Exciton ,Binding energy ,Physics::Optics ,02 engineering and technology ,Computer Science::Computational Geometry ,Quantum devices ,010402 general chemistry ,01 natural sciences ,7. Clean energy ,nanocrystal ,Condensed Matter::Materials Science ,Laser linewidth ,Physical and Theoretical Chemistry ,Type-II heterostructures ,business.industry ,Heterojunction ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,021001 nanoscience & nanotechnology ,Cadmium telluride photovoltaics ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Core (optical fiber) ,General Energy ,Nanocrystal ,Optoelectronics ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] ,0210 nano-technology ,business - Abstract
International audience; Type-II heterostructures are key elementary components in optoelectronic, photovoltaic, and quantum devices. The staggered band alignment of materials leads to the stabilization of indirect excitons (IXs), i.e., correlated electron–hole pairs experiencing spatial separation with novel properties, boosting optical gain and promoting strategies for the design of information storage, charge separation, or qubit manipulation devices. Planar colloidal CdSe/CdTe core–crown type-II nested structures, grown as nanoplatelets (NPLs), are the focus of the present work. By combining low temperature single NPL measurements and electronic structure calculations, we gain insights into the mechanisms impacting the emission properties. We are able to probe the sensitivity of the elementary excitations (IXs, trions) with respect to the appropriate structural parameter (core size). Neutral IXs, with binding energies reaching 50 meV, are shown to dominate the highly structured single NPL emission. The large broadening linewidth that persists at the single NPL level clearly results from strong exciton–LO phonon coupling (Eph = 21 meV) whose strength is poorly influenced by trapped charges. The spectral jumps (≈10 meV) in the photoluminescence recorded as a function of time are explained by the fluctuations in the IX electrostatic environment considering fractional variations (≈0.2 e) of the noncompensated charge defects.
- Published
- 2020
32. Exciton–Phonon Interactions Govern Charge-Transfer-State Dynamics in CdSe/CdTe Two-Dimensional Colloidal Heterostructures
- Author
-
Marion Dufour, Aditya Sadhanala, Sandrine Ithurria, Shahab Ahmed, Alexandre Cheminal, Johannes M. Richter, Tudor H. Thomas, Raj Pandya, Giorgio Divitini, Neil C. Greenham, Akshay Rao, Edward P. Booker, Richard Chen, Felix Deschler, Pandya, Raj [0000-0003-1108-9322], Cheminal, Alexandre [0000-0001-9969-672X], Dufour, Marion [0000-0001-9588-9524], Sadhanala, Aditya [0000-0003-2832-4894], Booker, Edward P [0000-0001-8155-8206], Divitini, Giorgio [0000-0003-2775-610X], Greenham, Neil C [0000-0002-2155-2432], Ithurria, Sandrine [0000-0002-4733-9883], Rao, Akshay [0000-0003-4261-0766], and Apollo - University of Cambridge Repository
- Subjects
Photoluminescence ,Phonon ,Exciton ,Physics::Optics ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Biochemistry ,Catalysis ,Condensed Matter::Materials Science ,Colloid and Surface Chemistry ,Monolayer ,0306 Physical Chemistry (incl. Structural) ,Condensed Matter::Other ,business.industry ,Chemistry ,Heterojunction ,General Chemistry ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,021001 nanoscience & nanotechnology ,Cadmium telluride photovoltaics ,0104 chemical sciences ,Semiconductor ,Chemical physics ,Femtosecond ,0210 nano-technology ,business - Abstract
CdSe/CdTe core-crown type-II nanoplatelet heterostructures are two-dimensional semiconductors that have attracted interest for use in light-emitting technologies due to their ease of fabrication, outstanding emission yields, and tunable properties. Despite this, the exciton dynamics of these complex materials, and in particular how they are influenced by phonons, is not yet well understood. Here, we use a combination of femtosecond vibrational spectroscopy, temperature-resolved photoluminescence (PL), and temperature-dependent structural measurements to investigate CdSe/CdTe nanoplatelets with a thickness of four monolayers. We show that charge-transfer (CT) excitons across the CdSe/CdTe interface are formed on two distinct time scales: initially from an ultrafast (∼70 fs) electron transfer and then on longer time scales (∼5 ps) from the diffusion of domain excitons to the interface. We find that the CT excitons are influenced by an interfacial phonon mode at ∼120 cm-1, which localizes them to the interface. Using low-temperature PL spectroscopy we reveal that this same phonon mode is the dominant mechanism in broadening the CT PL. On cooling to 4 K, the total PL quantum yield reaches close to unity, with an ∼85% contribution from CT emission and the remainder from an emissive sub-band-gap state. At room temperature, incomplete diffusion of domain excitons to the interface and scattering between CT excitons and phonons limit the PL quantum yield to ∼50%. Our results provide a detailed picture of the nature of exciton-phonon interactions at the interfaces of 2D heterostructures and explain both the broad shape of the CT PL spectrum and the origin of PL quantum yield losses. Furthermore, they suggest that to maximize the PL quantum yield both improved engineering of the interfacial crystal structure and diffusion of domain excitons to the interface, e.g., by altering the relative core/crown size, are required.
- Published
- 2018
33. Electronic properties of (Sb;Bi)2Te3 colloidal heterostructured nanoplates down to the single particle level
- Author
-
Wasim J. Mir, Alexandre Assouline, Clément Livache, Bertille Martinez, Nicolas Goubet, Xiang Zhen Xu, Gilles Patriarche, Sandrine Ithurria, Hervé Aubin, and Emmanuel Lhuillier
- Subjects
lcsh:R ,lcsh:Medicine ,lcsh:Q ,lcsh:Science - Abstract
We investigate the potential use of colloidal nanoplates of Sb2Te3 by conducting transport on single particle with in mind their potential use as 3D topological insulator material. We develop a synthetic procedure for the growth of plates with large lateral extension and probe their infrared optical and transport properties. These two properties are used as probe for the determination of the bulk carrier density and agree on a value in the 2–3 × 1019 cm−3 range. Such value is compatible with the metallic side of the Mott criterion which is also confirmed by the weak thermal dependence of the conductance. By investigating the transport at the single particle level we demonstrate that the hole mobility in this system is around 40 cm2V−1s−1. For the bulk material mixing n-type Bi2Te3 with the p-type Sb2Te3 has been a successful way to control the carrier density. Here we apply this approach to the case of colloidally obtained nanoplates by growing a core-shell heterostructure of Sb2Te3/Bi2Te3 and demonstrates a reduction of the carrier density by a factor 2.5.
- Published
- 2017
34. Strong Coupling of Nanoplatelets and Surface Plasmons on a Gold Surface
- Author
-
Benjamin Vest, Ilan Shlesinger, Sandrine Ithurria, Marion Dufour, Hector Monin, Jean-Jacques Greffet, Julien Moreau, Jean-Paul Hugonin, Laboratoire Charles Fabry / Nanophotonique, Laboratoire Charles Fabry (LCF), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS), Laboratoire Charles Fabry / Biophotonique, Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Exciton ,02 engineering and technology ,01 natural sciences ,010309 optics ,Condensed Matter::Materials Science ,Colloid ,0103 physical sciences ,Electrical and Electronic Engineering ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Anisotropy ,Plasmon ,ComputingMilieux_MISCELLANEOUS ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,Condensed matter physics ,Condensed Matter::Other ,Surface plasmon ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,021001 nanoscience & nanotechnology ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,Nanocrystal ,Strong coupling ,0210 nano-technology ,Biotechnology ,Coherence (physics) - Abstract
Nanoplatelets are strongly anisotropic colloidal nanocrystals confined in only one direction. Perfect thickness control and large lateral dimensions enable a large exciton coherence area that exhib...
- Published
- 2019
35. Azobenzene as Light-Activable Carrier Density Switches in Nanocrystals
- Author
-
Hervé Cruguel, Sandrine Ithurria, Xiang Zhen Xu, Nicolas Goubet, Charlie Gréboval, Junling Qu, Audrey Chu, Prachi Rastogi, Mathieu G. Silly, Clément Livache, Emmanuel Lhuillier, Rémi Plamont, Yoann Prado, Bertille Martinez, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), University of Twente [Netherlands], Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), De la Molécule aux Nanos-objets : Réactivité, Interactions et Spectroscopies (MONARIS), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ANR-18-CE30-0023,IPER-Nano2,Nanocristaux de perovskite inorganique pour la nanophotonique(2018), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), ANR-19-CE24-0022,COPIN,Détecteur plasmonique à nanoCristaux colloïdaux: une nouvelle filière pour l'OPtoélectronique INfrarouge(2019), ANR-19-CE09-0026,GRaSkop,Tuning Giant Rashba Spin-Orbit Coupling in Polar Single Layer Transition Metal Dichalcogenides(2019), ANR-19-CE09-0017,FRONTAL,Nanocristaux Colloïdaux Dopés Infrarouges(2019), European Project: 756225,blackQD, Biomolecular Nanotechnology, and University of Twente
- Subjects
Materials science ,business.industry ,02 engineering and technology ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,n/a OA procedure ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Optical pumping ,Dipole ,General Energy ,Nanocrystal ,Impurity ,Optoelectronics ,Molecule ,Physical and Theoretical Chemistry ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,0210 nano-technology ,business ,Excitation ,Cis–trans isomerism ,Visible spectrum - Abstract
International audience; Control of carrier density in colloidal quantum dots is a major challenge for their integration into optoelectronic devices. Several chemical methods have been proposed to reach this goal including: introduction of impurities, non-stoichiometric compounds, introduction of redox molecules as ligands and surface gating obtained by tuning the dipole associated with surface ligands. None of these techniques allows post synthesis tunability. Alternatively, optical pumping requires high excitation power which may heat and finally damage the sample. Here, we propose a new procedure based on grafting of azobenzenes (AZBs) on the nanocrystal surface. The AZBs have two conformations (cis and trans), which are associated with strongly different dipole moments. The transition from one conformation to the other can be activated using UV or visible light at low intensities (
- Published
- 2019
36. Insights into the Formation Mechanism of CdSe Nanoplatelets Using in Situ X-ray Scattering
- Author
-
Diego Pontoni, Benjamin Abécassis, Nicolas Lequeux, Sandrine Ithurria, Doru Constantin, Pierre Levitz, Cécile Bouet, Nicolo Castro, Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des Solides (LPS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Laboratoire de physique de la matière condensée (LPMC), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), and European Synchrotron Radiation Facility (ESRF)
- Subjects
Materials science ,Bioengineering ,02 engineering and technology ,law.invention ,chemistry.chemical_compound ,law ,General Materials Science ,Anisotropy ,business.industry ,Scattering ,Small-angle X-ray scattering ,Mechanical Engineering ,Mesophase ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Synchrotron ,Monomer ,Semiconductor ,chemistry ,Chemical engineering ,Quantum dot ,Yield (chemistry) ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Small-angle scattering ,0210 nano-technology ,business ,[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft] - Abstract
Two dimensional ultra thin CdSe nanoplatelets have attracted a large interest due to their optical properties but their formation mechanism is not well understood. Several different mechanisms have been proposed: confined growth in a surfactant mesophase acting as a template, anisotropic ripening of small seeds into 2D nanoplatelets or continuous anisotropic growth of a limited number of nuclei. However, quantitative in situ data that could validate or disprove these formation scenarios are lacking. We use synchrotron-based small-angle and wide-angle X-ray scattering to probe the formation mechanism of CdSe nanoplatelets synthesized using a heating-up method. We prove the absence of a molecular mesophase in the reactive medium at the onset of nanoplatelet formation ruling out a templating effect. We also show that our data are inconsistent with the anisotropic ripening of small seeds whereas the evolution of the SAXS patterns during the reaction is consistent with the continuous lateral growth of nanoplatelets fed by reactive monomers. Finally, we show that when the final temperature of the synthesis is lowered, nanoplatelets with larger lateral dimensions form. We reveal that they bend in solution during their growth to yield nanoscrolls.
- Published
- 2019
37. Insights into the Formation Mechanism of CdSe Nanoplatelets Using in situ X-ray Scattering
- Author
-
Nicolo Castro, Sandrine Ithurria, Nicolas Lequeux, Doru Constantin, Pierre Levitz, Diego Pontoni, and Benjamin Abécassis
- Abstract
Two dimensional ultra thin CdSe nanoplatelets have attracted a large interest due to their optical properties but their formation mechanism is not yet well understood. Several different mechanisms and models have been proposed but quantitative in situ data that could validate or disprove them are lacking. We use synchrotron-based small-angle and wide-angle X-ray scattering to probe in situ the formation mechanism of CdSe nanoplatelets synthesized using a heating-up method. We prove the absence of a molecular mesophases in the reactive medium at the onset of nanoplatelet formation ruling out a templating effect. A q-2 regime is observed from the start of the reaction which extends towards smaller wave vectors with time, consistent with the continuous lateral growth of nanoplatelets from a limited number of seeds fed by reactive monomers. A ripening mechanism where small cluster fuse to yield nanoplatelets can also be ruled out by our data. When the final temperature is lowered, larger nanoplatelets are obtained and the SAXS patterns exhibit marked oscillations due to their rolling into curved nanoscrolls. Our experiments thus show that nanoplatelet curvature appears during their synthesis.
- Published
- 2019
38. Doping as a strategy to tune color of 2D colloidal nanoplatelets
- Author
-
Sandrine Ithurria, Eva Izquierdo, Christophe Delerue, Emmanuel Lhuillier, Mathieu G. Silly, Bertille Martinez, Marion Dufour, Clément Livache, Thomas Pons, Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Physique - IEMN (PHYSIQUE - IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), ACKNOWLEDGMENTSWe acknowledge the use of clean-room facilities from the'Centrale de ProximitéParis-Centre'. We acknowledge Islah ElMasoudi of UMR 7178 who did the ICP-MS measurements.This work has been supported by the Region Ile-de-France inthe framework of DIM Nano-K (grant dopQD). This work wassupported by French state funds managed by the ANR withinthe Investissements d’Avenir programme under referenceANR-11-IDEX-0004-02 and, more specifically, within theframework of the Cluster of Excellence MATISSE and alsoby the grant Nanodose and IPER-Nano2. E.L. thanks thesupport ERC starting grant blackQD (grant no. 756225), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), European Project: 756225,blackQD, and Physique-IEMN (PHYSIQUE-IEMN)
- Subjects
Materials science ,Photoluminescence ,Phosphor ,02 engineering and technology ,doping ,010402 general chemistry ,01 natural sciences ,gamut ,symbols.namesake ,luminescence ,[CHIM]Chemical Sciences ,General Materials Science ,Spectroscopy ,Dopant ,business.industry ,Fermi level ,Doping ,nanoplatelets ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Nanocrystal ,symbols ,Optoelectronics ,0210 nano-technology ,Luminescence ,business - Abstract
Among colloidal nanocrystals, 2D nanoplatelets (NPLs) made of II-VI compounds appear as a special class of emitters with an especially narrow photoluminescence signal. However, the PL signal in the case of NPLs is only tunable by a discrete step. Here, we demonstrate that doping is a viable path to finely tune the color of these NPLs from green to red, making them extremely interesting as phosphors for wide-gamut display. In addition, using a combination of luminescence spectroscopy, tight-binding simulation, transport, and photoemission, we provide a consistent picture for the Ag+-doped CdSe NPLs. The Ag-activated state is strongly bound and located 340 meV above the valence band of the bulk material. The Ag dopant induces a relative shift of the Fermi level toward the valence band by up to 400 meV but preserves the n-type nature of the material.
- Published
- 2019
39. Field effect transistor and photo transistor of narrow band gap nanocrystal arrays using ionic glasses
- Author
-
Nicolas Goubet, Ulrich Nguétchuissi Noumbé, Yoann Prado, Charlie Gréboval, Audrey Chu, Emmanuel Lhuillier, Abdelkarim Ouerghi, Bertille Martinez, Sandrine Ithurria, Junling Qu, Hervé Aubin, Julien Ramade, Clément Livache, Jean-Francois Dayen, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), De la Molécule aux Nanos-objets : Réactivité, Interactions et Spectroscopies (MONARIS), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre de Nanosciences et Nanotechnologies (C2N (UMR_9001)), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ANR-18-CE30-0023,IPER-Nano2,Nanocristaux de perovskite inorganique pour la nanophotonique(2018), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), ANR-15-CE09-0014,NanoDoSe,Dopage de Nanocristaux Semiconducteurs par chimie douce(2015), European Project: 756225,blackQD, Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, and Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,infrared nanocrystal ,Bioengineering ,02 engineering and technology ,Photodetection ,Dielectric ,Capacitance ,HgTe ,law.invention ,field effect transistor ,Operating temperature ,law ,General Materials Science ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Photocurrent ,business.industry ,Mechanical Engineering ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Photodiode ,Nanocrystal ,ionic glass ,infrared ,Optoelectronics ,Field-effect transistor ,0210 nano-technology ,business ,solid state gating ,LaF3 ,ionic glasses ,HgTe nanocrystal - Abstract
The gating of nanocrystal films is currently driven by two approaches: either the use of a dielectric such as SiO2 or the use of electrolyte. SiO2 allows fast bias sweeping over a broad range of temperatures but requires a large operating bias. Electrolytes, thanks to large capacitances, lead to the significant reduction of operating bias but are limited to slow and quasi-room-temperature operation. None of these operating conditions are optimal for narrow-band-gap nanocrystal-based phototransistors, for which the necessary large-capacitance gate has to be combined with low-temperature operation. Here, we explore the use of a LaF3 ionic glass as a high-capacitance gating alternative. We demonstrate for the first time the use of such ionic glasses to gate thin films made of HgTe and PbS nanocrystals. This gating strategy allows operation in the 180 to 300 K range of temperatures with capacitance as high as 1 μF·cm-2. We unveil the unique property of ionic glass gate to enable the unprecedented tunability of both magnitude and dynamics of the photocurrent thanks to high charge-doping capability within an operating temperature window relevant for infrared photodetection. We demonstrate that by carefully choosing the operating gate bias, the signal-to-noise ratio can be improved by a factor of 100 and the time response accelerated by a factor of 6. Moreover, the good transparency of LaF3 substrate allows back-side illumination in the infrared range, which is highly valuable for the design of phototransistors.
- Published
- 2019
40. Ligand exchange on CdSe nanoplatelets for the solar light sensitization of TiO2 and ZnO nanorod arrays
- Author
-
Sandrine Ithurria, Alexandra Szemjonov, Mariana Tasso, Frédéric Labat, Th. Pauporté, Ilaria Ciofini, Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Electrochimie et de Chimie Analytique (LECA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Passivation ,Band gap ,NANOPLATELETS ,General Chemical Engineering ,General Physics and Astronomy ,Nanotechnology ,02 engineering and technology ,010402 general chemistry ,Light sensitization ,01 natural sciences ,7. Clean energy ,CdSe ,CDSE ,LIGHT SENSITIZATION ,purl.org/becyt/ford/1 [https] ,chemistry.chemical_compound ,symbols.namesake ,Monolayer ,Química Coloidal ,purl.org/becyt/ford/1.4 [https] ,ZNO ,TiO2 ,[CHIM]Chemical Sciences ,Bifunctional ,ComputingMilieux_MISCELLANEOUS ,[PHYS]Physics [physics] ,Ligand exchange ,Chemistry ,Nanoplatelets ,Wide-bandgap semiconductor ,Ciencias Químicas ,General Chemistry ,021001 nanoscience & nanotechnology ,LIGAND EXCHANGE ,0104 chemical sciences ,Quantum dot ,symbols ,ZnO ,TIO2 ,Nanorod ,0210 nano-technology ,Raman spectroscopy ,CIENCIAS NATURALES Y EXACTAS - Abstract
In quantum dot (QD) solar cells, the ex situ sensitization of wide band gap semiconductors (WBSCs) makes it possible to control the shape and the passivation of the nanosized sensitizer. Hence, ex situ techniques can be used to investigate how the band gap of the sensitizers affects the performance of quantum dot solar cells. The latter can be precisely controlled in 1D confined structures such as quasi-2D nanoplatelets (NPLs), the thickness of which is defined with an atomic precision. In this work, we tested and thoroughly characterized the attachment of 7, 9 and 11 monolayers thick CdSe NPLs (as well as QDs for the sake of comparison) to ZnO and to TiO2 nanorods. A crucial point of the ex situ techniques is the choice of bifunctional ligands that link the nanosized sensitizers to the WBSCs. Besides the well-known mercaptopropionic acid, we also studied two ‘atomic linkers’ (OH− and SH−) to minimize the distance between the sensitizer and the oxide. The as-prepared systems have been analyzed by UV/VIS absorption and Raman spectroscopy. Among them, SH− was found to be the most versatile linker that enabled the efficient attachment of all types of CdSe nanocrystals on ZnO and TiO2 nanorods. Fil: Szemjonov, A.. PSL Research University; Francia. Centre National de la Recherche Scientifique; Francia Fil: Tasso, Mariana Patricia. Laboratoire de Physique Et D'etude Des Materiaux; Francia. Centre National de la Recherche Scientifique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina Fil: Ithurria, S.. Laboratoire de Physique Et D'etude Des Materiaux; Francia Fil: Ciofini, I.. PSL Research University; Francia. Centre National de la Recherche Scientifique; Francia Fil: Labat, F.. PSL Research University; Francia. Centre National de la Recherche Scientifique; Francia Fil: Pauporté, T.. PSL Research University; Francia. Centre National de la Recherche Scientifique; Francia
- Published
- 2019
41. Halide Ligands To Release Strain in Cadmium Chalcogenide Nanoplatelets and Achieve High Brightness
- Author
-
Sandrine Ithurria, Charlie Gréboval, Emmanuel Lhuillier, Marion Dufour, Christophe Méthivier, Junling Qu, Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Réactivité de Surface (LRS), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ANR-18-CE30-0023,IPER-Nano2,Nanocristaux de perovskite inorganique pour la nanophotonique(2018), ANR-15-CE09-0014,NanoDoSe,Dopage de Nanocristaux Semiconducteurs par chimie douce(2015), ANR-15-CE24-0016,H2DH,Hétérostructures bi-dimendionnelles hybrides pour l'optoélectronique(2015), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), and European Project: 756225,blackQD
- Subjects
Photoluminescence ,Materials science ,Chalcogenide ,Inorganic chemistry ,General Physics and Astronomy ,chemistry.chemical_element ,Nanoparticle ,Halide ,02 engineering and technology ,Zinc ,010402 general chemistry ,01 natural sciences ,Atomic units ,photemission ,chemistry.chemical_compound ,strain ,General Materials Science ,Cadmium ,business.industry ,ligands ,nanoplatelets ,LED ,General Engineering ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,halides ,Semiconductor ,chemistry ,photoluminescence ,0210 nano-technology ,business - Abstract
International audience; Zinc blende II-VI semiconductor nanoplatelets (NPLs) are defined at the atomic scale along the thickness of the nanoparticle and are initially capped with carboxylates on the top and bottom [001] facets. These ligands are exchanged on CdSe NPLs with halides that act as X-L-type ligands. These CdSe NPLs are costabilized by amines to provide colloidal stability in nonpolar solvents. The hydrogen from the amine can participate in a hydrogen bond with the lone pair electrons of surface halides. After ligand exchange, the optical features are redshifted. Thus, ligand tuning is another way, in addition to confinement, to tune the optical features of NPLs. The improved surface passivation leads to an increase in the fluorescence quantum efficiency of up to 70% in the case of bromide. However, for chloride and iodide, the surface coverage is incomplete, and thus, the fluorescence quantum efficiency is lower. This ligand exchange is associated with a decrease in stress that leads to unfolding of the NPLs, which is particularly noticeable for iodide-capped NPLs.
- Published
- 2019
- Full Text
- View/download PDF
42. Optoelectronic properties of methyl-terminated germanane
- Author
-
Thierry Barisien, Geoffroy Prévot, Audrey Chu, Bradley J. Ryan, Utkarsh Ramesh, Charlie Gréboval, Sandrine Ithurria, Emmanuel Lhuillier, Violette Steinmetz, Clément Livache, Matthew G. Panthani, Abdelkarim Ouerghi, Thibault Brulé, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Iowa State University (ISU), Photonique et cohérence de spin (INSP-E12), HORIBA Europe Research Center [Palaiseau] (Horiba), HORIBA Scientific [France], Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre de Nanosciences et de Nanotechnologies (C2N), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), ANR-18-CE30-0023,IPER-Nano2,Nanocristaux de perovskite inorganique pour la nanophotonique(2018), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), and European Project: 756225,blackQD
- Subjects
Materials science ,Photoluminescence ,Physics and Astronomy (miscellaneous) ,Band gap ,Exciton ,chemistry.chemical_element ,Germanium ,02 engineering and technology ,germanane ,01 natural sciences ,field effect transistor ,electronic transport ,0103 physical sciences ,luminescence ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Germanane ,010302 applied physics ,business.industry ,Photoconductivity ,germanium monolayer ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,chemistry ,Optoelectronics ,Direct and indirect band gaps ,Field-effect transistor ,photoluminescence ,0210 nano-technology ,business - Abstract
International audience; Germanane is a two-dimensional, strongly confined form of germanium. It presents an interesting combination of (i) ease of integration with CMOS technology, (ii) low toxicity, and (iii) electronic confinement which transforms the indirect bandgap of the bulk material into a direct bandgap featuring photoluminescence. However, the optoelectronic properties of this material remain far less investigated than its structural properties. Here, we investigate the photoluminescence and transport properties of arrays of methyl-terminated germanane flakes. The photoluminescence appears to have two contributions, one from the band edge and the other from trap states. The dynamics of the exciton appear to be in the range of 1–100 ns. Conduction in this material appears to be p-type, while the photoconduction time response can be made as short as 100 μs.
- Published
- 2019
- Full Text
- View/download PDF
43. A colloidal quantum dot infrared photodetector and its use for intraband detection
- Author
-
Benoit Dubertret, Clément Livache, Emmanuel Lhuillier, Nicolas Goubet, Sébastien Royer, Audrey Chu, Bertille Martinez, Charlie Gréboval, Sandrine Ithurria, Junling Qu, Mathieu G. Silly, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), De la Molécule aux Nanos-objets : Réactivité, Interactions et Spectroscopies (MONARIS), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), ANR-15-CE09-0014,NanoDoSe,Dopage de Nanocristaux Semiconducteurs par chimie douce(2015), ANR-18-CE30-0023,IPER-Nano2,Nanocristaux de perovskite inorganique pour la nanophotonique(2018), and European Project: 756225,blackQD
- Subjects
0301 basic medicine ,Materials science ,Science ,General Physics and Astronomy ,Photodetector ,02 engineering and technology ,intraband ,7. Clean energy ,General Biochemistry, Genetics and Molecular Biology ,Article ,law.invention ,03 medical and health sciences ,chemistry.chemical_compound ,Condensed Matter::Materials Science ,law ,Electronic devices ,Mercury selenide ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,lcsh:Science ,Quantum well ,Multidisciplinary ,business.industry ,Quantum dots ,Mercury telluride ,quantum dot ,General Chemistry ,infrared detection ,021001 nanoscience & nanotechnology ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Photodiode ,030104 developmental biology ,chemistry ,Nanocrystal ,Quantum dot ,Optoelectronics ,lcsh:Q ,0210 nano-technology ,business ,Dark current - Abstract
Wavefunction engineering using intraband transition is the most versatile strategy for the design of infrared devices. To date, this strategy is nevertheless limited to epitaxially grown semiconductors, which lead to prohibitive costs for many applications. Meanwhile, colloidal nanocrystals have gained a high level of maturity from a material perspective and now achieve a broad spectral tunability. Here, we demonstrate that the energy landscape of quantum well and quantum dot infrared photodetectors can be mimicked from a mixture of mercury selenide and mercury telluride nanocrystals. This metamaterial combines intraband absorption with enhanced transport properties (i.e. low dark current, fast time response and large thermal activation energy). We also integrate this material into a photodiode with the highest infrared detection performances reported for an intraband-based nanocrystal device. This work demonstrates that the concept of wavefunction engineering at the device scale can now be applied for the design of complex colloidal nanocrystal-based devices., The field of wavefunction engineering using intraband transition to design infrared devices has been limited to epitaxially grown semiconductors. Here the authors demonstrate that a device with similar energy landscape can be obtained from a mixture of colloidal quantum dots made of HgTe and HgSe.
- Published
- 2019
44. Strongly Confined HgTe 2D Nanoplatelets as Narrow Near-Infrared Emitters
- Author
-
Sandrine Ithurria, Nicolas Lequeux, Eva Izquierdo, Sean Keuleyan, Emmanuel Lhuillier, Adrien Robin, Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), University of Oregon [Eugene], Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Labex Matisse, and ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011)
- Subjects
Photoluminescence ,Band gap ,Chalcogenide ,near infrared ,cation exchange ,Quantum yield ,02 engineering and technology ,010402 general chemistry ,HgTe ,7. Clean energy ,01 natural sciences ,Biochemistry ,Catalysis ,chemistry.chemical_compound ,Colloid and Surface Chemistry ,2D ,business.industry ,Chemistry ,nanoplatelets ,Near-infrared spectroscopy ,[CHIM.MATE]Chemical Sciences/Material chemistry ,General Chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Wavelength ,Nanocrystal ,Topological insulator ,Optoelectronics ,0210 nano-technology ,business - Abstract
International audience; Two-dimensional colloidal nanoplatelets (NPLs), owing to the atomic-level control of their confined direction (i.e., no inhomogeneous broadening), have demonstrated improved photoluminescence (PL) line widths for cadmium chalcogenide-based nanocrystals. Here we use cation exchange to synthesize mercury chalcogenide NPLs. Appropriate control of reaction kinetics enables the 2D morphology of the NPLs to be maintained during the cation exchange. HgTe and HgSe NPLs have significantly improved optical features compared to existing materials with similar band gaps. The PL line width of HgTe NPLs (40 nm full width at half-maximum, centered at 880 nm) is a factor of 2 smaller than typical PbS nanocrystals (NCs) emitting at the same wavelength. The PL has a lifetime of 50 ns, almost 2 orders of magnitude shorter than small PbS colloidal quantum dots (CQDs), and a quantum yield of ∼10%, almost 2 orders of magnitude shorter than small PbS colloidal quantum dots (CQDs). These materials are promising for a large variety of applications spanning from telecommunications to the design of colloidal topological insulators.
- Published
- 2016
45. Metallic Functionalization of CdSe 2D Nanoplatelets and Its Impact on Electronic Transport
- Author
-
Rabah Benbalagh, Benoit Mahler, Loic Guillemot, Sandrine Ithurria, Gilles Patriarche, Abdelkarim Ouerghi, Léo Bossard-Giannesini, François Rochet, Emmanuelle Lacaze, Debora Pierucci, Emmanuel Lhuillier, Institut Lumière Matière [Villeurbanne] (ILM), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de photonique et de nanostructures (LPN), Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie Physique - Matière et Rayonnement (LCPMR), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Labex Matisse, and ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011)
- Subjects
Band gap ,Nanotechnology ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,symbols.namesake ,X-ray photoelectron spectroscopy ,[CHIM]Chemical Sciences ,Work function ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Physical and Theoretical Chemistry ,Physics ,Kelvin probe force microscope ,business.industry ,Fermi level ,Conductance ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,General Energy ,Semiconductor ,Chemical physics ,Percolation ,symbols ,0210 nano-technology ,business - Abstract
International audience; We explore the gold functionalization of 2D CdSe nanoplatelets (NPL) as a possible way to tune their electronic and transport properties. We demonstrate that the size and location of the gold tip can be controlled using light and temperature. The Au tip–CdSe NPL hybrid presents a large rise of the conductance compared to the pristine semiconductor (i.e., without gold functionalization). The role of the semiconductor in this transport remains unclear and needs to be better understood. We hypothesize four mechanisms: (i) a reduction of the band gap energy due to the formation of a gold–selenium compound, (ii) a charge transfer between the metal and the semiconductor leading to an increase in carrier concentration, (iii) a change in the inter-nanoparticle tunnel barrier height, and (iv) a simple percolation process between the metallic grain. X-ray photoelectron spectroscopy (XPS) shows that the CdSe NPL are unaffected by oxidation and that gold is in the metallic state Au0. We consequently exclude the formation of a narrow band gap Au2Se phase as the possible mechanism leading to the observed rise of conductance. Moreover, Kelvin probe force microscopy and XPS give evidence for an increase in work function upon gold tipping, which can be interpreted in terms of a shift of the Fermi level toward the valence band maximum. As hole conduction in CdSe NPLs is very unlikely to occur, we rather favor the hypothesis that the strong increase in conduction is largely driven by percolation between the metallic tips as the main mechanism responsible for transport in this hybrid system.
- Published
- 2016
46. Phototransport in colloidal nanoplatelets array
- Author
-
Daniel O. Thomas, Sandrine Ithurria, Adrien Robin, Hervé Aubin, Jean-Francois Dayen, Benoit Dubertret, Emmanuel Lhuillier, lhuillier, emmanuel, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, and Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)
- Subjects
photodetection ,noise ,[CHIM.MATE] Chemical Sciences/Material chemistry ,Materials science ,Passivation ,nanoplatelets ,quantum dot ,Nanotechnology ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Photodetection ,Condensed Matter Physics ,7. Clean energy ,Photodiode ,law.invention ,Colloid ,Nanocrystal ,law ,Quantum dot ,Particle ,semiconductor nanoparticles ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Thin film ,electrolyte gating ,[PHYS.COND] Physics [physics]/Condensed Matter [cond-mat] - Abstract
Colloidal nanocrystals are promising materials for achieving low cost optoelectronic devices. In this paper, we focus on the transport and photo transport properties of 2D nanoplatelet thin films and their use for photodetection. We present evidence that improved performances relies on good trap passivation as well as overcoming the inherent large exciton binding energy of the 2D NPL. This can be achieved using a phototransistor configuration with transport at the single particle scale (© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
- Published
- 2015
47. Design of Unipolar Barrier for Nanocrystal Based Short Wave Infrared Photodiode
- Author
-
Charlie Gréboval, Mathieu G. Silly, Julien Ramade, Bertille Martinez, Clément Livache, Audrey Chu, Amaury Triboulin, Dylan Amelot, Nicolas Goubet, Amardeep Jagtap, Sandrine Ithurria, Emmanuel Lhuillier, Benoit Dubertret, Paul Trousset, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), and European Project: 756225,blackQD
- Subjects
Materials science ,Infrared ,Band gap ,Infrared spectroscopy ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,law.invention ,nanocrystal ,nanocrystals ,law ,photodiode ,Electrical and Electronic Engineering ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Diode ,short wave infrared ,photodetection ,business.industry ,021001 nanoscience & nanotechnology ,Atomic and Molecular Physics, and Optics ,Cutoff frequency ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,Photodiode ,Nanocrystal ,infrared ,Optoelectronics ,infrared photodetection ,0210 nano-technology ,business ,Biotechnology ,Dark current - Abstract
International audience; Nanocrystals are promising materials for the design of low cost infrared detectors. Here we focus on HgTe colloidal quantum dots (CQDs) as an active material for detection in the extended short-wave infrared (2.5 µm as cut-off wavelength). In this paper, we propose a strategy to enhance the performances of previously reported photodiodes. In particular we integrate in this diode an unipolar barrier which role is to prevent the dark current injection to enhance the signal to noise ratio. We demonstrate that such unipolar barrier can be designed from another layer of HgTe CQDs with a wider band gap. Using a combination of IR spectroscopy and photoemission, we show that the barrier is resonant with the absorbing layer valence band, while presenting a clear offset with the conduction band. The combination of contacts with improved design and use of unipolar barrier allows us to reach a detectivity as high as 3·108 Jones at room temperature with 3 dB cut off frequency above 10 kHz.
- Published
- 2018
48. Polyoxometalate as Control Agent for the Doping in HgSe Self-Doped Nanocrystals
- Author
-
Elisa Meriggio, Mathieu G. Silly, Emmanuel Lhuillier, Hervé Cruguel, Emmanuelle Lacaze, Clément Livache, Bertille Martinez, Florence Volatron, Gregory Cabailh, Sandrine Ithurria, Xiang Zhen Xu, Anna Proust, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Oxydes en basses dimensions (INSP-E9), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie Inorganique et Matériaux Moléculaires (CIM2), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), and European Project: 756225,blackQD
- Subjects
Materials science ,Physics::Optics ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,nanocrystal ,Condensed Matter::Superconductivity ,self doping ,Physical and Theoretical Chemistry ,Absorption (electromagnetic radiation) ,Astrophysics::Galaxy Astrophysics ,Plasmon ,POM ,business.industry ,Doping ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,General Energy ,Polyoxometalate ,Optoelectronics ,Condensed Matter::Strongly Correlated Electrons ,0210 nano-technology ,business ,Doped nanocrystals - Abstract
International audience; Intraband and plasmonic transitions have appeared over the last years as an interesting tool to achieve optical absorption in the mid infrared. Tuning the doping magnitude has become a major challenge not only to tune the optical spectrum but also properties such as the dark current or the time response. Here we investigate the case of self-doped HgSe colloidal quantum dots (CQDs). Tuning of the doping was so far relying on band bending induced by a dipole design at the nanoparticle surface. With such a surface gating approach, it is difficult to conciliate both the massive tuning of the Fermi level with the preservation of transport properties of the CQD arrays. Here we propose a strategy to graft functionalized polyoxometalates (POMs) at the CQD surface and obtain simultaneously a massive tuning of the carrier density (≈5 electrons per nanoparticle) and conduction properties. We bring a consistent demonstration of the HgSe CQD doping decrease by a charge transfer to the POM. This method is highly promising for large tuning of carrier density in degenerately doped semiconductor nanoparticles.
- Published
- 2018
49. Engineering Bicolor Emission in 2D Core/Crown CdSe/CdSe1–xTex Nanoplatelet Heterostructures Using Band-Offset Tuning
- Author
-
Laurent Legrand, Thierry Barisien, Violette Steinmetz, Sandrine Ithurria, Emmanuel Lhuillier, Eva Izquierdo, Maria Chamarro, Marion Dufour, Thomas Pons, and Nicolas Lequeux
- Subjects
Core (optical fiber) ,Materials science ,business.industry ,Picosecond ,Binding energy ,Optoelectronics ,Nanoparticle ,Heterojunction ,Electron ,business ,Cadmium telluride photovoltaics ,Band offset - Abstract
Colloidal 2D nanoplatelets (NPLs) are a class of nanoparticles that offer the possibility of forming two types of heterostructures, by growing either in the confined direction or perpendicular to the confined direction, called core/crown NPLs. Here, we demonstrate that bicolor emission can be obtained from 2D NPLs with a core/crown geometry. To date, for CdSe/CdTe NPLs with type-II band alignment, only charge transfer emission has been observed due to the very fast (
- Published
- 2018
50. Short Wave Infrared Devices Based on HgTe Nanocrystals with Air Stable Performances
- Author
-
Amardeep Jagtap, Nicolas Goubet, Audrey Chu, Junling Qu, Charlie Gréboval, Nadine Witkowski, Sandrine Ithurria, Benoit Dubertret, Mathieu G. Silly, Bertille Martinez, Erwan Dandeu, Clément Livache, Fabrice Mathevet, Loïc Becerra, Emmanuel Lhuillier, Physico-chimie et dynamique des surfaces ( INSP-E6 ), Institut des Nanosciences de Paris ( INSP ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Physique et d'Etude des Matériaux ( LPEM ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -ESPCI ParisTech-Centre National de la Recherche Scientifique ( CNRS ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Centre National de la Recherche Scientifique ( CNRS ), Chimie des polymères ( LCP ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut Parisien de Chimie Moléculaire ( IPCM ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Centre National de la Recherche Scientifique ( CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Synchrotron SOLEIL ( SSOLEIL ), Centre National de la Recherche Scientifique ( CNRS ), matisse, ANR-11-IDEX-0004-02/10-LABX-0067,MATISSE,MATerials, InterfaceS, Surfaces, Environment ( 2011 ), European Project : 756225,blackQD, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Chimie des polymères (LCP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut Parisien de Chimie Moléculaire (IPCM), Institut de Chimie du CNRS (INC)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), European Project: 756225,blackQD, and Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Infrared ,Annealing (metallurgy) ,02 engineering and technology ,010402 general chemistry ,7. Clean energy ,01 natural sciences ,HgTe ,law.invention ,nanocrystal ,law ,Short wave infrared ,photodiode ,Physical and Theoretical Chemistry ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,[PHYS]Physics [physics] ,[ PHYS ] Physics [physics] ,business.industry ,Photoconductivity ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Photodiode ,Ambient air ,General Energy ,photodetction ,Nanocrystal ,[ CHIM.MATE ] Chemical Sciences/Material chemistry ,infrared ,Optoelectronics ,0210 nano-technology ,business ,[ PHYS.COND ] Physics [physics]/Condensed Matter [cond-mat] ,Dark current - Abstract
International audience; Colloidal quantum dots (CQDs) are candidates of interest for the design of low cost IR detector especially in the short wave infrared (SWIR; 0.8-3 µm), where the vicinity of the visible range makes the high cost of available technologies even more striking. HgTe nanocrystals are among the most promising candidates to address SWIR since their spectrum can be tuned all over this range while demonstrating photoconductive properties. However, several main issues have been kept under the rug, which prevents further development of active materials and devices. Here we address two central questions, which are (i) the stability of the device under ambient air condition and (ii) the reduction of dark current. Encapsulation of HgTe CQDs is difficult because of their extreme sensitivity to annealing, we nevertheless demonstrate an efficient encapsulation method based on a combination of O2 and H2O repellant layers leading to stability over >100 days. Finally, we demonstrate that the dark current reduction can be obtained by switching from a photoconductive geometry to a photovoltaic (PV) device, which is fabricated using solution and low temperature based approach. We demonstrate fast photoresponse (>10 kHz) and detectivity enhancement by 1 order of magnitude in the PV configuration at room temperature. These results pave the way for narrow bandgap CQD based cost-effective optoelectronic devices in developing next generation SWIR photonic systems.
- Published
- 2018
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.