1. Exploring water-absorbing capacity: a digital image analysis of seeds from 120 wheat varieties
- Author
-
Tooba Khan, Muhammad Jamil, Aamir Ali, Sana Rasheed, Asma Irshad, Muhammad Faisal Maqsood, Usman Zulfiqar, Talha Chaudhary, M. Ajmal Ali, and Mohamed S. Elshikh
- Subjects
Digital image analysis ,Wheat seeds ,Wheat genotypes ,Imbibition ,Shape ,Size ,Medicine ,Science - Abstract
Abstract Wheat is a staple food crop that provides a significant portion of the world's daily caloric intake, serving as a vital source of carbohydrates and dietary fiber for billions of people. Seed shape studies of wheat typically involve the use of digital image analysis software to quantify various seed shape parameters such as length, width, area, aspect ratio, roundness, and symmetry. This study presents a comprehensive investigation into the water-absorbing capacity of seeds from 120 distinct wheat lines, leveraging digital image analysis techniques facilitated by SmartGrain software. Water absorption is a pivotal process in the early stages of seed germination, directly influencing plant growth and crop yield. SmartGrain, a powerful image analysis tool, was employed to extract precise quantitative data from digital images of wheat seeds, enabling the assessment of various seed traits in relation to their water-absorbing capacity. The analysis revealed significant transformations in seed characteristics as they absorbed water, including changes in size, weight, shape, and more. Through statistical analysis and correlation assessments, we identified robust relationships between these seed traits, both before and after water treatment. Principal Component Analysis (PCA) and Agglomerative Hierarchical Clustering (AHC) were employed to categorize genotypes with similar trait patterns, providing insights valuable for crop breeding and genetic research. Multiple linear regression analysis further elucidated the influence of specific seed traits, such as weight, width, and distance, on water-absorbing capacity. Our study contributes to a deeper understanding of seed development, imbibition, and the crucial role of water absorption in wheat. These insights have practical implications in agriculture, offering opportunities to optimize breeding programs for improved water absorption in wheat genotypes. The integration of SmartGrain software with advanced statistical methods enhances the reliability and significance of our findings, paving the way for more efficient and resilient wheat crop production. Significant changes in wheat seed shape parameters were observed after imbibition, with notable increases in area, perimeter, length, width, and weight. The length-to-width ratio (LWR) and circularity displayed opposite trends, with higher values before imbibition and lower values after imbibition.
- Published
- 2024
- Full Text
- View/download PDF