David Cabaleiro, Florentin Michaux, Samah Hamze, Thierry Maré, Dominique Begin, Patrice Estellé, Brigitte Vigolo, Jérôme Gleize, Nawal Berrada, Jaafar Ghanbaja, Alexandre Desforges, Jonchère, Laurent, Laboratoire de Génie Civil et Génie Mécanique (LGCGM), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Institut Jean Lamour (IJL), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Universidade de Vigo, Laboratoire de Chimie et Physique - Approche Multi-échelle des Milieux Complexes (LCP-A2MC), Université de Lorraine (UL), Institut de chimie et procédés pour l'énergie, l'environnement et la santé (ICPEES), Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Ingénierie des Biomolécules (LIBio), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), and Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
High-quality graphene is an especially promising carbon nanomaterial for developing nanofluids for enhancing heat transfer in fluid circulation systems. We report a complete study on few layer graphene (FLG) based nanofluids, including FLG synthesis, FLG-based nanofluid preparation, and their thermal conductivity. The FLG sample is synthesized by an original mechanical exfoliation method. The morphological and structural characterization are investigated by both scanning and transmission electron microscopy and Raman spectroscopy. The chosen two-step method involves the use of thee nonionic surfactants (Triton X-100, Pluronic®, P123, and Gum Arabic), a commercial mixture of water and propylene glycol and a mass content in FLG from 0.05 to 0.5%. The thermal conductivity measurements of the three FLG-based nanofluid series are carried out in the temperature range 283.15&ndash, 323.15 K by the transient hot-wire method. From a modeling analysis of the nanofluid thermal conductivity behavior, it is finally shown that synergetic effects of FLG nanosheet size and thermal resistance at the FLG interface both have significant impact on the evidenced thermal conductivity enhancement.